
Boosting the Hardware-Efficiency of Cascade Support Vector

Machines for Embedded Classification Applications

Christos Kyrkou, Theocharis Theocharides, Christos-Savvas Bouganis, Marios Polycarpou

Abstract: Support Vector Machines (SVMs) are considered as a state-of-the-art classification algorithm capable

of high accuracy rates for a different range of applications. When arranged in a cascade structure, SVMs can

efficiently handle problems where the majority of data belongs to one of the two classes, such as image object

classification, and hence can provide speedups over monolithic (single) SVM classifiers. However, the SVM

classification process is still computationally demanding due to the number of support vectors. Consequently, in this

paper we propose a hardware architecture optimized for cascaded SVM processing to boost performance and

hardware efficiency, along with a hardware reduction method in order to reduce the overheads from the

implementation of additional stages in the cascade, leading to significant resource and power savings. The

architecture was evaluated for the application of object detection on 800×600 resolution images on a Spartan 6

Industrial Video Processing FPGA platform achieving over 30 frames-per-second. Moreover, by utilizing the

proposed hardware reduction method we were able to reduce the utilization of FPGA custom-logic resources by

~30%, and simultaneously observed ~20% peak power reduction compared to a baseline implementation.

Keywords: Field Programmable Gate Arrays (FPGAs); Support Vector Machines (SVMs); Cascade Classifier;

Real-time and Embedded Systems; Hardware Architecture; Parallel Processing

C. Kyrkou, T. Theocharides, M. Polycarpou

KIOS Research Center, Department of Electrical and Computer Engineering, University of Cyprus

email: {kyrkou.christos, ttheocharides, mpolycar}@ucy.ac.cy

C.-S. Bouganis

Electrical and Electronic Engineering Department, Imperial College London

email: christos-savvas.bouganis@imperial.ac.uk

1 INTRODUCTION

Support Vector Machines (SVMs) have been widely adopted since their introduction by Cortes and Vapnik [1],

and are now considered one of the most powerful classification engines due to their mathematical background that is

based on statistical learning and is able to accurately model complex classification boundaries. Consequently, there

has been growing interest in utilizing SVMs in numerous applications, including visual object detection systems,

demonstrating high classification accuracies [2],[3],[4]. However, for large-scale problems the good classification

accuracy rates of SVMs come with the cost of longer classification times, as the classification complexity of SVMs

is proportional to the number of samples needed to specify the separating hyperplane between classes, referred to as

support vectors (SVs). As such, SVM-based classification systems with hundreds of support vectors, find it difficult

to meet real-time processing demands, without sacrificing accuracy, especially for embedded applications such as

object detection with thousands of data that need to be classified [4]. Relevant literature on SVMs [5],[6],[7]

suggests a cascaded classification structure in order to speed-up the SVM classification process for a class of the

aforementioned applications where the majority of data that need to be classified belongs to one of the two classes.

In the cascade classification approach, multiple SVM classifiers are arranged in stages of increasing computational

complexity and accuracy. The early stage classifiers are computationally less demanding and are responsible for the

removal of a large amount of negative class data, which do not exhibit similar patterns to the positive samples. On

the other hand, the latter stages have higher accuracy and thus higher computational complexity, in order to be able

to distinguish between similar samples belonging to different classes. However, they only classify the samples that

successfully pass the previous stages. Consequently, when utilizing the cascade approach significant speedups over

monolithic (single) SVM classification are possible [5], [7]. Still, when considering embedded applications (e.g.

embedded vision, automotive, and security) with real-time and power consumption constraints and limited

resources, the design of SVM-based classification systems that process hundreds of support vectors and need to

classify a large number of instances, is still challenging to achieve.

Recent advances in hardware acceleration of SVMs feature extensive use of parallel computing platforms such

as Graphics Processing Units (GPUs), and reconfigurable hardware fabric (Field Programmable Gate Arrays –

FPGAs in particular) [9], [10], [11]. Relevant research has produced quite promising results in terms of performance

for use in embedded systems. However, even if implementations of SVMs on GPU platforms have gained

considerable attention due to the high-level programming capabilities, GPUs still face challenges with regards to

power consumption, especially with the increasing development of portable resource-limited platforms, requiring

specific hardware solutions and large scale problems [12],[13]. Hence at present, computing systems based on

FPGAs and customized hardware accelerators allow to exploit the inherit parallelism of algorithms such as SVMs,

whilst achieving efficient implementation suitable for real-time processing and low-power operation. Furthermore,

FPGA platforms provide flexibility and hence allow hardware/software co-design techniques. Justifiably then, there

has been a considerable amount of research work on SVM hardware architectures. However, existing hardware

architectures proposed for the acceleration of SVMs, consider only monolithic classifiers, which are not optimized

to efficiently handle problems, where the majority of data belong to one of the two classes. As such, designing

specialized hardware accelerators for multistage cascade SVMs based on existing approaches is a challenging task,

especially due to the increase in the number of classifiers and subsequent hardware complexity, and their different

computational demands, which require flexibility, low power, real-time operation, and often with limited available

resources.

This work extends and improves our preliminary research in [14] which presented a hybrid hardware architecture

that exploited the cascade SVM flow, where classifiers at the beginning are used more frequently than subsequent

stages, to provide a hardware-efficient implementation capable of real-time classification while outperforming a

monolithic SVM classifier. In this work, we further elaborate on the advantages of the proposed architecture first

presented in [14], and demonstrate its applicability for embedded applications by evaluating it on larger-scale

benchmark applications with different data sets and computational demands. We also outline the trade-offs of the

proposed design optimization method that is based on approximating the support vectors with power of two values

in order to replace multiplications with shift units and reduce the resource requirements. In addition, a feature

extraction mechanism based on the hardware-efficient local binary patterns (LBPs), is selectively incorporated into

the architecture in order to improve the accuracy of the SVM cascade for object detection applications. The cascade

architecture optimized with the proposed hardware reduction method is implemented as part of a complete

classification system on a Spartan-6 industrial video processing FPGA platform. The system was evaluated on a

larger test set and higher resolution images (800×600) than our previous work for the applications of face and

pedestrian detection. As it will be shown in Section 4.6 the proposed system achieves over 30 frames-per-second

(fps), which is capable for real-time video processing, while processing more windows than other works, with 80%

detection accuracy which is on par with cascade SVM software implementations for the targeted

applications[5],[6],[7]. Furthermore, the hardware reduction method resulted in the utilization of ~30% less FPGA

logic resources and reduction of peak power by ~20%.

The paper is organized as follows. Section 2 provides the background on SVMs, cascade classifiers, object

detection, and related work on the hardware acceleration of SVMs. Section 3 details the hardware architecture for

cascade SVM processing and the hardware reduction method. Section 4 presents FPGA-based experimental results

on the achieved frame-rate, detection accuracy, and resource utilization trade-offs, for face and pedestrian detection,

as well as comparison with related works. Finally, Section 5 concludes the paper.

2 BACKGROUND

2.1 Support Vector Machines (SVMs)

A Support Vector Machine (SVM) is a supervised binary classification algorithm which maps data into a high-

dimensional space where an optimal separating hyperplane is constructed [1],[2]. SVMs are presented with a

training set consisting of pairs of data samples 𝑥𝑖, and class labels 𝑦𝑖 (-1 for negative and 1 for positive samples),

and find a mapping function 𝑓, such that 𝑓(𝑥𝑖) = 𝑦𝑖 for sample 𝑖 in the training set. This function captures the

relationship between the data samples and their respective class labels. An SVM tries to separate the data samples of

two different classes, by finding the hyperplane with the maximum margin from the training samples that lie at the

boundary of each class (Fig. 1-a). The training samples that are on the boundary are called support vectors (SVs) and

influence the formation of the hyperplane [1], [2]. The support vectors obtained during the SVM training phase,

correspond to non-zero alpha coefficients derived from the training optimization problem [2], and constitute the

SVM classification model with which to classify new input data. In many real-world applications, the data samples

may not be linearly separable. SVMs utilize a technique called the kernel trick [2], to project the data into higher

dimensional space where linear separation is possible and then proceed to find the decision surface. This formulation

allows projecting data into a higher dimensional space, where linear separation is possible (Fig. 1-b), though a

kernel function 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥𝑖)𝜑(𝑥𝑗), without the need to explicitly use a mapping function 𝜑. Overall, the

classification decision function (CDF) for SVMs is given in (1), where 𝑁𝑠 is the number of support vectors obtained

from training, 𝑎𝑖 are the alpha coefficients, yi are the class labels of each sample, 𝑠𝑖 are the support vectors, 𝑧 is the

input vector, 𝑘(𝑧, 𝑠𝑖) is the chosen kernel function, and 𝑏 is the bias. The support vectors correspond to training set

samples which have non-zero alpha coefficients.

