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Abstract

The detection and subsequent reconstruction of incongruent data in time
series by means of observation of statistically related information is a re-
current issue in data validation. Unlike outliers, incongruent observations
are not necessarily confined to the extremes of the data distribution. In-
stead, these rogue observations are unlikely values in the light of statistically
related information. This paper proposes a multiresolution Bayesian net-
work model for the detection of rogue values and posterior reconstruction
of the erroneous sample for non-stationary time-series. Our method builds
local Bayesian Network models that best fit to segments of data in order to
achieve a finer discretization and hence improve data reconstruction. Our
local multiscale approach is compared against its single-scale global prede-
cessor (assumed as our gold standard) in the predictive power and of this,
both error detection capabilities and error reconstruction capabilities are as-
sessed. This parametrization and verification of the model are evaluated
over three synthetic data source topologies. The virtues of the algorithm
are then further tested in real data from the steel industry where the afore-

*Corresponding author
Email addresses: vega@ccc.inaoep.mx (Javier Herrera-Vega),
f.orihuela-espina@ccc.inaoep.mx (Felipe Orihuela-Espina), pibar@iie.org.mx
(Pablo H. Ibargiiengoytia), uriel.garcia@iie.org.mx (Uriel A. Garcia),
dnvr301080@ccc.inaoep.mx (Dan-El Vila Rosado), emorales@inacep.mx (Eduardo F.
Morales), esucar@ccc.inaoep.mx (Luis Enrique Sucar)

Preprint submitted to Engineering Applications of Artificial Intelligence January 19, 2018



mentioned problem characteristics are met but for which the ground truth is
unknown. The proposed local multiscale approach was found to dealt better
with increasing complexities in data topologies.

Keywords: Bayesian networks, data validation, multiscale approach,
outlier detection, probabilistic graphical models

1. Introduction

Many areas like industry, medicine and science generate large volumes
of data demanding validation. Validating data is a crucial task before in-
formation analysis, interpretation and decision making. Data validation en-
compasses processing techniques rendering quality data guaranteeing optimal
matching between real observations and the repository. In other words, data
validation is concerned with finding erroneous data in a data set and when
appropriate, suggesting a plausible alternative [42]. The data validation pro-
cess involves a systematic assessment of compliance to a set of acceptance
rules defining data validity [21]. In general, the validation process is domain
specific [18, 29]. Due to its domain specific nature, data validation is carried
out not in few occasions by means of visual inspection, a time consuming ap-
proach, exposed to subjectiveness and prone to errors. Yet regardless of the
particularities in each domain, a number of problems are recurrent in data
validation including detection of outliers, incongruent or rogue values and/or
gaps or missing data, and reconstruction or estimation of these missing or
erroneous observations [24].

For some of these common data validation problems automation has been
attempted [2, 4, 3, 22, 35, 43, 45]. These problems include the detection of
observational outliers (values at the extreme of the data distribution), the
detection of signal drift, level shift or abrupt changes altering the trend of the
series (innovation outliers [33, 2]), the detection of rogue values (unplausible
values in the light of statistically dependent information) and the reconstruc-
tion of missing data, among others. Once an error has been detected, the
validation process proceeds with the data reconstruction. Reconstruction
can capitalize on the signal autoregressive information e.g., classical interpo-
lation [41] or time series analysis [5], statistically dependent information e.g.,
29, 23], or a combination of both [24]. The most beneficial reconstruction
option depends on the interplay between the variables characteristics in the
dataset, including the within-variable information [24].



This paper is concerned with the detection of incongruent values and its
reconstruction paying particular attention to datasets with temporal vari-
ables (time series). Incongruent or rogue values are suspicious values which
may be in range and apparently agree with the signal trend, but that con-
tradicts the associated trend of statistically dependent knowledge [21]. This
makes their detection particularly difficult if using only within-variable infor-
mation. This is inherently a multivariate problem. Previously, the detection
of rogue values has been addressed with Bayesian Networks (BNs) in the
context of sensor validation [23]. This approach is a global solution in which
a BN is learned from the complete available dataset and then data valid-
ity is checked against probabilistic plausibility. Subsequent reconstruction
utilizes probabilistic propagation to estimate expected values for erroneous
samples from associated values in statistically related variables [23]. Learn-
ing the structure of the BN requires discretization of variables’ data ranges
into intervals that ultimately determines the detection rate and affects the
accuracy of the recovery of alternative values. For stationary signals it is
fair that these discrete intervals remain constant for the whole time series.
However, for non-stationary signals, as the statistical properties of the series
fluctuate, so should the intervals. In this way, dynamic finer discretization
can be achieved and consequently a more accurate suggestion of alternative
values should follow. Achieving similar discretization with a global solution
will imply higher number of intervals, which in turn will require conditional
probability tables that will grow exponentially. This quickly becomes com-
putationally intractable.

This paper proposes a new local multiscale BN-based approach for the
detection and reconstruction of incongruent values in multivariate datasets
that we hypothesize to be more suitable for non-stationary signals. The al-
gorithm constructs a two level hierarchy of BN models in which the superior
level determines the dataset topology i.e., BN structure, and the inferior level
contains a set of submodels providing interval discretizations that locally fits
data distribution. In detecting the error and reconstructing the new value,
the critical step is deciding the submodel that better fits the sample under
scrutiny. The problem of selecting the submodel is solved computing the
conditional probability of the observation given the submodel. The solution
aims to enhance error detection and suggestion of alternative values that of-
fer a greater congruence with the data series trend by computing conditional
probabilities locally. Validation is carried out over synthetic data. Explica-
tive power is evaluated by matching the reconstructed Bayesian structure



against the known synthetic ground truth. Predictive power is assessed in its
two flavours, error detection capabilities and error reconstruction capabilities
and compared against the global predecessor.

The detection process is then applied to a subset of the data coming from
the hardening furnace. Manufacturing of seamless steel tubes used for operat-
ing at high temperatures and pressures requires the creep resistance resulting
from heat treatment. Heat treatment is a set of metalworking processes that
alter the mechanical characteristics of the material by means of a sequence
of heating and/or cooling to extreme temperatures. For instance, one such
heat treatment, annealing, changes material properties such as strength and
hardness. This manufacturing process often yields a wealth of data with
over 120 different variables with very long series. This data is used to clas-
sify the steel tube as compliant or not with resistance requirements. This
classification is strongly affected by the quality of the data. However, during
data acquisition and storage; defective sensing, noise affecting transmission
and transcription mistakes may corrupt the data. Thus, to achieve a more
accurate classification, data is put through a data validation process. In
this scenario, type I errors i.e., considering faulty an actual correct value,
are affordable as long as the suggested alternatives are good approximations,
emphasizing the critical importance of the reconstruction. Performance is
then compared to the previous existing global solution [23].

