10
IRUS TotalDownloads
Altmetric
Food/non-food classification of real-life egocentric images in low- and middle-income countries based on image tagging features
File | Description | Size | Format | |
---|---|---|---|---|
frai-04-644712.pdf | Published version | 2.51 MB | Adobe PDF | View/Open |
Title: | Food/non-food classification of real-life egocentric images in low- and middle-income countries based on image tagging features |
Authors: | Chen, G Jia, W Zhao, Y Mao, Z-H Lo, B Anderson, AK Frost, G Jobarteh, ML McCrory, MA Sazonov, E Steiner-Asiedu, M Ansong, RS Baranowski, T Burke, L Sun, M |
Item Type: | Journal Article |
Abstract: | Malnutrition, including both undernutrition and obesity, is a significant problem in low- and middle-income countries (LMICs). In order to study malnutrition and develop effective intervention strategies, it is crucial to evaluate nutritional status in LMICs at the individual, household, and community levels. In a multinational research project supported by the Bill & Melinda Gates Foundation, we have been using a wearable technology to conduct objective dietary assessment in sub-Saharan Africa. Our assessment includes multiple diet-related activities in urban and rural families, including food sources (e.g., shopping, harvesting, and gathering), preservation/storage, preparation, cooking, and consumption (e.g., portion size and nutrition analysis). Our wearable device ("eButton" worn on the chest) acquires real-life images automatically during wake hours at preset time intervals. The recorded images, in amounts of tens of thousands per day, are post-processed to obtain the information of interest. Although we expect future Artificial Intelligence (AI) technology to extract the information automatically, at present we utilize AI to separate the acquired images into two binary classes: images with (Class 1) and without (Class 0) edible items. As a result, researchers need only to study Class-1 images, reducing their workload significantly. In this paper, we present a composite machine learning method to perform this classification, meeting the specific challenges of high complexity and diversity in the real-world LMIC data. Our method consists of a deep neural network (DNN) and a shallow learning network (SLN) connected by a novel probabilistic network interface layer. After presenting the details of our method, an image dataset acquired from Ghana is utilized to train and evaluate the machine learning system. Our comparative experiment indicates that the new composite method performs better than the conventional deep learning method assessed by integrated measures of sensitivity, specificity, and burden index, as indicated by the Receiver Operating Characteristic (ROC) curve. |
Issue Date: | 1-Apr-2021 |
Date of Acceptance: | 26-Feb-2021 |
URI: | http://hdl.handle.net/10044/1/88413 |
DOI: | 10.3389/frai.2021.644712 |
ISSN: | 2624-8212 |
Publisher: | Frontiers Media |
Journal / Book Title: | Frontiers in Artificial Intelligence |
Volume: | 4 |
Copyright Statement: | © 2021 Chen, Jia, Zhao, Mao, Lo, Anderson, Frost, Jobarteh, McCrory, Sazonov, Steiner-Asiedu, Ansong, Baranowski, Burke and Sun. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
Sponsor/Funder: | Bill and Melinda Gates Foundation Bill & Melinda Gates Foundation |
Funder's Grant Number: | OPP1171395 OPP1171395 |
Keywords: | artificial intelligence egocentric image low- and middle-income country technology-based dietary assessment wearable device artificial intelligence egocentric image low- and middle-income country technology-based dietary assessment wearable device |
Publication Status: | Published |
Conference Place: | Switzerland |
Open Access location: | https://www.frontiersin.org/articles/10.3389/frai.2021.644712/full |
Article Number: | ARTN 644712 |
Appears in Collections: | Department of Surgery and Cancer Institute of Global Health Innovation |
This item is licensed under a Creative Commons License