C(z): sign (∑ αiyiK(z, si)
NS

i=1
+ b) (1)

The computational demands of SVM classifiers depend on the choice of kernel function the most common of

which are illustrated below:

Linear (Dot Product): K(z, s) = (z • s) (2)

Polynomial: K(z, s) = ((z • s) + const)d, d > 0 (3)

Radial Basis Function (RBF): K(z, s) = exp (−‖z − s‖2/2σ2) (4)

The linear kernel (2) for SVMs corresponds to a dot-product operation between the input data and a feature vector

𝑤, which is the decision hyperplane normal vector (Fig. 1-a), and is computed directly from the support vectors

using 𝑤 = ∑ 𝑦𝑖𝑎𝑖𝑠𝑖
𝑁𝑠
𝑖=1 . However, in the case of non-linear SVMs (3)-(4), the kernel is a more complex function and

the feature vector cannot be directly obtained from the support vectors. Hence, the input vector needs to be

processed with all support vectors, and the kernel-specific operations need to be performed, before a classification

Fig. 1. (a) SVM concepts: separating hyperplane, support vectors, normal vector w, bias, and margin (b) The kernel Trick
visualization (c) Cascade classification scheme overview

outcome can be obtained. To reduce the computational demands of non-linear kernels a number of techniques have

been proposed. One such method is the reduced-set-method [15], which tries to find a smaller set of vectors, called

reduced-set-vectors (RSVs), in order to approximate the decision function of the full SVM retaining most of the

classification capabilities [7]; which yields a reduced-set-vector-machine (RSVM). This results in losing the

association with the original training problem, i.e. for image classification problems the SVs are not images any

more.

2.2 Cascade Support Vector Machines

In many applications, achieving linear separation of a data set is quite rare. Hence, non-linear kernels are

necessary in order to obtain accurate classification results; however, classification speeds can be slow with such

kernels. It is possible to accelerate SVM-based classification for a certain class of applications, such as video object

detection, that exhibit the following characteristics: (a) the majority of the instances presented to the classifier

belong to one of the two class and (b) the majority of those instances are not similar to the instances of the other

class. Based on these characteristics software implementations in the literature [16],[17] have tried to take advantage

of these two observations by utilizing stages of SVMs of increasing complexity, which are sequentially applied to

the input data (Fig. 1-c). Such structures mostly follow a cascade structure [5],[6],[7] where SVMs of increasing

complexity are arranged in a hierarchy of stages. The stages can be separate classifiers or the decomposition of one

larger classifier. Regardless, the commonality of these structures is that the SVM stages at the beginning of the

hierarchy (usually linear kernels (2)) have lower computational complexity (i.e. need to process only a small number

of SVs) and are tasked with removing the majority of samples from the negative class. The latter stages (usually

kernels (3) & (4)) then are able to perform more accurate classification on the remaining samples, which, however,

incurs a higher computational cost (i.e. need to process more SVs). Hence, an input sample needs to pass all stages

to be classified as positive (Fig. 1-c), otherwise it is classified as negative. Under this scheme a large amount of

input samples are discarded early in the classification process by the stages at the beginning of the cascade, resulting

in significant speedups. Since the latter stages need to discriminate better between positive and negative samples,

feature extraction algorithms may be used to improve accuracy, which however, further increases computational

demands. In such cases, it is possible to use the reduced-set-method [15], to reduce the number of support vectors

required by the non-linear kernel stages in order to improve classification times.

2.3 Object Detection

The process of visual object detection deals with determining whether an object of interest is present in an

image/video frame or not. The overall visual object detection process begins by first receiving an input image/video

frame from a camera or other adequate image source, which subsequently will then be searched in order to find

possible objects of interest. This search is done by extracting smaller regions from the frame, called search windows,

of 𝑚 × 𝑛 pixels, which are processed by a classification algorithm to determine if they belong to the object of

interest class or not [4]. Thus, the classification algorithm, such an SVM, learns to categorize search windows of a

particular size. However, the object of interest may appear in the image/video frame at a larger size than the size of

the search window. In such a case, the classification algorithm will not be able to detect the object. To account for

this scenario an object detection system typically decreases the size of the input image (downscaling), effectively

reducing the size of the object of interest, and then reexamines the downscaled image with the same search window

size. The downscaling process is done in steps to account for various object sizes, down to the size of the search

window and scaling happens by mapping old coordinates to new ones using a 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟. Hence, many

downscaled images are produced from a single input image/video frame, each in turn produce a number of search

windows, which increases the amount of data that must be processed by the classification algorithm such an SVM.

Search windows can be extracted from every pixel location in the image (exhaustively) or every few pixels and is

called the 𝑤𝑖𝑛𝑑𝑜𝑤 𝑝𝑖𝑥𝑒𝑙 𝑠𝑡𝑒𝑝. This search process is what generates a large number of windows that need to be

classified. Also considering that a substantial number of those windows are background and not an object of interest,

it becomes apparent that visual object detection is a prime example of an application that can benefit from the

cascade classification structure.

It is important to consider the metrics used to measure the performance of an object detection system. An image

object detection system is characterized by how accurately it can classify data as well as how many image frames it

can process per second. Thus, the two commonly used performance metrics are the detection accuracy, and

𝑓𝑟𝑎𝑚𝑒𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 (𝐹𝑃𝑆) or 𝑓𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒. Detection accuracy is usually measured on a given test set where the

expected outcome for a sample is compared to the actual outcome of the object detection system. The detection

accuracy is the percentage of samples for which the expected outcome matches the actual outcome of the detection

system. FPS concerns the throughput of a system and is the maximum number of digital video/image frames, of a

given size, that the detection system can process in one second. A performance of 30 𝐹𝑃𝑆 is usually considered a

minimum in order for an object detection system to be capable for real-time video processing.

2.4 Local Binary Patterns (LBP)

Each window that is extracted from the image is processed to produce features that provide invariance to

different lighting conditions and other environmental variations. These features can either be shape, color, intensity,

or the result of various filters and feature extraction algorithms. Using features makes the detection process more

robust since it provides a more representative description of the object and reduces the within-object-class

variability. However, the addition of feature extraction approaches and preprocessing methods can have a negative

effect on the classification speed even though the accuracy can be improved. In this paper we use the features called

Local Binary Patterns (LBPs) [18], that describe the relationship between a pixel and its neighborhood, and have

been used in a wide range of computer vision applications [19],[20]. The major advantage of LBPs is their low

computational complexity while providing sufficient accuracy which makes them particularly attractive for

embedded applications where the available resources may be limited and low power operation is needed. Many

variants of LBPs exist in the literature that are tailored to different objects [20]. The approaches that are of interest in

this work are the standard LBP [20] and Center-Symmetric LBP (CS-LBP) variation, The former has been used for

face detection and recognition while the latter for pedestrian detection. The process of extracting the LBP features

first begins by thresholding a 3×3 neighbourhood (image sliding window). For the standard LBP (Fig. 2-a) the

values are threshold with the center value of that neighborhood placing 1 where the value is greater or equal than the

mean, and 0 otherwise. For the CS-LBP the difference of opposite direction pixels, symmetrically to the center, is

compared against a predetermined threshold and if it is grater the resulting value is 1 and 0 otherwise. The produced

binary map is multiplied with a predefined mask (usually incremental powers of two). The values are then summed

to obtain the LBP Code. The result of LBP processing is an image assembled by LBP features (Fig. 2-b). In order to

improve the robustness of LBP features it is suggested [20] that the LBP code is further processed to compute

rotation invariant features. This is done by characterizing the code as uniform and non-uniform based on the bit

transitions in the code. The number of transitions in the code is found next by xor operations on the LBP code bits.