Contribution is three-fold; (i) we provide a new solution with overall bet-
ter capabilities for complex data topologies, (ii) we establish some rules of
thumb for model parameterization both for the new approach and its prede-
cessor, and (iii) we verify and validate the approach delimiting its incongruent
data validation capabilities.

Organization of the paper is as follows. First, the computational ap-
proach is presented, and the datasets both synthetic and real are introduced.
Then, to reduce the search space, an initial stage chooses statistically relevant
model parameters. After fixing the model parameters, a 5-fold validation ex-
ercises explores the face validity of the approach evaluating predictive and
explicative properties of the solution. The model parameters are automati-
cally learned from the data structure and distribution to adapt to different
problems and scenarios, and in principle it can accommodate any number
of variables (other than memory limits) and it is not constraint to a par-
ticular data distribution favouring scalability and generalizability. Finally,
concurrent validity is established over real data.



2. Preliminaries

2.1. Bayesian Networks

A Bayesian Network (BN) [10, 34] N = (X, G, P) is a directed acyclic
graph (DAG) G = (V, E) with nodes V = vy,...,v, and directed links E.
The nodes of G represent the set of random variables X of the domain and
for each random variable X, € X a Conditional Probability Distribution P
of the form P(X,|X,,(v)) is associated, where X,,(v) are the set of parents
of v.

The BN structure and its parameters (CPD) can be defined explicitly.
However, these can be learned automatically through a set of data. Several
algorithms are available for this purpose [39, 40, 9]. During the network
structure learning, a statistical test between each pair of variables must be
computed in order to discover relations of conditional independence, a process
that is facilitated by the discretization of the variables’ ranges.

A defined (learned) BN represents a knowledge base which its mayor
purpose is to reason under uncertainty about observed events in its domain.
This reasoning is carried out by probabilistic inference whose main task is to
compute the posterior marginal probability of an unobserved variable given
a set of observed (evidence) variables.

2.2. Discretization

Discretization is the process by which the values of continuous variables
are converted to discretized, ordinal or nominal values. The discretization
process is non-trivial and many approaches exist [27, 15]. Two classical
strategies are equi-distance by which the variables’ data range is split in a
predetermined number of equally distant intervals, or equi-frequency in which
the splitting of the intervals ensure that each interval holds the same number
of samples. Recently, we proposed an interval discretization technique based
on a Gaussian mixture model (GMM) [21]. This approach optimizes binning
based on the data distribution. In GMM-based interval discretization, the
data is assumed to be generated by a mixture of Gaussian distributions.
Each fundamental Gaussian is characterized by its mean p and its variance
o2, and the mixture is given by Eq. 1:

K

p(e) = 3 mN (alpu, o) (1)

k=1



where K is the number of Gaussians considered, N (z|ux,0%) represents a
Gaussian with mean j;, and variance o; and 7 are the mixing coefficients,
i.e. weights for the Gaussians. The algorithm has K as a single parameter.
The classical Expectation-Maximization algorithm [13] is used to optimize
the fitting of the distributions. The critical value discriminating any two
contiguous intervals is chosen at the point in which the two involved fun-
damental Gaussians exhibit equal probability. The main advantage of this
approach is that every interval corresponds to a specific distribution of the
data. Among the available aforementioned discretization strategies, we opted
by the latter based on Gaussian mixture relying on our expertise.

3. Related work

Several approaches that use Bayesian networks are presented by differ-
ent communities like anomaly detection [6], sensor validation [37], outlier
detection [46] and more recently, the work presented in [? | propose the
use of a Dynamic Bayesian Network to learn a non-stationary process to
detect anomalies in a network system. Some approaches are dependent on
the application domain. Examples are labeled databases [12], wireless sen-
sor networks [25], high pressure fluid-filled pipe type cables [44] or academic
computer networks [38]. The main idea in most of those systems is the as-
sumption of normal behavior process data used for training a probabilistic
model, and inference is used to compare and measure the correctness of in-
coming data. Other approaches has addressed the problem of error detection
by means of classifiers like the ones presented in [14, 7] who uses decision
trees to detect faults or the work of [30] where fault detection is performed
by a fuzzy classifier.

3.1. Detection of rogue values with related variables: a global solution

In a nutshell, the idea of validating rogue values using related variables
is as follows. Statistical dependencies among variables established from the
timecourse are exploited to isolate samples that flagrantly i.e. significantly,
violate the expected relations. The original algorithm was proposed in [23],
and we briefly describe it here. The process, schematically depicted in Fig-
ure 1, starts with the discretization of each variable range. In the original
algorithm, without losing generality, the discretization was achieved using an
equi-distance criterium. Then a BN is trained (structural learning) with do-
main entities as nodes. This BN will naturally catch conditional dependences



between the variables in its arcs. Structural learning of the network can be
achieved by any existing algorithm, e.g. PC [39]. Figure 2 illustrates a BN
where the domain variables (nodes) and the probabilistic relation between
them (edges) can be observed. Once the BN structure is defined, it permits
identification of rogue values using a two step process; (i) identification of
error candidates and (ii) isolation of the real errors.

Data source Isolation network

Candidate
error

Structural learning

7~ 2
N
&

Data repository
Data model

Reconstruction

Figure 1: Schematic depiction of the data validation process for rogue value detection and
reconstruction. With a given set of data a model is learned which describes the relation
between variables of the domain. This model is able to detect suspicious errors (candidate
errors). In a second stage, candidate errors are analysed with other model to isolate real
errors. The learned model is used later to reconstruct every erroneous data.

Phase I: Identification of error candidates. During the identification of
error candidates, suspicious records i.e. those failing to comply with
expected conditional probabilistic relations, are labelled as candidate
errors (CE) if the probability of the sample value in the light of other
variables values falls below a given significance candidacy threshold p..
The probability of the sample value is given by the posterior probability
distribution of the variable which for any variable can be established
by isolating the variable Markov blanket i.e., its parents, children and



other parents of its children, and propagating evidence on the net.
Equation 2 describes formally the aforementioned process where X;
is the variable to validate, O; is the observed value for X;, N is the
Bayesian Network Model, O is a vector of current observed values and
M By, is the Markov Blanket of the node X; for the given model and
observation.

v A JTRUE If P(X; = O;/MBx,(N,0)) < pe
CE(X;;N,O,p.) = {FALSE Otherwise 2)

The network is used to detect candidate errors estimating the poste-
rior probability of every node given the nodes in its Markov blanket.
After a complete cycle a set of apparent errors is obtained. In the first
step, some correct values may be flagged as a rogue if they have been
estimated with actual rogue values in other variables. Thus, the second
stage is necessary to isolate real errors from the set of candidate ones.

