40
IRUS TotalDownloads
Altmetric
Boosting the hardware-efficiency of cascade support vector machines for embedded classification applications
File | Description | Size | Format | |
---|---|---|---|---|
Boosting the Hardware-Efficiency of Cascade Support Vector Machines for Embedded Classification Applications.pdf | Accepted version | 1.61 MB | Adobe PDF | View/Open |
Title: | Boosting the hardware-efficiency of cascade support vector machines for embedded classification applications |
Authors: | Kyrkou, C Theocharides, T Bouganis, C-S Polycarpou, M |
Item Type: | Journal Article |
Abstract: | Support Vector Machines (SVMs) are considered as a state-of-the-art classification algorithm capable of high accuracy rates for a different range of applications. When arranged in a cascade structure, SVMs can efficiently handle problems where the majority of data belongs to one of the two classes, such as image object classification, and hence can provide speedups over monolithic (single) SVM classifiers. However, the SVM classification process is still computationally demanding due to the number of support vectors. Consequently, in this paper we propose a hardware architecture optimized for cascaded SVM processing to boost performance and hardware efficiency, along with a hardware reduction method in order to reduce the overheads from the implementation of additional stages in the cascade, leading to significant resource and power savings. The architecture was evaluated for the application of object detection on 800×600 resolution images on a Spartan 6 Industrial Video Processing FPGA platform achieving over 30 frames-per-second. Moreover, by utilizing the proposed hardware reduction method we were able to reduce the utilization of FPGA custom-logic resources by ∼30%, and simultaneously observed ∼20% peak power reduction compared to a baseline implementation. |
Issue Date: | 1-Dec-2018 |
Date of Acceptance: | 16-Jun-2017 |
URI: | http://hdl.handle.net/10044/1/66004 |
DOI: | https://dx.doi.org/10.1007/s10766-017-0514-1 |
ISSN: | 0885-7458 |
Publisher: | Springer Verlag |
Start Page: | 1220 |
End Page: | 1246 |
Journal / Book Title: | International Journal of Parallel Programming |
Volume: | 46 |
Issue: | 6 |
Copyright Statement: | © 2017 Springer Science+Business Media. The final publication is available at Springer via https://dx.doi.org/10.1007/s10766-017-0514-1 |
Keywords: | Science & Technology Technology Computer Science, Theory & Methods Computer Science Field Programmable Gate Arrays (FPGAs) Support Vector Machines (SVMs) Cascade classifier Real-time and embedded systems Hardware architecture Parallel processing FACE DETECTION IMPLEMENTATION ARCHITECTURE RECOGNITION 0805 Distributed Computing 0803 Computer Software Distributed Computing |
Publication Status: | Published |
Online Publication Date: | 2017-06-23 |
Appears in Collections: | Electrical and Electronic Engineering Faculty of Engineering |