This is necessary to identify a pattern as uniform LBP code (which has 2 or less transitions e.g. 11110000) or non-

uniform LBP code (which have more than 2 transitions e.g. 10100101). This offers a more meaningful interpretation

of the LBP codes which can achieve higher discrimination. The next and final step to creating the LBP-based

descriptor requires dividing the LBP-based in 𝑘 blocks of 𝑖 × 𝑗 pixels. A local histogram is generated for each block

in the image. The local histograms can have any number of bins depending on the application. The local histograms

are then concatenated to form a single global histogram descriptor, as shown in Fig. 2-b.

2.5 Related Work

Software implementations of cascade SVM classification schemes [6],[7],[8],[15],[16],[21], have shown

speedups over monolithic SVMs and although noteworthy and suitable for some applications, are yet to offer

adequate performance for real-time resource-constrained applications. This is due to the fact that the latter stages

become the bottleneck since they require processing an increased number of SVs and the requirement for parallel

processing arises. Hence, hardware accelerators based on parallel computing platforms (e.g. [22],[23]) for SVM

classification have been proposed in the literature in order to take advantage of the inherit parallelism of the SVM

computation flow in an attempt to provide real-time and low-cost/low-power solutions. A brief description of related

works follows next.

The majority of proposed hardware architectures attempt to improve performance by employing parallel

processing modules, which process the elements of the input vector in parallel on FPGA platforms. However, for

Fig. 2. Local Binary Patterns: (a) LBP Code generation using improved LBP and Center Symmetric LBP. (b) LBP histogram
processing.

such architectures the parallelism depends on the vector dimensionality for a given problem in terms of

computational resources. When the vector dimensionality is high and the hardware resources are not available for a

full parallel processing the architecture can be folded to process the elements in groups, however, this increases the

cycles needed to process a single vector. Hence, works that utilize such architectures have optimized it specifically

for the vector dimensionality of the given problem and have been restricted to small scale data, with only a few

hundred vectors and low dimensionality(~100 elements) [10],[24],[25] and small-scale multiclass implementations

[26] in order to be able to meet real-time constraints. In addition, these architectures cannot trade-off processing

more SVs rather than vector elements, and hence, cannot efficiently deal with the different computational demands

of the cascade SVM stages. The works in [11], [27] target image recognition problems for 32×32 resolution images.

However, the datasets consist of only a few images corresponding to low vector dimensionality. Barcode detection

is the targeted application for [28] operating on 512×512 resolution images and scanning window size of 16×16

(256 element vector) and requires 352 cycles to classify an input vector. Alternative approaches include FPGA

coprocessors for parallel vector processing in order to speedup SVM computations [9], [29]. However, these

architectures do not consider the kernel implementation and the FPGA is only used for the dot-product operations of

the SVM classification flow. Furthermore, the parallel processing capabilities depend on parallel input through the

PCI express and external DRAM which have high power consumption and are thus unsuitable for embedded

applications.

In addition, research has also been done on potential simplifications to make SVM classification more hardware

friendly and improve its suitability for devices with limited computational resources. These approaches include

using CORDIC algorithms to compute the kernel functions [11],[24],[27],[30],[31]. However, the iterative

operations of these algorithms make it challenging to achieve high performance for applications that require high

data throughput such as object detection, since compact implementations of CORDIC algorithms which require less

hardware, have increased latency [32]. Other works [33],[34] proposed that the computations be done in the

logarithmic number system so that all multiplications are substituted by additions, thus reducing computational

resources. However, they only consider a single processing module, hence, when adopting a more parallel

architecture, to facilitate real-time operation, the additional cost from converting between the decimal number

system to the logarithmic one and back again for all inputs increases. Alternatively, a pseudo-logarithmic number

system was proposed in [35], however, the overhead for converting between number systems, in order to perform

additions, remains. The works in [36],[37],[38] have looked at how the bitwidth precision impacts the classification

error, in an effort to find the best trade-off between hardware resources, performance and classification speed.

Parallel computing using GPUs has been increasingly used in recent years in order to speedup SVM

classification by taking advantage of the parallel processing capabilities of a GPU showing improved results

compared to CPU implementations [8],[39]. A hybrid FPGA-GPU pedestrian detection is presented in [40] where

the SVM is implemented on the GPU and a feature extraction algorithm on the FPGA for 800×600 images and

achieves over 10 frames-per-second for the classification of 1000 windows. However, GPUs are power hungry

devices compared to FPGAs [29],[41], (FPGAs consume approximately an order of magnitude less power as shown

in [13]) and as such they are not suitable for power-constrained embedded applications. In addition, existing GPU

implementations do not translate well to the more energy-efficient embedded GPUs due to less available resources

[42].

It is evident from the above that there is limited work for the hardware implementation of cascade SVMs as most

of the related works consider only monolithic SVM classifiers. Hence, efficient ways to utilize the different

computational demands of cascade SVMs stages have not been sufficiently examined. Only recently there has been

some work in the hardware implementation of cascade SVM classifiers [14], [41]. Moving towards large scale

embedded applications and problems where thousands of samples need to be classified, the majority of which

belong to one of the two classes, cascade SVMs will need to be utilized to provide speedups. As such, single SVM

architectures, which do not exploit the properties of the cascade classification scheme, are not suited for this

purpose.

3 PROPOSED DESIGN METHOD AND HARDWARE ARCHITECTURE

Motivated by the aforementioned discussion and the need to consider efficient hardware architectures for

cascade SVM classifiers we propose parallel hybrid hardware architecture, with two main processing modules that

offer different parallelism with respect to the SVs, to provide higher classification throughput and a hardware

reduction method leading to a more compact hardware implementation suitable for embedded system applications.

We also show how a suitable I/O structure can be designed to facilitate data input to each processing module. In

addition, the architecture also incorporates a novel compact feature extraction processor based on local binary

pattern (LBP) descriptors [20], targeting object detection applications.

3.1 Cascade SVM Hardware Reduction Method

Existing cascade SVM classification schemes utilize a hierarchy of SVM classifiers which can be different

classifiers or expansions of a single classifier. Nonetheless, the common feature of these cascade structures is that

stages at the beginning of the cascade usually require processing less SVs than subsequent stages making them

computationally less demanding. This is because the objective of the early SVM stages is to guarantee that the

positive samples will go through to the final stage while a large amount of negative samples will be discarded rather

quickly. However, this implies that a few negative samples will be classified as positive. In contrast, subsequent

stages need to be more accurate and discriminate better between positive and negative samples; and hence build

decision functions with more SVs.

The fact that the early SVMs stages are not optimal classifiers can be exploited to reduce the resources required

for their hardware implementation by adapting their parameters (SVs and alpha coefficients), while maintaining

their ability to discard a large amount of negative samples. The proposed hardware reduction method is to

approximate the support vector and alpha values of the low complexity kernels with the nearest power of two values.

This will result in all the multiplication operations in the SVM classification phase (the kernel dot-product

calculations and computations related to the alpha coefficients) becoming shift operations. Additionally, since the

support vectors and alpha coefficients are now power of two values there is no need to store the binary

representations of decimal numbers but only shift data (shift amount, shift direction, and number sign). Hence, this

results in an adapted cascade SVM with reduced storage and computational demands. However, by approximating

the support vectors and alpha coefficients the resulting classification accuracy will be different from that of the

initial SVM cascade. To adjust the accuracy of each cascade stage rounded off to the nearest power of two, to

similar rates of that of the initial cascade stages the receiver-operating-characteristic (ROC) curve is used. The ROC

curve shows the performance of a binary classification system by illustrating the corresponding true positive and

false positive rates, as the discrimination threshold is varied. As such, by setting the appropriate threshold the

performance of the adapted stages in the SVM cascade can be adjusted to match the true positive rate of the initial

SVM cascade stages. This is important since the true positive rate of the classifier must be maintained. Adapted

stages, which do not yield the targeted accuracy, are reverted back to the initial model. The process is summarized in

Fig. 3. The hardware reduction process takes place after the cascade structure is decided, meaning that the kernel

function, and number of support vectors or reduced-set-vectors for each SVM cascade stage are determined. As

such, the proposed method can easily be used with different SVM training frameworks. Furthermore, the method

does not depend on the specific hardware architecture used for the implementation of the cascade and as such can be

optimized to different architecture requirements.