Phase II: Isolation of the real errors. After the candidate errors have

been tagged, a new isolation BN is built. This subordinate network
contains all the nodes of the original network replicated in two levels as
illustrated in Figure 3. The upper layer contains the list of all nodes in
the phase I network with an indication of R_ -for (R)eal (a true error)-
at front of the nodes name. Similarly, the lower layer contains all
nodes with names starting with A_ -for (A)pparent (candidate error)-.
Let S4 be the set of variables with apparent faults and EM B(X) the
Extended Markov Blanket (EMB)! of a variable X. S, is compared
with the table of the EMB for each variable. The EMB of each node
dictates the relation between nodes across levels with different possible
outcomes|23]:

e S, = () there are no faults.

e If S, is equal to the union of several EMBs and the combination
is unique?, there are multiple distinguishable real faults in all the

IThe set of nodes in the Markov Blanket of a node plus the node itself.

ZA

unique combination means that VX, # X;,i = 1,...,n then EMB(X;) ¢

EMB(X)UEMB(X2)U...UEMB(X,) and EMB(X;) ¢ U, EMB(X,),j

1

P

)

n.
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Figure 2: A BN model captures the relations between variables of the steel industry
domain based on probabilistic theory. The connecting arrows indicate the direction of
the influence i.e., a change in a parent node alter the state of its child nodes. The pro-
cess of manufacturing steel tubes requires a heating process that involves passing the
tubes through the annealing furnace where the tubes are heated at 900°C. Following,
the tubes are water cooled reducing their temperatures to 50-60°C. Finally, the tubes go
through the hardening furnace where the tubes are heated again. Furnaces are divided
in zones; the annealing furnace is divided in 5 zones, whereas the hardening furnace is
divided in 4 zones. The shown variables correspond to data from the hardening furnace.
More specifically; PermanenceTime is the total time that the tube is in the furnace,
PermanencelimeAreal, 2, 3 and 4 is the time that the tube remains in each zone,
TempAreal, 2, 3 and 4 are the temperatures in each zone of the furnace, and Pirometry
corresponds to the temperature reached by the tube itself.

FermanenceTimeArea2

variables whose EMB are in S4.

e Otherwise, there are multiple faults but they can not be distin-
guished. Any variable X whose EMBs is a subset of Sy, i.e.
EMB(X) C Sa, could have a real fault.

The isolation network follows this procedure for all nodes.



For example, the PermanenceTimeArea3 node possess an EMB com-
posed by the set:

EM B(PermanenceTimeArea3) =

{PermanenceTimeAread,

(3)

PermanenceTimeArea3,

PermanenceTimeArea}

In Figure 3, the node R_PermanencelimeArea3d connects to the nodes
A_PermanencelimeAread, A_PermanenceTimeArea3 and
A_PermanenceTimeArea2 as shown in the second node from the left
in Figure 3.

The parameters of this network are set according to the noisy-OR [23]
which is able to relate a manifestation with a set of possible causes.
The following formula (Eq. 4) is used to calculate the conditional
probability tables for the isolation network:

. Hier If e
Pleld) = {1 T I (4)

where e is an observed manifestation (i.e., a candidate error) and d a set
of possible causes (i.e., real errors). Basically, this equation express the
probability that an apparent error be the cause of a real error present
in other variable (or a set of variables).

To determine a real error through the isolation network, each candidate
error detected in the previous step, is instantiated as true, and the rest
of nodes are instantiated as false. Evidence is propagated throughout
the network and a posterior probability distribution for every node in
the upper level is established. In other words, when all of the nodes
belonging to a EMB of a node contain true as candidate error from
previous step, the propagation will produce a high probability of real
error and low in the others. Theory [23] dictates that whenever there is
a real failure, this will generate one or more apparent faults. However, it
may be the case that none of the apparent faults are detected e.g. their
effects may conceal the effects of the other faults, with the worst case
scenario being that the algorithm fails to detect all the apparent faults.
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Nevertheless, in these cases, if one variable in the EMB of a faulty
node is not detected as apparent faulty in the first stage, including
the same variable itself, the second propagation will produce a high
probability real fault as proven in our earlier publication [23]. And
indeed, experimental results suggests that not detecting the real fault
is unlikely. Real errors are identified by thresholding the probability of
a node over a significant isolation threshold p;. In phase I, the aim is
detecting those data records containing at least one error. In phase II,
the task is deciding which are the offending variables.

R_Pirometry

S

T A_Temp P
Areal A_Plrome@

Figure 3: Isolation network for BN data model in Figure 2.

Finally, suggestion of plausible values is performed through inference over
the model. The original BN model used in phase I is used for the data re-
construction. Feeding valid values of the related variables into the model,
reconstruction is done by propagating evidence through the BN to the af-
fected variable. However, due to the discretization occurring prior to the
structural learning process of the BN, the model can only afford an interval
estimation. The simplest solution to map this interval to a single value is
considering the middle point of the interval. However, as the intervals grow
larger, the middle point can be far from a good estimation. The new ap-
proach presented in the next section exploits the local distribution around a
neighbourhood of the sample under scrutiny to render a finer discretization.

4. Proposed Method

4.1. Detection of rogue values with related variables: a local multiscale solu-
tion

We now present the proposed approach for detecting rogue values. This

new approach taps the local distribution around a neighbourhood of the
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sample being validated to obtain a finer discretization and thus more accu-
rate reconstruction of errors without increasing the model complexity i.e.,
larger conditional probabilities density tables. In the afore described global
approach, following interval discretization, the network structure and the
conditional probabilities tables are learned from the full set of data available
for training. This new approach extends the global model by building local
submodels that whilst maintaining the topology of the global network i.e.,
the structural statistical relations are respected, the conditional probabilities
are computed from the distribution of the temporally local neighbourhood
of the signals. The structure of the submodels is kept invariant ensuring the
probabilistic dependencies are preserved. Figure 4 illustrates the concept.

x il

Figure 4: (a) Upper (global) scale model which governs the model topology. The bars
next to each node represents the associated data distribution. This model is learned from
the full dataset. (b) Local submodels for each of the temporal segments. Although the
topology is inherited from the global model, the probabilities are recalculated using only
the temporal segment subseries.

In order to construct the bottom level submodel, the main idea consists
of splitting the data series in temporal intervals. Figure 5 illustrates the
difference in the data distribution for a given dataset between global (full
series) and local (subseries) approaches. Ideally, the time intervals are defined
such that the subseries are stationary within themselves, or closer to it than
the original full series, e.g., weakly stationary. This should result in BN
models particularly fitted to the signal different behaviours.
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Multiresolution differs from sliding window. Under a sliding window ap-
proach only local information is given to the algorithm, whereas under mu-
tiresolution both global and local information reaches the algorithm. The
implications are clear; the multiresolution keep into consideration the global
information which a simple sliding window would miss.

4.1.1. Time series splitting

In applying a local solution, there is a need for partitioning the time series
into local chunks. Besides the obvious manual partitioning, several options
are suitable for splitting the series:

Equi-spaced. The user indicates the number of intervals &, i.e., the number
of submodels, and the series is split in equal sized intervals. This is the
method chosen in Figure 5.

