1
IRUS Total
Downloads
  Altmetric

Differential CpG methylation at Nnat in the early establishment of beta cell heterogeneity

File Description SizeFormat 
s00125-024-06123-6.pdfPublished version7.92 MBAdobe PDFView/Open
Title: Differential CpG methylation at Nnat in the early establishment of beta cell heterogeneity
Authors: Yu, V
Yong, F
Marta, A
Khadayate, S
Osakwe, A
Bhattacharya, S
Varghese, S
Chabosseau, P
Tabibi, S
Chen, K
Georgiadou, E
Parveen, N
Suleiman, M
Stamoulis, Z
Marselli, L
De Luca, C
Tesi, M
Ostinelli, G
Delgadillo-Silva, L
Wu, X
Hatanaka, Y
Montoya, A
Elliott, J
Bhavik, P
Demchenko, N
Whilding, C
Hajkova, P
Shliaha, P
Kramer, H
Ali, Y
Marchetti, P
Sladek, R
Dhawan, S
Withers, D
Rutter, G
Millership, S
Item Type: Journal Article
Abstract: Aims/hypothesis: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly-connected ‘hub’ cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility which we explore here by focussing on the imprinted gene neuronatin (Nnat), which is required for normal insulin synthesis and secretion. Methods: Single cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing eGFP under the control of the Nnat enhancer/promoter regions were generated for fluorescence-activated cell (FAC) sorting of beta cells and downstream analysis of CpG methylation by bisulphite and RNA sequencing, respectively. Animals deleted for the de novo methyltransferase, DNMT3A from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 and Cal-590. Insulin secretion was measured using Homogeneous Time Resolved Fluorescence Imaging. Results: Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic data sets demonstrated the early establishment of Nnat-positive and negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a sub-population specialised for insulin production, and were diminished in db/db mice. ‘Hub’ cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialization. Conclusions/interpretation: These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes.
Issue Date: Jun-2024
Date of Acceptance: 9-Jan-2024
URI: http://hdl.handle.net/10044/1/109256
DOI: 10.1007/s00125-024-06123-6
ISSN: 0012-186X
Publisher: Springer
Start Page: 1079
End Page: 1094
Journal / Book Title: Diabetologia
Volume: 67
Issue: 6
Copyright Statement: © The Author(s) 2024 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Publication Status: Published
Online Publication Date: 2024-03-21
Appears in Collections:Department of Metabolism, Digestion and Reproduction
Institute of Clinical Sciences
Department of Medicine (up to 2019)
Faculty of Medicine



This item is licensed under a Creative Commons License Creative Commons