3.2 Hybrid Cascade Hardware Architecture

The proposed architecture (Fig. 4) consists of the main cascade processing components as well as additional

components, which relate to the targeted benchmark application of object detection [5]. The presented architecture is

flexible, and the parameters of each component can be adjusted to meet the requirements of the given classification

problem. Furthermore, the modular design means that the architecture can support different processor modules,

which makes it suitable for different cascade implementations. Due to the nature of the cascade classification

scheme, each successive SVM stage will have fewer input data to process and more SVs to process than the

previous stage. Hence, efficient hardware architectures need to take into consideration the throughput and

Fig. 3. Cascade Hardware Reduction Method: The initial cascade SVM obtained after training is altered to become more hardware
friendly resulting in an adapted cascade SVM.

processing needs of each stage in the cascade. Accordingly, the proposed hardware architecture for the cascaded

SVM classifier consists of two main processing modules, which provide different parallelism with respect to the

input data and SVs, in order to meet the different demands of the cascade stages. The first is a fully parallel

processing module (PPM) which performs the processing necessary for all the adapted SVM stages. The PPM is

used to process a single vector in parallel and can be designed to process vectors of different dimensionalities and

can be unrolled to be as parallel as the available resources allow. The second is a sequential processing module

(SPM), optimized for the high complexity SVM stages which demand processing a large number of SVs but only a

fraction of the input data. Thus parallelism focuses on processing multiple SVs in parallel. The vectors can have

different dimensionality and the number of parallel SVs that can be processed can also be adapted to the available

amount of resources. In addition, a specialized processor for LBP histogram extraction is implemented with a low-

resource consuming architecture as a means to efficiently improve accuracy.

3.2.1 Parallel Processing Module (PPM)

The parallel processing module (PPM) carries out the processing of the low complexity SVM stages which have

been adapted using the previously described hardware reduction method. Specifically, the proposed architecture can

process linear and 2nd degree polynomial kernels, but the plug-and-play approach of the architecture means that

other kernel modules implementing different kernel functions can be used instead [43]. The characteristic of the

early cascade stages is that they require processing only a few SVs per input vector, while having to process the

majority of input vectors. As such, parallelism focuses on processing vector elements in parallel with a single SV to

reduce the processing time per vector.

The architecture of the PPM (Fig. 5) is designed to perform the SVM shift operations, accumulations via an

adder tree pipeline, and the final kernel computations. As such, it is comprised of parallel SV data memories,

arithmetic shifters and parallel sign conversion units. In addition, it is also comprised of a tree of adders that sum the

results of the previous stage in order to calculate the dot-product scalar value. The final components are dedicated to

kernel processing and are also mostly implemented using arithmetic shift units. The shift data are fetched in parallel

Fig. 4. SVM cascade system architecture comprised of the sequential processing module (SPM), the parallel processing module
(PPM), the register array, frame buffer memory, and the visual feature processor.

from small ROMs, and include the sign of the support vector, the shift amount, and the direction of the shift

operation. The parallel processing module starts by first processing the input vector elements with a sign conversion

unit which that converts the input to positive or negative according to the SV sign bit so that the initial

multiplication operation can be preserved. The signed numbers are then processed by arithmetic shift units which

perform the shift according to the data that they receive from the ROMs, while preserving the sign bit, and

correspond to the multiplication operation with the SV. The partial results are added together using a pipelined tree

of adders so that the dot-product outcome can be obtained. The length of the adder tree impacts the latency of the

PPM and depends on the number of operands of individual adders used and the vector dimensionality. The latency

of the adder tree is thus given by:

adder_tree_stages = ⎾
log(vector_dimensionality)

log(adder_input_size)
⏋ (5)

When the dot-product scalar value becomes available the kernel computation follows. In the case of linear

kernels (2), adding a bias value to the dot-product outcome will suffice in order to obtain the classification result.

However, for 2nd degree polynomial kernels (3), as well as other kernels (e.g. (4)) additional operations are

necessary. The kernel computation module handles the latter steps of the classification phase. A single multiplier is

used in the parallel processing module and is necessary to perform the squaring operation of kernel (3). The alpha

coefficients are also approximated with power of two values, and hence, their processing is done with a sign

conversion unit and an arithmetic shift unit similarly to the processing of the SVs. An accumulator is used to gather

and process the result of each SV processing, and once all SVs are processed an adder is used to process the bias

with the accumulated result. The PPM stages are pipelined, so one SV enters the pipeline every cycle. Hence, the

total number of cycles needed to process the input vector at stage 𝑛 is given by equation (6), where 𝑁S(𝑖) is the

number of support vectors that need to be processed by stage 𝑖.

Fig. 5. Parallel Processing Module (PPM) Architecture: Handles the processing of the nearest power of two adapted SVM
stages. The shift units and adder tree are used by all kernels while only non-linear kernels use the rest of the kernel module.

(∑ NS(i)

n

i=1

+ adder_tree_stages + 1) (6)

3.2.2 Sequential Processing Module

The processing of the latter SVM stages (typically the final SVM stage) is performed via the sequential

processing module (SPM). This final stage will most likely process only a small percentage of the input data;

however, it will have the largest number of SVs. Hence, a different architecture is needed for such purposes, instead

of the PPM, which needs to be compact and also offer parallel processing. Using the SPM architecture allows us to

process multiple SVs with a single vector element at a time facilitating both parallel processing and a more compact

and modular design. Therefore, instead of processing the input vector in parallel the focus is on processing more

support vectors in parallel. This is achieved with the architecture shown in Fig. 6, which is comprised of a series of

pipelined processing and memory units. The majority of the units in the module are vector processing units (VUs)

and each unit handles the dot-product for one support vector with the input vector. They are comprised of a

multiply-accumulate unit, and also a ROM which contains the data for one or more support vectors, along with

register and multiplexer logic for data transfer between vector units. The last unit in the pipeline is the kernel

processing unit which is equipped with multipliers and accumulators to carry out the scalar operations of the SVM

processing flow.

The input vector is processed with a group of support vectors at a time, and each vector processing unit handles

the processing of one support vector. When processing more than one group of SVs which happens in cases when

the processing resources are not enough to process all SVs, then each group is processed after the other. In total

depending on the number of groups a total of ⎾𝑁𝑆𝑉/𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠⏋processing repetitions are necessary. Hence,

the size of the pipeline can be adjusted to fit the available resources and processing requirements by fine-tuning the

number of support vector groups. Each vector processing unit in the pipeline processes one element of the support

vector with one element of the input vector at a time. The data in the SPM flows in a pipelined manner as the input

vector values are propagated from one unit to the next, through the dedicated transfer mechanisms; while the ROMs

Fig. 6. Sequential Processing Module (SPM) Architecture: Consists of two processing units: The dot-product processing units
handle the dot-product computation, and the kernel processing unit, which is shared amongst the dot-product units, handles the
kernel-related operations.

feed each VU with SV data in parallel. When the processing of the input vector with the group of SVs is done,

after 𝑣𝑒𝑐𝑡𝑜𝑟_𝑑𝑖𝑚 cycles, the multiplexers and registers in each vector unit are used to switch from propagating input

vector values to scalar results. The scalar values are transferred sequentially through the pipeline and it takes

𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠 cycles for them to be processed by the kernel processing unit (with a 2 cycle initial delay due to the

pipeline stages). In this way the kernel processing unit is shared between the units, reducing hardware requirements

and also making it easy for the designer to substitute it with the desired kernel without having to change much of the

system functionality. Each scalar value that enters the kernel unit is processed by the kernel operation and the alpha

coefficient. In the case of the kernel described by (3), the operation involves a multiplier to find the square of the

value and multiply-accumulate units to process the alpha coefficients. Once all scalar values are processed, the final

classification result is obtained by adding the bias to the accumulated result. Overall, the number of cycles needed to

process an input vector is given by equation (7).