Overlapped. Similar to the previous one, but the x intervals are allowed to
overlap in their boundaries by a certain amount 7, so that changes are
more progressive.

Sliding window. In the extreme case, a neighbourhood is built over each
sample using a sliding window of size ¥ and a model is built for each
sample. The sliding window may be constructed using any classical
kernel; rectangular, triangular, Gaussian, Welch, Hamming, Hann, etc.

These options represent a compromise between accuracy and computational
complexity. The preceding options are generic and do not address the ques-
tion of whether the original signal is non-stationary and the individual result-
ing chunks are stationary. Segmenting a time series into its locally station-
ary parts is a hard computational problem that has already been addressed
[16, 31] for which practical exact solutions are yet to be developed considering
the order of a would-be exact solution O(N™) [16]. Although we hypothesize
that a segmentation considering stationarity of the time series will improve
the results of the local approach proposed, for this work we stick to more
naive partitioning; i.e., equi-spaced. For practical purposes, throughout this
work the time series were split arbitrarily into 8 intervals. The window size
-not the number of them-, e.g. the length in number of samples of the in-
terval, is actually relevant as this relates directly to the observations seen by
the BN during structure learning. If splitting breaks a stationary period into
two subperiods there is no harm unless the new chunks contain too few sam-
ples to permit appropriate parameterization of the BN, but since structure

13
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Figure 5: (Best seen in color) Global (red histogram) versus Local multiscale (green his-
tograms) BN model construction. Under the global approach the BN learns from the
distribution of the data ranges of the full series. Under the local multiscale approach, BN
submodels are learn from the data distributions of the local temporal segment. The ex-
ample shown uses equi-spaced splitting of the time series. In both cases, the abscissa axis
represents the timecourse of the variables in terms of number of samples. The histogram
of the series is represented in the ordenada axis. The horizontal dashed lines indicates
the interval partition obtained for each variable in this case obtained using equi-distance
discretization. It can be appreciated how the local discretization flexibly adjusts the size

of the intervals according to the local properties of the subseries.
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is learnt globally, this has an attenuated effect. On the other end, as window
size grows the local method approaches the global method.

4.1.2. Upper scale model construction

The structure of the upper scale BN model is built considering the full
dataset (global scale) for training. The global BN determines the probabilis-
tic relations of the domain regardless of the temporal dynamics. The network
topology of the upper level root model is then replicated for each segment
and thus inherited by the submodels guaranteeing that the conditional de-
pendencies are kept consistent through the local submodels. However, each
local BN submodel probabilities are recalculated to adapt to the local seg-
ment, where each one is discretized applying the same discretization method
as in the global model.

4.1.3. Submodel selection

The selection criteria chooses the network submodel with higher prob-
ability of producing the observation e.g., the t-th record < z},2?,...27% >
with n variables.

In this sense, let O be an observation or data record including the samples
across all domain variables. Oy is the observation at time ¢. The probability
that observation O, is generated by a submodel m is given by P(O|m). It
is possible to approximate this probability from the individual probabilities
that value ! observed for variable X’ belongs to one of the intervals for
network node X;. Assuming statistical independence of the samples (not the
time series):

P(Oim) =[] »plar < a; <by) (5)

Xti=1l..n

where a; and b, are the lower and upper boundaries of the k& — th interval
for variable X* where the value x! befalls.

Upon deciding on the submodel, data validation check proceeds as per
the original algorithm with the identification of error candidates first, and
isolation of real errors afterwards. Since all submodels share the same topol-
ogy, it is possible to generate a single isolation network during the last step.
Instantiation of the nodes in the isolation network is carried out according
to the chosen submodel for evidence propagation and real error detection.

15



4.1.4. Data reconstruction

Analogously to the global solution, suggestion of plausible values is per-
formed through inference over the submodel that best represents the ob-
served data. The selection of the submodel is done using the same criterium
of obtaining the probability of the observation given the model, P(O;|lm).
However, upon considering that the variable value to be estimated may be
affected by an error, the probability of this is neglected in the computation,
and only the value of the related variables are considered. In this sense,
the submodel exhibiting higher probability of generating the observation de-
fined by the values in the Markov Blanket of the estimated variable are used
to compute the most likely value. As this corresponds to an interval, the
numeric value proposed is according to the mid point of the interval.

4.2. Simulation environment

Validator is a Java based platform that our group has built for generic
data validation [20] (see Figure 6). This environment is not attached to any
specific domain. It is capable of outlier detection, as well as detection of
sudden changes, and we have incorporate the solutions presented here for
the detection of rogue values using related variables (both global and local
multiscale). All experiments that follow have been carried out in Validator
which is available online at: http://haro.inaoep.mx/~validator.

5. Validation on synthetic data

In order to verify the behaviour of our approach against a known ground
truth, synthetic data topologies were generated using well known time series
models. A synthetic topology is a predefined network structure for which
the relation among node entities is set in terms of generative time series
models. These topologies yield a set of time series with direct and indirect
relations among variables, and with single parent and multiple parent cases.
In total, three synthetic data topologies were generated (Figure 7) with
2000 samples for each variable. Each topology defines a particular relation
of interest between its nodes. The details are explained in appendix A.

Table 1 summarises the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests
for the synthetic topologies. Note that not all series in the synthetic topolo-
gies are (level) non-stationary, but the topologies go with increasing difficulty.
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Figure 6: Screenshot of the Graphical User Interface (GUI) of the data validation tool Val-
idator. The GUI shows the model construction tab with various components like: variable
list, statistics information, histogram and time-series graphs, discretization algorithms and
data manipulation tools.

5.1. Statistical analysis

Statistical analysis has been carried out in R [1]. The KPSS test [28] is
used for testing a null hypothesis that an observable time series is stationary
around a deterministic trend. Effect sizes and corresponding z-scores have
been used to establish the effect of thresholds for algorithm stages I (iden-
tification of candidate errors) and II (isolation of real errors). A two-way
ANOVA model has been built for evaluating the parameterization of models,
and in particular for establishing the discretization strategy and the num-
ber of intervals for the discretization. Although these parameters are nested
i.e., the number of intervals obviously depends on the discretization strat-
egy, for statistical modelling we unfolded this nesting by considering 3 levels
of intervals; 5, 10 and automatic (which is manually set to 15 in the case
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Figure 7: The three synthetic topologies simulated for model verification and face validity.
Each node in the synthetic topology is a combination of its own seed plus maybe some
influence from the other nodes (see Appendix A). Direct and indirect relations, as well as
single parent or multiple parent relations are considered.

of equifrequency) and considered a plain two-way ANOVA. The unfolding
of a nested factor is equivalent to considering a plain multifactorial design
(number of intervals x discretization strategy). No post-hoc pairwise analysis
followed, but instead we rely on boxplots representation for decision.

