21
IRUS Total
Downloads
  Altmetric

Fast redox kinetics in SrCo1-xSbxO3-δ perovskites for thermochemical energy storage and oxygen separation

File Description SizeFormat 
Wilson_2022_J._Electrochem._Soc._169_044509.pdfPublished version2.08 MBAdobe PDFView/Open
Supplementary_Information.docxSupporting information2.14 MBMicrosoft WordView/Open
Title: Fast redox kinetics in SrCo1-xSbxO3-δ perovskites for thermochemical energy storage and oxygen separation
Authors: Aguadero, A
Wilson, G
Seymour, I
Skinner, S
Cavallaro, A
Item Type: Journal Article
Abstract: The use of perovskite materials for thermochemical energy storage and oxygen separation has been gaining momentum in recent years due to their ability to topotactically exchange large volumes of oxygen, and their chemical and structural flexibility. B-site substituted SrCoO3-δ derivatives have previously been investigated as promising materials for intermediate temperature solid oxide fuel cell cathodes due to the stabilization of a 3 C perovskite structure with high electronic and ionic conductivity that allows large oxygen storage capabilities. Here, antimony-substituted strontium cobalt oxides are investigated and identified as new candidate materials for thermochemical oxygen separation applications. In this work we shed light on the exceptional redox kinetics and cyclability of antimony-substituted variants undergoing oxygen exchange at intermediate temperatures (500 to 800 °C). Through the use of density functional theory and isothermal gas atmosphere switching, we demonstrate how the inductive effect of the more electronegative antimony dopants in the Co position, facilitates the kinetics of metal oxide oxidation, whilst hindering reduction reactions. SrCo0.95Sb0.05O3−δ was identified to isothermally evolve 3.76 cm3 g−1 of oxygen at 500 °C and calculated to produce up to 10.44 cm3 g−1 under temperature-swing reaction configurations aligning with previously reported materials.
Issue Date: 8-Apr-2022
Date of Acceptance: 19-Mar-2022
URI: http://hdl.handle.net/10044/1/96301
DOI: 10.1149/1945-7111/ac62c5
ISSN: 0013-4651
Publisher: Electrochemical Society
Journal / Book Title: Journal of The Electrochemical Society
Volume: 169
Issue: 4
Copyright Statement: © 2022 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: permissions@ioppublishing.org.
Sponsor/Funder: Engineering & Physical Science Research Council (EPSRC)
Funder's Grant Number: EP/R002010/1
Keywords: Energy
0303 Macromolecular and Materials Chemistry
0306 Physical Chemistry (incl. Structural)
0912 Materials Engineering
Publication Status: Published
Article Number: ARTN 044509
Online Publication Date: 2022-04-01
Appears in Collections:Materials
Faculty of Natural Sciences



This item is licensed under a Creative Commons License Creative Commons