⎾NSV/num_of_VUs⏋ × (vector_dim + num_of_VUs + 2) (7)

3.3 Local Binary Processor Architecture

 The LBP processor will only selectively be used by the latter cascade stages to improve the discrimination

capabilities for a small number of samples that exhibit common features but belong to different classes. Hence, it

must have low area overhead. This is different to works such as [44] where the goal is to parallelize the LBP

processing. As such, a fully parallel implementation that may consume substantial hardware resources is not

suitable. Through efficient design, we are able to develop a novel and compact LBP processor suitable for the

targeted applications (Fig. 7-a). The developed LBP processor architecture features parallel processing of the values

of only a single 3×3 window from the input image located in the register array. In addition, the LBP processing

begins from the second row and column, i.e. the image boundary is ignored, hence, no additional hardware was

necessary to pad the image with additional values. The processor is essentially comprised of two main blocks. In the

first block, which is the LBP code generation, the values corresponding to a 3×3 window are loaded from the

register array and processed accordingly either for CS-LBP or standard LBP features, as discussed in Section 2.4, to

Fig. 7. (a) Local Binary Pattern Processor Architecture (b) Histogram Update Process

produce a binary array which is then multiplied with a power of two mask. Effectively, however, the multiplication

with the mask can be implemented by simply concatenating the threshold bits to generate the LBP code. Once a

window is processed the next 3×3 window follows the next cycle. The LBP code is then processed to characterize it

as uniform or non-uniform. We employ a look-up table memory approach in order to achieve a fast processing of the

LBP code. The code is used as the address to the memory and the output is the number of transitions in the code.

The second major block is the histogram generation circuit which receives the processed LBP codes for each

3×3 window and computes the histogram descriptors. A major issue when dealing with histogram generation is that

of collisions to the histogram memory from increments to the same location. The architecture generates and

processes a single LBP code every clock cycle, hence it is collision-free which results in a much simpler

implementation. The actual histogram computation is carried out in two phases. As the histogram is stored in a

central memory (of size 𝑘 × 𝑖 × 𝑗) which contains all local histograms; the first phase is to find the starting address

for the local histogram which the LBP code belongs to (Fig. 7-b). This is achieved by counting the row and column

of each LBP code. By keeping track of the MSBs of the row and column coordinates it is possible to identify the

block which it belongs to. Then by setting the appropriate address offset the corresponding histogram region is

selected. From there the desired most significant bits (MSBs) of the LBP code are added to the address offset in

order to select the appropriate bin (memory location) where the LBP code belongs to in the local histogram, and

increment its value (Fig. 7-c). A dual ported memory is utilized to store the histogram. In this way, an immediate

reset can be performed right after a memory value is loaded to the SVM processing core from the second port, which

receives the same address but delayed by a single cycle. Using this dual-ported memory scheme leads to a more

simple implementation, without needing to use a pool of registers, multiplexers, and additional wiring. Overall, the

LBP feature processing unit is generic and can thus deal with processing different image sizes, number of blocks,

and different number of histogram bins.

3.4 Cascade Optimized I/O and Processing Flow

The different throughput requirements of the cascade SVM processing modules require an I/O mechanism that

can adjust to the different needs of each module; that is parallel as well as sequential data transfer. It should also

take advantage of the application-specific characteristics to facilitate data reuse and reduce memory accesses.

Furthermore, different classifiers may utilize different data points or need to preprocess the data. The cascade I/O

structure should be able to handle this. To illustrate the above features we consider the design of such a structure for

object detection applications. An optimized I/O mechanism for object detection can be developed based on an array

of shift registers that incorporates the above features and also acts as local storage for the image segment that is

currently being processed (Fig. 4). The input image pixels enter the register array and are propagated column-wise

within the structure. The register array has a size of size 𝐻𝑚𝑎𝑥 × 𝑊𝑏𝑢𝑓−𝑠𝑖𝑧𝑒 , where 𝐻𝑚𝑎𝑥 is the height of the

maximum window and 𝑊𝑏𝑢𝑓−𝑠𝑖𝑧𝑒 corresponds to the width of the array, i.e. how may additional image columns are

stored. The input image pixels enter the register array and are propagated column-wise into the structure. The image

region that is at the right-most part of the register array corresponds to a 𝐻𝑚𝑎𝑥 × 𝑊𝑚𝑎𝑥 window and each unit

receives data from specific registers that window. Specifically, the LBP processor receives 9 pixels from the right-

most 3×3 window (𝐻𝐿𝐵𝑃 = 3, 𝑊𝐿𝐵𝑃 = 3) to produce a 𝐻𝑚𝑎𝑥 − 1 × 𝑊𝑚𝑎𝑥 − 1 image made up of LBP codes which is

later processed in 𝑘 𝑖 × 𝑗 blocks to produce a histogram descriptor. The PPM can receive register data corresponding

to either a 𝐻𝑚𝑎𝑥 × 𝑊𝑚𝑎𝑥 window or any other downscaled version (e.g. a (𝐻𝑚𝑎𝑥/2)×(𝑊𝑚𝑎𝑥 /2) window) if it is

necessary, by selecting the appropriate registers, thus achieving dynamic downscaling of the larger 𝐻𝑚𝑎𝑥 × 𝑊𝑚𝑎𝑥

window. With this data flow the image region is processed in a window-by-window fashion. Once, a window has

been processed a part of it is shifted out of the array, while new pixels are shifted in; thus a new window is formed at

the leftmost region of the scanline buffer and is ready to be processed next. The data flow of the right-most registers

changes depending on whether the data are used for parallel or sequential processing. In the case of parallel

processing module, window data are outputted and processed in parallel. In the case of sequential processing, which

happens when the LBP features are generated, the registers form a chain so that data are outputted sequentially from

the leftmost top row register. Furthermore, during sequential output operation, the window data are looped back to

the scanline buffers, using a multiplexer on the start of the chain, so that the window is formed again (Fig. 3). This is

required so that the window is placed correctly with respect to the rest of the image in the register array in order to

maintain consistency. Moreover, this is necessary so that the same window can be processed again with a new group

of support vectors when necessary. The register array structure, which stores the part of the image to be processed,

can be implemented with different number of rows and columns to fit the desired image size given the available

hardware resources.

4 EXPERIMENTAL PLATFORM AND RESULTS

The proposed hybrid hardware architecture and methods were evaluated using the embedded applications of face

and pedestrian detections considering 800×600 (SVGA) resolution images. For both applications the architecture

was evaluated in terms of frame-rate, detection accuracy, power consumption, as well as requirements in terms of

computing resources. The cascade structure, was trained using MATLAB and was used to evaluate the hardware

architecture and proposed design methodologies. Additionally, the proposed hardware architecture, which will be

referred to as the adapted cascade, is compared against a baseline system which implements the same cascade SVM

structure, but without applying the hardware reduction method, and thus the parallel processing module is

Fig. 8. (a) Block diagram of the FPGA system components. (b) Xilinx Spartan 6 FPGA industrial video processing board and
setup for Face Detection Implementation

implemented using multipliers and not shift units. Both implementations were evaluated and compared using a

Xilinx Spartan-6 Industrial Video Processing board equipped with a Spartan-6 XC6SLX150T FPGA (Fig. 8). A

Microblaze-based [45] video-pipeline system was used for I/O and verification purposes, while for both systems an

on-chip buffer is used to store the input image and a register array for data loading and processing which was

experimentally found to provide an adequate between balancing I/O delays and hardware resources. The following

sections detail the evaluation process and the results.

4.1 SVM Cascade Structure and Training

To evaluate the proposed hardware architecture and approaches we designed an SVM cascade structure for each

application, with kernels, and parameters similar to what has been used in the literature [5], [6], [7]. The parameters

for each application are summarized in Table 1. The early stages tasked with the fast rejection of samples

correspond to linear SVMs, or non-linear kernels with low computational demands [5]. Hence, for both applications

the cascade structure is similar to the one depicted in Fig. 9. Specifically, for the face detection application, the

cascade structure is comprised of two linear and two polynomial non-linear SVMs The search window size is 20×20

pixels and are extracted every 5 pixels, which is similar to other works of cascade SVMs in the literature [5]. This

window size results in a 400-dimensional vector, which is provided to the first three SVM cascade stages for rapid

processing. Once a window has passed all three stages successfully, it is further processed to produce an 18×18 LBP

feature image which corresponds to a 1062-dimensional LBP histogram vector which in turn is passed as input to

the final SVM cascade stage. Similarly, for the pedestrian detection application, the cascade structure was comprised

of 4 linear SVM stages and 1 non-linear polynomial SVM stage. This structure processed 36×18 pixel windows

extracted every 5 pixels resulting in a 648-dimensional vector. Prior to the final stage, the windows that passed all

previous stages, were processed by the LBP processor that produced a 1512–dimensional vector, which was

propagated to the final stage.