5.2. Parameterization and verification of the model

As already mentioned, 2000 samples were simulated in the synthetic
topologies and local approach always used 8 equally spaced segments for
partitioning the series. In this first stage, a single fold test is run over the
synthetic data in order to find a combination of parameters that shows a
promising behaviour across both the global and local approached. This shall
avoid an exhaustive parameter space search during the second stage in which
face validity is established. This test also helps to establish the explicative
power of the model. Synthetic data was split into 70% training set and 30%
test set with the samples chosen at random. Note that a static Bayesian
network as the ones underlying the solutions does not take time into ac-
count and thus the temporal distribution of the samples does not affect the
construction of the models. For this single fold, global and local models
were trained and tested using specific combination of parameters including
algorithm stages’ thresholds p. and p;, discretization strategy and number
of intervals, in particular, all possible combinations of the parameter values
in Table 2. Evaluation was based on sensitivity and specificity analysis (Eq
6 and 7 )and the derivated area under the curve (AUC) over the receiver
operator curve (ROC) space.
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For Synthetic topology 1

N1: KPSS Level = 0.126 p>0.1

N2: KPSS Level = 3.7758 p < 0.01 **
N3: KPSS Level = 0.0684 p > 0.1

N4: KPSS Level = 0.071 p>0.1
For Synthetic topology 2

N1: KPSS Level = 15.632 p < 0.01 **
N2: KPSS Level = 17.2546 p < 0.01 **
N3: KPSS Level = 0.126 p>0.1

N4: KPSS Level = 6.696 p < 0.01 **
For Synthetic topology 3

N1: KPSS Level = 16.0362 p < 0.01 **
N2: KPSS Level = 16.6984 p < 0.01 **
N3: KPSS Level = 12.7894 p < 0.01 **
N4: KPSS Level = 15.3948 p < 0.01 **
N5:  KPSS Level = 15.3923 p < 0.01 **

Table 1: Results of the variable-wise KPSS test of signal stationarity in the synthetic
topologies. ** Indicates a highly significant value (p < 0.01). * Indicates a significant
value (p < 0.05). Truncation lag parameter = 10 in all cases.

Sensitivit TruePositives (6)
ensitivity =
4 TruePositives + FalseNegatives

TrueNegati
Speci ficity = rueNegatives

(7)

TrueNegatives + FalsePositives

5.2.1. The effect of initialization

Maximum sensitivity for the candidacy threshold p. was achieved when
parameter was valued 0.0001 and 0.001 was below 0.1 and corresponding
AUC was below 0.55 which is close to random. Thus these values can be
considered as too stringent, and can be discarded from further consideration.
With respect to values 0.01 and 0.05, AUC increased slightly (maximum
reaching 0.57 and 0.63 respectively) with no significant difference between
these two.

Effect sizes (ftiocal — Hgiobal)/Tgiobar OVEr the AUC were computed between
every pair of values given to the isolation threshold p; across topologies and
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Tested values

0.0001, 0.001, 0.01 and 0.05
0.51, 0.6, 0.7 and 0.8
Equi-distance,  equi-frequency
GMM

Equi-distance: 5, 10 and Automatic
Equi-frequency: 5, 10 and 15
GMM: 5, 10 and automatic

Parameter

Candidacy threshold p,
Isolation threshold p; € [0.5,1]
Discretization strategy

and

Number of intervals
(nested to discretization strat-

egy)

Table 2: Discretization of the parameter search space for model verification. Tested pa-
rameterizations are all the possible combinations from these values. In each case, both a
global and a local multiscale model were built.

models. The maximum size effect corresponded to the comparison between
values 0.51 and 0.8 as expected, and was found to be 0.18 which corresponds
to a non-significant p-value p = 0.42. This suggests that the choice of the
isolation threshold p; is virtually irrelevant for the final detection of errors,
which makes the approach robust to this parameter. Tables 3 and 4 sum-
marises the results of the initialization stage

Parameter Values Sensitivity Specificity AUC
0.0001 0.006 = 0.008 0.99 £ 0.008 0.50 = 0.004
0.001 0.015 £ 0.018 0.99 £ 0.001 0.50 £+ 0.008
Pe 0.01 0.034 £0.041 0.99 + 0.007 0.51 £ 0.017
0.05 0.059 £ 0.077 0.98 £ 0.022 0.52 £+ 0.029

Table 3: Summarised results for initialization of parameter p.

5.2.2. The effect of discretization

Discretization involves two important decisions. First, the binning ap-
proach as discussed in Sect. 2.2. Then, nested to this decision, is the number
of intervals used for this binning. Figure 8 shows the boxplots for the AUC
over the two factors; binning approach and number of intervals. The two way
ANOVA model results summarized in Table 5 suggests that both the effect
of the binning strategy and the number of intervals were found to be highly
significant (p < 0.001). Based on the previous boxplots, the equi-distance
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Parameter Values Effect Sizes

0.51-0.6 0.02
0.51 - 0.7 0.15

| 0.51-0.8 0.18
i 0.6 - 0.7 0.13
0.6-0.8 0.16

0.7-0.8 0.03

Table 4: Summarised results for the initialization of parameter p;

binning with automatic partitioning was regarded as the most suitable pa-
rameterization.

e

Num. Intervals
] t =1}
= B

ES Auto.

"o

Equidistance  Equifrecuency GMM
Discretization

Figure 8: Parameterization of the discretization strategy and subsequent choice on the
number of intervals. Three discretization algorithms with different number of intervals
were evaluated. The boxplots points to Equidistance discretization with automatic number
of intervals to be the binning strategy with the highest AUC.

5.2.8. Scalability with increasing data complexity

We also questioned how do the models deal with the increasing complex-
ity of the topologies. Effect sizes comparing the difference in performance
between the two models over the AUC were computed for each topology. In
Figure 9 , it can be appreciated the monotonic trend suggesting how the
local multiscale model better deals with increasing complexity of the data
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Factor Df Sum. Sq. Mean Sq. F value Pr(>F)

Binning strategy 2 0.02371 0.011853 28.48 2.49e-12
Num. intervals 2 0.03468 0.017339 41.66 <2e-16
Binning strategy: Num. intervals 4 0.03065 0.007664 18.41 5.83e-14
Residuals 423 0.17605 0.000416

Table 5: Two way Type I ANOVA results for assessing the effect of discretization. Both
the effect of the binning strategy and the number of intervals were found to be highly
significant (p < 0.001). Df: degrees of freedom; Sum. Sq.: Sum of squares; Mean Sq.:
Mean square.

topology, as the effect size i.e., difference between the two models, increases
with increasing complexity of data.

1

Effect Size

T T T
T T2 T3

Synthetic Topology

Figure 9: Effect size measuring the difference in response by the two models with regard to
the increasing complexity of the topology. Note that the dependent variable in the plot is
the effect size already implicitly expressing the relation among the two models; the global
and the local.

