25
IRUS Total
Downloads
  Altmetric

A local multiscale probabilistic graphical model for data validation and reconstruction, and its application in industry

File Description SizeFormat 
main.pdfAccepted version1.82 MBAdobe PDFView/Open
Title: A local multiscale probabilistic graphical model for data validation and reconstruction, and its application in industry
Authors: Herrera-Vega, J
Orihuela-Espina, F
Ibarguengoytia, PH
Garcia, UA
Rosado, D-EV
Morales, EF
Enrique Sucar, L
Item Type: Journal Article
Abstract: The detection and subsequent reconstruction of incongruent data in time series by means of observation of statistically related information is a recurrent issue in data validation. Unlike outliers, incongruent observations are not necessarily confined to the extremes of the data distribution. Instead, these rogue observations are unlikely values in the light of statistically related information. This paper proposes a multiresolution Bayesian network model for the detection of rogue values and posterior reconstruction of the erroneous sample for non-stationary time-series. Our method builds local Bayesian Network models that best fit to segments of data in order to achieve a finer discretization and hence improve data reconstruction. Our local multiscale approach is compared against its single-scale global predecessor (assumed as our gold standard) in the predictive power and of this, both error detection capabilities and error reconstruction capabilities are assessed. This parameterization and verification of the model are evaluated over three synthetic data source topologies. The virtues of the algorithm are then further tested in real data from the steel industry where the aforementioned problem characteristics are met but for which the ground truth is unknown. The proposed local multiscale approach was found to dealt better with increasing complexities in data topologies.
Issue Date: 1-Apr-2018
Date of Acceptance: 1-Jan-2018
URI: http://hdl.handle.net/10044/1/70140
DOI: https://dx.doi.org/10.1016/j.engappai.2018.01.001
ISSN: 0952-1976
Publisher: Elsevier
Start Page: 1
End Page: 15
Journal / Book Title: Engineering Applications of Artificial Intelligence
Volume: 70
Copyright Statement: © 2018 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/
Keywords: Science & Technology
Technology
Automation & Control Systems
Computer Science, Artificial Intelligence
Engineering, Multidisciplinary
Engineering, Electrical & Electronic
Computer Science
Engineering
Bayesian networks
Data validation
Multiscale approach
Outlier detection
Probabilistic graphical models
PARTIAL LEAST-SQUARES
OUTLIER DETECTION
Science & Technology
Technology
Automation & Control Systems
Computer Science, Artificial Intelligence
Engineering, Multidisciplinary
Engineering, Electrical & Electronic
Computer Science
Engineering
Bayesian networks
Data validation
Multiscale approach
Outlier detection
Probabilistic graphical models
PARTIAL LEAST-SQUARES
OUTLIER DETECTION
08 Information and Computing Sciences
09 Engineering
Artificial Intelligence & Image Processing
Publication Status: Published
Online Publication Date: 2018-02-03
Appears in Collections:Department of Surgery and Cancer