Positive and negative samples for both applications were collected from commonly used databases [46],[49], and

used to setup an initial training set which was then enhanced with additional samples. The early cascade stages were

trained in incremental fashion [1],[2],[3]. The first stage was trained on the initial training set and adapted using the

hardware reduction method. Then, the initial training set was enhanced with negative samples that were

misclassified by the first stage, and the new training set was used to train the second classifier, and the same was

done for the next stages except the last one. The final SVM stage was excluded from the process and was trained

using the complete training set which was first processed using the LBP feature extraction. Consequently, a 80 SV

polynomial SVM was generated for face detection and a 100 SV polynomial SVM was developed for pedestrian

detection. The adapted stages retained similar accuracy level after being rounded-off to the nearest power of two and

hence where implemented on the PPM. However, for the final SVMs there was a significant discrepancy between

the classification accuracies of the adapted and original model. Hence, those were not approximated and were

implemented on the SPM.

4.2 FPGA Implementation and Logic Resource Utilization

The two cascade implementations (baseline and adapted) have the same basic architecture (Fig. 3) and data flow

for both applications. The PPM architecture was based on a fully unrolled implementation, while the SPM was

implemented with a number of DSP units equal to the number of SVs (𝑛𝑢𝑚_𝑜𝑓_𝑉𝑈𝑠 = 𝑁𝑆) meaning that the input

data to the SPM is processed only once with a single group of SVs. The only difference between the two

implementations is that in the adapted cascade case the PPM was optimized using the hardware reduction method.

Consequently, the multiplication units where replaced with shift units and the data stored in the training data ROMs

corresponded to shift values instead of support vector values. Each ROM holds the support vector data for the first

three cascade SVM stages for the specific vector elements. In the adapted cascade implementation, 6 bits are needed

to store the shift data: 4 bits for the shift amount, corresponding to a maximum shift amount of 15 bits, one bit for

the sign of the support vector, and one for the arithmetic shift direction. For the baseline implementation, 8 bits are

needed to represent the decimal number SVs to maintain the same accuracy. In addition, adder trees, used by the

PPM, utilize ternary adders instead of two-input adders, to reduce the latency.

Both implementations on the Xilinx Spartan-6 XC6SLX150T FPGA have the same critical path, which is the

SPM kernel unit mapped on the DSPs, and as such have the same operating frequency of 70 MHz. The results in

Table 2 provide a more detailed breakdown of the the utilized resources for each component for the face detection

system, while the same trend applies for the pedestrian detection system. Specifications and resources for the

complete system for both applications are shown later in Table 3. Overall, for both the face and pedestrian detection

TABLE 1

PARAMETERS FOR EACH APPLICATION

Fig. 9. Cascade Hardware Reduction Method: The parameters of the initial cascade SVM obtained after training are changed to
produce a more hardware friendly adapted cascade SVM.

applications the implementation of the adapted PPM requires ~40% fewer FPGA logic resources compared to the

baseline PPM. This is reflected with a 25%-30% reduction in the utilized resources when considering full system

implementations.

4.3 Detection Accuracy and Frame-Rate

Accuracy and frame-rate are two important metrics in object detection and thus this section outlines these results.

The accuracy of the adapted cascade SVM was evaluated on the widely used face image databases [47][48] as well

as pedestrian databases [50] and images from the world-wide-web, cropped and resized to 800×600 (SVGA)

resolution. Full frame detection results are shown in Fig. 10. The same set was used to evaluate the frame-rate of the

cascade SVM implementations. Each 800×600 image generates a total of over 54000 search windows for 18 scales

and a window step of 5 pixels. Each frame requires a different time to be processed, by the cascade

implementations, depending on how many windows reach each stage, and by how many cycles it takes a stage to

process an input. All generated windows are processed by the first SVM stage; however, only ~1% of them reach

the final SVM stage. This is shown in Fig. 11, which illustrates the percentage of windows rejected at each stage and

the number of windows that each stage, after the first one, needs to process. In addition, to the actual processing

time, the I/O delays per frame also negatively affect the classification speed. In order to achieve higher detection

rates, I/O and memory operations such as filling the register-array buffers, overlap with window processing. Overall,

the implemented architectures were able to operate in real-time achieving of 36 FPS for face and 34 FPS pedestrian

detection respectively. In addition, the detection accuracies for each implemented hardware architecture were ~81%

for face detection and ~84% for pedestrian detection respectively, while for both cases a considerably low false

positive rate was achieved (< 0.1%).

4.4 Trade-off between Resource Utilization and Accuracy

The penalty to pay for any form of approximation is that the accuracy changes compared to the original model.

However, the main benefit from the proposed hardware reduction method of approximating the SVs and alpha

coefficients by rounding them to the nearest power of two is that it allows for a more compact and parallel

implementation without a significant impact on accuracy. To better understand the benefits consider the alternative

which is the conventional approach where the coefficients are approximated by a fixed point number of a certain

TABLE 2

FPGA RESOURCE UTILIZATION BREAKDOWN PER UNIT AND SYSTEM FOR FACE DETECTION SYSTEM
FPGAResources LUTs (92152) Registers (184304) BRAMs (268) DSPs (180)

SPM 4482 (4%) 3472 (2%) 51 (19%) 50 (27%)

Adapted PPM 19006 (20%) 2679 (2%)
1 (<1%) ---

Baseline PPM 30791 (46%) 3724 (3%)

Generic LBP Processor 150 (1%) 40 (<1%) 2 (<1%) ---

Memory & I/O Units 1200 (1%) 1831 (1%) 180 (67%) ---

Microblaze Video Pipeline 9891 (10%) 10780 (5%) 20 (7%) 3 (2%)

Baseline Cascade System 47396 (51%) 21214 (11%)
256 (96%) 89 (32%)

Adapted Cascade System 35532 (38%) 20153 (11%)

bitwidth selected in such a way as to retain a similar accuracy to the original model and in which case the main

processing units are multipliers. We illustrate in Fig. 12 for one of the SVMs in the cascade for the face detection

application, the accuracy that we get and the LUT resources necessary for one multiplication unit as the bitwidth that

we use to represent the SVs and alpha coefficients increases. We also illustrate (in the last column of each figure)

the accuracy of the equivalent SVM approximated with power of two values and the LUT resources for one shift

unit. In order to maintain an accuracy of over 90% for the conventionally adapted SVM we need 6 bits which results

in a multiplication unit requiring 73 FPGA LUTs. Conversely, a shifter for the SVM with power of two values

requires 46 FPGA LUTs with a slightly reduced accuracy but still approaching 90%. Maintaining a similar number

of LUTs using a multiplier resulted in a very low accuracy of 48%. It is evident that increasing the number of bits

increases accuracy as we get closer to the actual values, however, the required resources for the multiplication units

also increase. Especially when considering parallel implementations where the increased number of LUTs needed by

Fig. 10. (top) Detection Results on 800×600 images for face detection [48] and pedestrian detection [50]. (bottom) Activity in the
image. The darkness of the pixels indicates that the image region has gone through more stages.

(a) (b) (c) (d)
Fig. 11. Window rejection rates for each stage for (a) pedestrian detection and (b) face detection. Number of windows that reach
each stage for (c) pedestrian detection and (d) face detection.

Fig. 12. Trade-off between accuracy and resources

the multipliers accumulates and results in a resource hungry implementation. However, through the proposed

cascade design approach we are able to achieve an adequate trade-off and reduce the hardware implementation

requirements without sacrificing accuracy.

4.5 Power Consumption

Power analysis tools from Xilinx were used to measure power consumption figures of the adapted and baseline

cascade SVM FPGA implementations for both benchmark applications. The characteristic of the cascade

architectures is that the PPM and SPM are not used at the same time since they implement different cascade stages.

Hence, the dynamic power consumption ranges depending on which module is active. The total power budget,

including the Microblaze video pipeline, for the adapted cascade SVM system ranged from 4.4W to 8.0W for face

detection and 4.8W to 8.6W for pedestrian detection. While for the baseline cascade system, it ranged from 4,4W to

9,9W for face detection and 4.8W to 10.4W for pedestrian detection. As the peak power consumption happens when

the PPM module is used, the utilization of less LUT resources by the adapted PPM results in reducing the peak

power needed for the adapted cascade system by ~20%.