Finally, the defined configuration of parameters was used to measure the
performance of the global and local methods over the three synthetic topolo-
gies. Table 6 shows the sensitivity, specificity and area under the curve
(AUC) of the ROC curve. A t-test was conducted to compare the results
of table 6 between the AUC of the global and local models. The t-test sug-
gested that there was not significant difference for topology 1 (¢£(269.6) =
0.775,p = 0.78046) but there were a significant difference for topology 2
(¢(173.9) = —2.469,p = 0.0073) and 3 (¢(169.9) = —6.806,p = 0). So, as
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can be seen, the AUC for the local model for topologies 2 and 3, surpass the
error detection capabilities of the global model. These results are in agree-
ment with the findings stated in figure 9 that local model deals better with
complex data topologies.

Topology Method Sensitivity Specificity AUC p-value
T1 Global ~ 0.048 +0.058 0.989 +0.012 0.519 4+ 0.025 0.780
T1 Local 0.055 +£0.064 0.978 +0.027 0.517 = 0.019 '
T2 Global  0.019 40.030 0.996 +0.009 0.508 + 0.010 0.007 *
T2 Local 0.038 £0.082 0.991 +£0.019 0.515 + 0.032
T3 Global  0.037 £0.021 0.995 £0.004 0.516 4+ 0.009 0.000 *
T3 Local 0.084 +£0.076 0.986 +0.014 0.535 = 0.031

Table 6: Error detection performance of the global and local methods evaluated on each
synthetic data topology. * Indicates a significant value (p < 0.05)

5.8. Computational complexity

The computational complexity of the proposed method needs to be split
in two parts: the models learning stage and the validation stage. In the
first one, the complexity is composed by the time used in the structure and
parameters learning of the BN. As the structure is learned with the PC
algorithm this takes (in the worst case) a time in (p?) [26] where p is the
number of variables, ¢ the maximum number of vertex adjacent to any vertex
in the graph. The parameters are learn, with the EM algorithm, with a
time in (I + kI*) [8], where [ is the number of samples and k the number of
intervals of each variable. Then, to learn the global model the complexity
is O(p?) + O(l + ki?). As the submodels share the same structure of the
global model, the time to define the structure of the submodels is constant
i.e. O(1), but the parameters learning should be repeated N times (one for
each segment of the time series) over a set of size [/N samples, so the time
to learn the submodels is O(1) + N - O((I/N) + k(I/N)?) In the case of the
validation stage the computational time is basically the time employed by
the probability propagation algorithm, which is known to be NP-Hard [36].
The local approach adds to this the time related to model selection, which
is linear over the number of submodels O(N). Then, the complexity for the
validation process with the local submodels is increased linearly by the model
selection.
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Variable p-value
Pyrometry p < 0.01 **
TemperatureAreal p < 0.01 **
TemperatureArea2 p < 0.01 **
TemperatureArea3 p < 0.01 **
TemperatureAread p < 0.01 **
TotalTime p < 0.01 **
PermanenceTimeAreal | p = 0.04061 *
PermanenceTimeArea2 | p = 0.05843
PermanenceTimeArea3 | p = 0.04314 *
PermanenceTimeAread | p = 0.02301 *

Table 7: Results of the variable-wise KPSS test of signal stationarity. ** Indicates a highly
significant value (p < 0.01). * Indicates a significant value (p < 0.05).

6. Application domain: Steel industry

We apply the new data validation technique to a dataset coming from
the steel industry in the manufacturing of seamless steel tubes. The dataset
corresponds to the subset of 10 variables involved of the hardening furnace
stage of the tube manufacturing process. In the hardening furnace, under
differential hardening, different areas of the furnace provides separate heat
treatments. The hardening process at hand separates four areas of furnace
and thus it contains 4 temperatures from each area, 4 exposure times i.e.,
one per area, 1 total time of the tube in the furnace and 1 pyrometric mea-
surement.

As we hypothesized that the suitable scenario for application of the local
multiscale solution is in non-stationary signals, we tested all variables for
stationarity using the KPSS test. The results are summarized in Table 7. All
variables except PermanenceTimeArea2 exhibited non stationary behaviour.
Upon splitting the signals into intervals some shifts in statistical properties
responsible for this become apparent (see Figure 10).

6.1. Performance in the Error Detection

The ground truth of the errors present in the dataset is unknown. Al-
though the data will naturally be affected by noise, we do not know neither
the distribution of this noise nor whether any of the sensors responsible for
the data corresponding to each variable did failed or not. Thus, in order to
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Figure 10: Distribution of the different segments across the dataset variables. Each color
corresponds one of the 8 segments. The varying statistical properties of the segments in

most variables can be appreciated.

explore the error detection capabilities of the multiscale approach, for this
exercise we assume that our dataset is error-free and manually introduce ad-
ditional errors in the dataset that will act as our ground truth. Note that
this mean that we will be truly dealing with a higher noise ratio than ac-
tually reported, but we have already analyzed the approach over synthetic
noise-free data. In all cases, 70% of the original dataset was used for training
from which the structure of the BN is learned and 30% for testing. We test

the solution in three different scenarios:

e White Noise Contamination. Addition of white noise to the test
set is achieved by adding/subtracting a random value minor than 5%
of the signal standard deviation to the sample value. Added noise was
sampled from a Gaussian distribution. A total of 5% of the test data
was altered in this way. After noisy signals were constructed in this
way, both the global and the local multiscale solutions were applied to

this noisy test set for detection of errors.

e Shifting to extreme values (5% of test data affected). To simulate
errors, the values of those samples affected by errors was substituted
by the most extreme signal value opposite to the sample value. Of the
discrete values of the variable, in order to alter the value of the sample,
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the value is shifted to the furthest extreme of its interval; whether
the upper or lower depending on the distance to the interval boundary.
Note that a substitution for a value beyond this point will be considered
an outlier, not a rogue value. In this scenario, a total of 5% of the test
data was altered in this way, and the data affected was picked randomly.

e Shifting to extreme values (100% of the test records affected, i.e.,
one variable of every record was modified, that is 10% of test data
affected). Test data was altered in the same manner than before, but
ensuring that each record contain one and only one error. That is 100%
of the records and 10% of the test set are affected.

In all cases the results are compared to the error detection rates achieved
by the global solution and the structure of the BN is learned using the PC
algorithm [39].

Results are presented using the receiver operating characteristic (ROC)
analysis. The area under the curve (AUC) summarises the error detection
rate. The AUC is a very standard way of summarizing the ROC curve; ba-
sically, the available points of the curve given by the pairs of <sensitivity,
specificity>are joint and the integral (by trapezoidal approximation) is cal-
culated. In each case, the results in both stages of the error detection process
are reported.