4.6 Related Work Comparison

Related works for object detection applications are shown in Table 3 along with information regarding

parameters and performance. These works use different algorithms, training and test sets, and benchmark

applications; hence, it is difficult to make a direct comparison between implementations. In addition, none of the

reported works target cascade SVM processing, hence, the proposed architectures are not optimized to dynamically

handle different SVM processing requirements. Regardless, through the subsequent discussion we attempt to

highlight the contributions of this work compared to what is reported in the literature. SVMs have been used in

various object detection applications and as a result FPGA implementations for SVM-based object detection have

used different applications and parameters to benchmark the proposed architectures. However, since the SVM

classification flow treats all data as vectors; the number of samples and SVs processed and vector dimensionality

can provide an indication to the processing performance for each work. The number of samples depends on the

search window size and granularity of the search. Because of the different benchmark applications, the search

window size and feature vector size are different.

A head-shoulder detection system is presented in [44]. It utilizes a linear SVM and LBP descriptors to classify

19200 windows from 640×480 images. It trades-off accuracy for performance by using a single linear SVM (with a

clock frequency of 120 MHz) and processes only a few elements of the SV feature vector in parallel to keep the

resource utilization low. In addition, foreground detection is used to compensate for the linear SVM. However, non-

linear kernels often provide better and more robust results compared to linear kernels and thus might be the

preferred choice in many applications in which case such architectures will not be able to handle the different

processing requirements. The implementation in [28] scans a 512×512 image in non-overlapping blocks to perform

bar-code detection. It performs the dot-product operations in 352 cycles for one window however; the scalar

operations are not included. Furthermore, it processes only around 1024 16×16 window samples, corresponding to

256-dimensional vectors, per image, and it does not downscale the input image which simplifies the I/O and

memory accesses. The hybrid FPGA-GPU pedestrian detection system [40] for 800×600 images is able to classify

around 1000 windows. The lower throughput can be attributed to the larger feature size; however, the number of

processed windows is an order of magnitude less than our work. In addition, the use of GPU may prohibit such

implementations to be used in embedded applications due to power consumption constraints. Overall, in order to

achieve real-time performance existing works rely on processing a few window samples, smaller image resolutions,

or process a few SVs. Through the proposed architecture and methods it is possible to process higher resolution

images (800×600) which generate more windows (over 54000), with a higher number of SVs (one to two orders of

magnitude more) while also reducing the implementation requirements for the implementation of more complex

cascade SVM classifiers. The SVM hardware implementations target different applications and thus accuracy is

difficult to compare. On the other hand, software based implementations [5],[6],[7] that utilize cascade SVMs for

face detection achieve accuracies that range between 78-80% while utilizing similar training set sizes. The proposed

optimized SVM cascade system achieves a detection rate of over 80%, which is on par with these works.

5 DISCUSSION AND CONCLUDING REMARKS

Overall, the proposed architecture enhanced with the proposed methods achieves a good trade-off between

accuracy, performance, and hardware utilization. In addition, there are some useful conclusions extracted from the

FPGA evaluation. Firstly, the proposed hardware reduction method provides an efficient way to reduce the required

silicon budget of the cascade which is easy to implement and compatible with any SVM training package and hence,

can have a wide use. As such, it can be used to design low-cost SVM pre-processors that can be integrated to other

existing works as well. Second, the hybrid processing hardware architecture and flexible I/O structure demonstrated

TABLE 3
COMPARISON OF RELATED WORK ON FPGA-BASED IMPLEMENTATIONS OF SVM DETECTION SYSTEMS

Related Works Rojas [28] 1 Kryjak [44] Bauer [40] 2 Presented Work

Application Barcode Detection Head Detection Pedestrian Detection Face Detection Pedestrian Detection

Method Polynomial SVM Linear SVM & LBP SVM (GPU) & HOG (FPGA) Cascade SVM & LBP

Platform
Xilinx Virtex II Pro

XCV3000

Xilinx Virtex 6

XC6VLX240T

Xilinx Spartan 3 & NVIDIA

GPU 2
Xilinx Spartan 6 XC6SLX150T

F
P

G
A

R
es

o
u
rc

e
 LUT 22938/28672 12068/150720 28616/62208 3 35532/92152 45758/92152

REG N/P 15893/301440 N/P 3 20153/184304 25049/184304

BRAM 160KB 124/416 100 3 256/268 260/268

DSP N/P 66/768 18/96 3 89/180 109/180

Image Size 512×512 640×480 800×600 800×600

Window Size 16×16 32×24 48×96 20×20 36×18

Vector Sizes 256 1440 1980 400 & 1062 648 & 1512

Total Number of

SVs
88 1 N/P 102 104

Frequency 166 MHz 120 MHz 63 MHz 3 70 MHz

Detection

Accuracy

TP: 91,8

FP: 4,2%
TP: 83%

TP: 95.4%

FP: 0,1%

TP: ~81%

FP: ~0,03%

TP: ~84%

FP: ~0,07%

Detection Speed N/P 1 60 FPS 10 FPS 36 FPS 34 FPS
1 Performance is 352 cycles per sample just for the vector operations. No I/O delays are included.
2 A hybrid system where the GPU implements the SVM and the feature extraction based on HOG is implemented on the FPGA.
3 These correspond only to the HOG implementation on the FPGA.

N/P – Not Provided | N/A – Not Applicable | TP - True Positive | FP - False Positive

how it is possible to efficiently utilize the available hardware and provide the necessary performance; by optimizing

the design for the specific data flow, throughput and processing demands of each cascade stage.

This work presented in this paper demonstrated how application directed design optimizations can help boost the

hardware efficiency of cascade SVM implementations so that such structures can be used to design intelligent

embedded classification systems. The proposed hardware architecture and design methods were verified

experimentally on a Spartan-6 FPGA using the applications of face and pedestrian detection. Through the evaluation

we showed the effectiveness of the proposed architecture as it was capable of processing 800×600 resolution images

with a real-time performance of over 30 frames per second for both benchmark applications. In addition, the

proposed hardware reduction method resulted in reducing the required custom logic resources by ~30%. Going

forward different applications will also be used to evaluate the proposed architecture to further demonstrate how it

can be used to provide a complete embedded solution for the design of intelligent classification systems.

ACKNOWLEDGEMENTS

This work was supported by the European Research Council Advanced Grant through the Fault-Adaptive Project

under Grant 291508.

REFERENCES

[1] Cortes, C., Vapnik, V.: Support-Vector Networks. In: Journal of Machine Learning, vol. 20, no. 3, pp. 273-

297 (1995)

[2] Burges, C. J. C.: A tutorial on support vector machines for pattern recognition. In: Data Mining and

Knowledge Discovery, vol. 2, pp. 121-167 (1998)

[3] Osuna, E., Freund, R., Firosi, F.: Training support vector machines: an application to face detection. In:

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 130-136 (1997)

[4] Jianxin Wu, Rehg, J.M.: Chapter 8 Object Detection, In: Ensemble Machine Learning: Methods and

Applications, Springer, pp. 225-250 (2012)

[5] Heisele, B., Serre, T., Prentice, S., Poggio, T.: Hierarchical classification and feature reduction for fast face

detection with support vector machines. In: Pattern Recognition, pp. 2007-2017 (2003)

[6] Kukenys, I., McCane, B.: Classifier cascades for support vector machines. In: International Conference on

Image and Vision Computing, pp. 1-6 (2008)

[7] Yong Ma, Xiaoqing Ding: Face Detection Based on Cost-Sensitive Support Vector Machines. In: First

International Workshop on Pattern Recognition with Support Vector Machines, pp. 260-267 (2002)

[8] Catanzaro, B., Sundaram, N., Keutzer, K.: Fast support vector machine training and classification on

graphics processors. In: International conference on Machine learning, pp. 104-111 (2002)

[9] Cadambi, S., et al: A Massively Parallel FPGA-Based Coprocessor for Support Vector Machines. In: IEEE

International Symposium on Field Programmable Custom Computing Machines (FCCM), pp. 115-122

(2009)

[10] Pina-Ramirez, O., Valdes-Cristerna, R., Yanez-Suarez, O.: An FPGA implementation of linear kernel

support vector machines. In: IEEE Int. Conf. on Reconfigurable Computing and FPGA's, pp. 1-6 (2006)