6.1.1. White noise contamination (5% error rate)

Figure 11 summarises the error detection rate for both approaches in the
presence of white noise in both error detection phases. The local multiscale
approach conduct a more aggressive error detection. It captures more true
positives at the expense of increasing Type I errors. Which as discussed
earlier are affordable if suggested alternatives are good approximations, which
we will show it is the case.

6.1.2. Shifting to extreme values (5% error rate)

The error detection rate for both approaches in the presence of this kind
of simulated errors in both phases are summarised in Figure 11. In this case
the global approach reached a detection of the 95% of true positives for phase
[ with a high p-value threshold (0.05). On the other hand, the local approach
reached the same true positives rate with the lowest p-value threshold but
increasing false positives.
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Figure 11: Detection of candidate errors for the steel industry domain. (a) ROC curve
for different configurations of the p-value (0.0001; 0.001;0.01;0.05) for Phase I (b) ROC
curve for different configurations of the p-value (0.0001; 0.001;0.01;0.05) for Phase II (the
zoomed window shows the details of the curve). The top row (a) and (b)- correspond to
error detection under white noise contamination. Middle row (c) and (d)- correspond to
error introduction of extreme values (5%). Bottom row (e) and (f)- correspond to error
introduction of extreme values (10%).
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Phase 1 Phase 11

Scenario Global ‘ Local | Global ‘ Local
White Noise Contamination 0.5924 | 0.5991 | 0.5017 | 0.5031
Shifting to extreme values (5%) 0.9702 | 0.8262 | 0.5527 | 0.5026

Shifting to extreme values (10%) 0.9812 | 0.9966 | 0.523 | 0.5057

Table 8: Area under the curve (AUC) of the ROC analysis for the Global and Local
Multiscale approached for the three studied scenarios.

6.1.3. Shifting to extreme values (10% error rate)

The error detection rate for both approaches in the presence of this kind
of simulated errors in both phases are summarised in Figure 11. In this
test, the global approach increases the true positives detection when p-value
increases. The maximum rate reached by the global model is 87%. The
local approach reports a detection greater than 95% for the lowest p-value
threshold.

Finally, Table 8 summarise the AUC for both approaches (Global and
Local multiscale) across both phases of error detection and for all scenarios.
As shown in table, both approaches report a subtle difference for the test
set affected with white noise. For the second scenario the global approach
reported a higher AUC. Finally, the last scenario shows a AUC higher for
the local approach than the obtained for the global. Values in Figure 11
and Table 8 for stage II have to be interpreted carefully because Phase I has
already certainly made a good job in telling candidate errors, which are the
only that reach the second stage. This means it is not an overall random
output, but only that none of the approaches can easily decide which of the
variables is responsible for the error in the case of white noise, and that the
only thing that they can tell with some certainty is that there is an error.
In other words, white noise is particularly challenging for this approach to
decide the offending signal but no so much to decide whether there is an error.
Moreover, in general dealing with determining the real faulty value, is a more
difficult task that the one for stage I since among the set of suspicious values
there could be more than one real error, obfuscating the final decision and
hence affecting the ability of both approaches to detect incongruent values.
The bottom line is that both method exhibit similar tolerance to noise in the
data. Table 9 further shows the results over the real data.
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p. value Phase Method TP TN FP FN Sensitivity Specificity

I Global 21 137 5 129 0.140 0.964

0.01 Local 107 66 76 43 0.713 0.464
0 Global 1 2757 13 149 0.006 0.995

Local 4 2683 87 146 0.026 0.968

I Global 43 127 15 107 0.286 0.894

0.05 Local 121 25 87 29 0.806 0.387
I Global 2 2743 27 148 0.013 0.990

Local 7 2660 110 143 0.046 0.960

Table 9: Error detection performance of the global and local methods on the application
domain dataset for phases I and II of the algorithm.

6.2. Data reconstruction

After error detection, the data validation process continues to yield an
alternative value which can substitute the error value. In order to test the
capabilities of the local multiscale approach for data reconstruction we carried
out a very simple test. We consider the whole series of one variable at a
time to be erroneous, and we reconstruct that variable series only from the
information available from the other variables. We repeat the process for
each of the variables. Again, we compare the results against the outcome
from the global approach.

Figure 12 illustrates an exemplary reconstruction for one of the variables,
that is TemperatureArea4. The local multiscale solution clearly achieves a
more faithful reconstruction than the global approach. Although the global
approach reconstruction exhibits the right trend, it lacks detail. In con-
trast, the local multiscale solution not only exhibits the right trend but also
achieves finer detail. Table 10 summarizes the mean absolute errors during
reconstruction across all variables. The reconstruction stage does not depen-
dent on the parameters of detection stages (p. or p;). For reconstruction, the
Global Bayesian network or the selected Local Bayesian network are used to
propagate the evidence through the BN to the affected variable to estimate
the most probable value.

7. Discussion

Both approaches present good detection rates for phase I, identification of
error candidates, i.e., detection of suspicious records. However, this detection
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Variable Global | Local p-value
Pyrometry 2.239 1.577 | p < 4.216e — 13
TemperatureAreal 9.584 | 4479 | p<2.2e—16
TemperatureArea?2 4.352 | 2.077 | p<2.2e—16
TemperatureArea3 1.765 1.081 | p<2.2e—16
TemperatureAread 3.079 2529 | p<22e—16
PermanenceTime 9.190 5437 | p<22e—16
PermanenceTimeAreal | 7.977 2962 | p<22e—16
PermanenceTimeArea2 | 4.072 2.646 | p<22e—16
PermanenceTimeArea3 | 3.968 2.732 | p<22e—16
PermanenceTimeAread | 4.261 1.449 | p<2.2e—16

Table 10: Mean absolute error in sample value reconstruction per variable. Statistical
comparison was made using a t-test.

rates drops sharply for the phase II, isolation of real errors i.e., pinpointing
the erroneous variable from the record. This situation can arise from the
complexity of the detection network, which because it is densely connected.
Since the best scenario to isolate a real error is when the set of variables with
apparent errors corresponds to the Markov Blanket of the variable with the
real error [17], with a densely connected BN the error propagates to all the
network and results in all variables being part of the Markov blanket.

The local multiscale approach offers a finer discretization without the
exponential growth of the conditional probability tables. There is however
a price to pay for the finer discretization and better reconstruction achieved
with the local submodels. The lower scale models are imposed a network
structure that may not correspond to the local properties of the signals. The
consequence is a higher number of false positives (global 28.7 4 58.8, local
65.12 + 135.34). Another reason for this is the finer discretization in the
local model so that a small change in a data can move it to another interval.
This effect may limit the applicability of the new model to scenarios in which
Type I errors are acceptable as long as the suggested reconstruction is close
enough to the real value, which is the case in the domain at hand.