[11] Ruiz-Llata, M., Guarnizo, G., Yébenes-Calvino, M.: FPGA implementation of a support vector machine for

classification and regression. In: International Conference on Neural Networks, pp. 1-5 (2010)

[12] Fowers, J., Brown G., Cooke, P., Stitt, G.: A performance and energy comparison of FPGAs, GPUs, and

multicores for sliding-window applications. In: ACM/SIGDA International Symposium on Field

Programmable Gate Arrays (FPGA '12), pp. 47-56 (2012)

[13] Cooke, P., Fowers, J., Brown, G., Stitt G.: A Tradeoff Analysis of FPGAs, GPUs, and Multicores for

Sliding-Window Applications. In: ACM Transactions on Reconfigurable Technology Systems vol.8, no.1

(2015)

[14] Kyrkou, C., Bouganis, C.-S., Theocharides, T.: An Embedded Hardware-Efficient Architecture for Real-

Time Cascade Support Vector Machine Classification. In: International Conference on Embedded

Computer Systems (SAMOS), pp. 129-136 (2013)

[15] Burges, C.J.C.: Simplified support vector decision rules. In: International Conference on Machine

Learning, pp. 71-77 (1996)

[16] Sahbi, H., Geman, D., Boujemaa, N.: Face detection using coarse-to-fine support vector classifiers. In:

International Conference on Image Processing, pp. 925-928 (2001)

[17] Romdhani, S., Torr, P., Schölkopf, B., Blake, A.: Efficient face detection by a cascaded support-vector

machine expansion. In: Royal Society of London Proceedings Series A, vol. 460, no. 2051, pp. 3283-3297

(2004)

[18] Ojala, T., Pietikainen M., Harwood, D.: A comparative study of texture measures with classification based

on featured distributions. In: Pattern Recognition, vol. 26, no. 1, pp. 51-59 (1996)

[19] Hadid, A., Pietikainen, M., Ahonen, T.: A Discriminative Feature Space for Detecting and Recognizing

Faces. In: IEEE Conference on Computer Vision and Pattern Recognition (2004)

[20] Pietikainen, M., Abdenour, H., Zhao, G., Ahonen, T.: Computer Vision Using Local Binary Patterns,

Springer (2011).

[21] Hai-Xiang Zhao, Magoules, F.: Parallel Support Vector Machines on Multi-core and Multiprocessor

Systems. In: International Conference on Artificial Intelligence and Applications (2010)

[22] Anguita, D., Boni, A., Ridella, S.: A Digital Architecture for Support Vector Machines: Theory, Algorithm,

and FPGA Implementation. In: IEEE Transactions on Neural Networks, vol. 14, no. 5, pp. 993-1009 (2003)

[23] Genov R., Gauwengerghs, G.: Kerneltron: Support Vector Machines in Silicon. In: IEEE Transactions on

Neural Networks, vol. 14, pp. 1426-1434 (2003)

[24] Mahmoodi, D., Soleimani,A., Khosravi, H., Taghizadeh, M.: FPGA Simulation of Linear and Nonlinear

Support Vector Machine. In: Journal of Software Engineering and Applications, pp. 320-328 (2011)

[25] Biasi, I., Boni, A., Zorat, A.: A reconfigurable parallel architecture for SVM classification. In: IEEE

International Joint Conference on Neural Networks, pp. 2867-2872 (2005)

[26] Groleat, T., Arzel, M., Vaton, S.: Harware Acceleration of SVM-based traffic classification on FPGA. In:

International Wireless Communications and Mobile Computing Conference, pp. 443-449 (2012)

[27] Ruiz-Llata, M., Yebenes-Calvino, M.: FPGA Implementation of Support Vector Machines for 3D Object

Identification. In: International Conference on Artificial Neural Networks (2009)

[28] Reyna-Rojas, R., Houzet, D., Dragomirescu, D., Carlier, D., Ouadjaout, S., Object Recognition System-on-

Chip Using the Support Vector Machines. In: EURASIP Journal on Advances in Signal Processing, pp.

993-1004 (2005)

[29] Graf, H. P., et al.: A Massively Parallel Digital Learning Processor. In: Annual Conference on Neural

Information Processing Systems (NIPS), pp. 529-536 (2008)

[30] Boni, A., Pianegiani, F., Petri, D.: Low-Power and Low-Cost Implementation of SVMs for Smart Sensors.

In: IEEE Transactions on Instrumentation and Measurement, vol. 56, no. 1, pp. 39-44 (2007)

[31] Anguita, D., Ghio, A., Pischiutta, S., Ridella, S.: A Hardware-friendly Support Vector Machine for

Embedded Automotive Applications. In: International Joint Conference on Neural Networks (2007)

[32] Meher, P.K., Valls, J., Tso-Bing, J., Sridharan, K., Maharatna, K.: 50 Years of CORDIC: Algorithms,

Architectures, and Applications. In: IEEE Transactions on Circuits and Systems I: Regular Papers, vol.56,

no.9, pp.1893,1907 (2009)

[33] Khan, F., Arnold, M., Pottenger, W.: Finite Precision Analysis of Support Vector Machine Classification in

Logarithmic Number Systems. In: Euromicro Symposium on Digital System Design (2004)

[34] Khan, F., Arnold, M., Pottenger, W.: Hardware-based support vector machine classification in logarithmic

number systems. In: IEEE International Symposium on circuirs and systems (2005)

[35] Boni, A., Zorat, A.: FPGA Implementation of Support Vector Machines with Pseudo-Logarithmic Number

Representation. In: International Joint Conference on Neural Networks (2006)

[36] Anguita, D., Ghio, A., Pischiutta, S.: A learning machine for resource-limited adaptive hardware. In:

Second NASA/ESA Conference on Adaptive Hardware and Systems (2007)

[37] Ghio, A., Pischiutta, S.: A Support Vector Machine based pedestrian recognition system on resource-

limited hardware architectures. In: Research in Microelectronics and Electronics Conference (2007)

[38] Anguita, D., Pischiutta, S., Ridella, S., Sterpi, D.: Feed-forward support vector machine without

multipliers. In: IEEE Transactions on Neural Networks, vol. 17, p. 1328 (2006)

[39] Carpenter, A.: CUSVM: A CUDA Implementation of Support Vector Machines (2009)

[40] Bauer, S., Kohler, S., Doll, K., Brunsmann, U.: FPGA-GPU Architecture for Kernel SVM Pedestrian

Detection. In: Computer Vision and Pattern Recognition Workshops (2010)

[41] Papadonikolakis M., Bouganis, C.-S.: Novel Cascade FPGA Accelerator for Support Vector Machines

Classification. In: Transactions on Neural Networks and Learning Systems, vol. 23, no. 7, pp. 1040-1052

(2012)

[42] Maghazeh, A., Bordoloi, U., Eles, P., Peng, Z.: General Purpose Computing on Low-Power Embedded

GPUs : Has It Come of Age?. In: International Conference on Embedded Computer Systems (SAMOS

XIII) (2013)

[43] Kyrkou, C., Theocharides, T.: A Parallel Hardware Architecture for Real-Time Object Detection with

Support Vector Machines. In: IEEE Transactions on Computers, vol. 61, no. 6, pp. 831-842 (2012)

[44] Kryjak, T., Komorkiewicz, M., Gorgon, M.: FPGA implementation of real-time head-shoulder detection

using local binary patterns, SVM and foreground object detection. In: International Conference on Design

and Architectures for Signal and Image Processing (2012)

[45] Microblaze Soft Processor. Xilinx, San Jose, CA. [Online]. http://www.xilinx.com/tools/microblaze.htm

[46] CBCL Face Database #1, MIT Center for Biological and Computation Learning. [Online].

http://cbcl.mit.edu/software-datasets/FaceData2.html

[47] Bao Face Database, http://www.facedetection.com/downloads/BaoDataBase.zip.

[48] CMU and MIT Face Database, [Online]. http://vasc.ri.cmu.edu/idb/html/face/frontal_images/.

[49] CBCL PEDESTRIAN DATABASE #1, MIT Center for Biological and Computation Learning. [Online].

http://iris.usc.edu/Vision-Users/OldUsers/bowu/DatasetWebpage/dataset.html

[50] PETS 2012 Database, 14th IEEE International Workshop on Performance Evaluation of Tracking and

Surveillance. [Online]. http:// http://www.pets2012.net/