According to our motivating aim, the reconstruction achieved with the
local multiscale approach surpasses the reconstruction achieved by the global
approach. Whilst certainly a higher number of intervals in the discretization
of the global scale will result in a reconstruction with finer detail, as it has
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already been mentioned, higher number of intervals will require larger con-
ditional probability tables which can be prohibitive for the global approach.

A different avenue to improve data estimation may be using a dynamic
Bayesian network to consider past and future data as evidence in the model,
as for instance using dynamic Bayesian networks [11], temporal nodes Bayesian
networks [19], or autoregressive Bayesian networks [24]. The choice of model
may be dictated by the particularities of the domain. In the problem at hand,
it is plausible that the underlying process is non-stationary, but importantly
the structure encoding the statistical dependencies among variables can be
expected to remain unchanged. For instance, two temperature sensors will
maintain their dependent records even if the process varies with time. In
other words, the temperature of the process may change in time altering the
statistical properties of the sensor records, but they since both sensors will be
analogously affected they should remain dependent throughout the process.
However, this is a particular scenario of this domain and cannot be assumed
a good proxy of other problems in different domains, where changes in the
statistical properties of the records may be accompanied by changes in the
network structure.

8. Conclusions and future work

A new local multiscale BN based approach has been presented for the de-
tection of rogue values in time series when statistically dependent information
is known. Contrary to the existing global approach, the local multiscale so-
lution aims to adapt the interval discretization to the neighbourhood of the
sample for finer reconstruction. The new approach matches the detection
capabilities of the global approach but succeeds in obtaining a significantly
more accurate reconstruction. The price to pay is computational time, as
one submodel must be learned for each time interval in addition to the global
model which determines the submodels topology, as well as limiting the ap-
plicability, due to the higher number of false positives. Furthermore, the
selection of the submodel for validation and suggestion of alternative values
add additional computational burden.

The number of scales for the local model in this paper has been fixed to
two (the global and one local level of the submodels). However, it is trivial
to extend to a more generic solution with higher number of levels to account
for periods of stationarity.
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In the future we plan to split the signal in an automatic way to learn the
local models. This, based on a balance between: 1) the minimum data re-
quired to learn an appropiate model, 2) perceptible changes in the time-series
behavior and importantly 3) considering partitions aware of the stationarity
of the resulting parts. We think that this can improve the error detection
rate and signal reconstruction in the local model approach.
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Appendix A. Synthetic data topologies

Three sets of synthetic data were generated. Each set has been generated
according to the topologies showed in Figure 7 and the details of this are
described as follow.

First, a number of signal seeds equal to the number of nodes on the
topology are defined. These seeds are expressed in terms of existing univari-
ate time series models such as AutoRegressive Moving Average (ARMA),
AutoRegressive Integrated Moving Average (ARIMA) or seasoned ARIMA
(sARIMA). The notation ARM A(p, q) refers to the ARMA model with p

autoregressive terms and ¢ moving-average terms in Eq. 8:

S(t) = e + Z St —1i) + Z Bier_s (8)

Where a4, ..., a, are parameters of an Autoregressive model(AR), S, ..., B,
are the respective parameters of a Moving Average model (MA) and the
random variable ¢, is white noise [5]. The notation ARIM A(p, d, q) denotes
an ARIMA model, which is a generalization of an ARMA model. In the
ARIMA model, the parameters p,d and ¢ are non-negative integers where
p and ¢ are the same like in ARMA models and d is the integrated part
[32]. Finally, a seasonal effect can be added using an sSARIMA model. An
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sARIMA model has two pairs of parameter triplets (p, d, q), the first triplet
for the ARIMA model, and the last one for the seasonal component.

Once the seeds are defined, these are combined so that each node in the
synthetic topology is a combination of its own seed plus maybe some influence
from the other nodes as depicted in Figure 7. Following, the generated
topologies are described.

Topology 1. For the first topology we have the following seeds:

Sl(t) = ARMA(27 1) with 1 = 067 Qg = —0.3 and Bl =0.5
So(t) = ARIMA(2,1,1) with a; = 0.9, ap = —0.6 and $; = 0.8
Ss(t) = sin(0.2ARIM A(0,0,0) 4 )

Sy(t) = 5.3cos(2mt/300) + 2

And the nodes of the topology are defined by:

Nl = Sl (9)
Ny = 3.4N; 4+ 0.755 (10)
N3 = 7.1N155 (11)
Ny =3.2N35, (12)
Topology 2. In the second topology, the seeds are:
Si(t) =ARIMA(1,1,1) with ¢y = —0.1 and 3; = 0.8
So(t) = ARIMA(2,1,1) with oy = 0.78, ay = —0.378 and 3, =

0.01
Ss(t) = sin(0.2ARIMA(1,1,1) + 7)) with a3 = 0.58 and ; = 0.03
Si(t) =sARIMA((2,1,1),(2,0,1)) with ay =0.1, ap = —0.6 and 5, = 0.8
for the ARIMA model, and
a; = 0.6, as = —0.8 and 31 = 0.3 for
the seasonal component.
and the nodes are specified by:

Ny =5, (13)
Ny = 3.4N, 5, (14)
Ny = 71N, S5 + N, (15)
Ny =S, (16)
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Topology 3. For the third topology, we have the following seeds:

Si(t) =ARIMA(1,1,1) with a3 = —0.4 and ; = 0.3

So(t) = ARIMA(2,1,2) with a; = 0.78, ap = —0.378 and 3; =
0.01, By = —0.1

S3(t) = 6sin(0.20 4 ) where § = ARIM A(0,0,0)

Sy(t) =sARIMA((2,1,1),(2,0,1)) with ay =0.1, ag = —0.6 and 5; = 0.8
for the ARIMA model, and
a; = 0.6, as = —0.8 and By = 0.3 for
the seasonal component.

Ss(t) =sARIMA((1,1,1),(2,0,1)) with oy = —0.8 and 8; = 0.8 for the
ARIMA model, and
a; = 0.6, ap = —0.8 and p; = 0.11 for
the seasonal component.

and the nodes are specified by:

N=5 (17)
Ny = 3.4N, S, (18)
N3 = 7.185N, + 3.2, (19)
N, = 1.015,N; (20)
N5 = —0.18S5 + N, (21)

Topology complexity is related to (i) the number of existing elements in
the set, which in the case of the graph, is given by the nodes and number
of connections between them, (ii) and the distribution of these connections
related to the number of ways that it is possible to travel from a certain
element to a connected element. Topology 1 has only 4 nodes and 3 edges
with all elements having at most 1 parent i.e. there is only one path to reach
a certain element. Topology 2, maintains 4 nodes and 3 edges (same number
of elements as topology 1) but increases the complexity by allowing node
3 to be reached from two different nodes. Finally, topology 3 increases the
complexity of the two previous topologies with more elements (both nodes
and edges), and further incorporating alternative routes to go from one node
to another e.g. N1 to N3.
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