35
IRUS TotalDownloads
Altmetric
Ionospheric plasma of comet 67P probed by Rosetta at 3 AU from the Sun
File | Description | Size | Format | |
---|---|---|---|---|
MNRAS-2016-Galand-S331-51.pdf | Published version | 4.49 MB | Adobe PDF | View/Open |
Title: | Ionospheric plasma of comet 67P probed by Rosetta at 3 AU from the Sun |
Authors: | Galand, M Héritier, KL Odelstad, E Henri, P Broiles, TW Allen, AJ Altwegg, K Beth, A Burch, JL Carr, CM Cupido, E Eriksson, AI Glassmeier, K-H Johansson, FL Lebreton, J-P Mandt, KE Nilsson, H Richter, I Rubin, M Sagnières, LBM Schwartz, SJ Sémon, T Tzou, C-Y Vallières, X Vigren, E Wurz, P |
Item Type: | Journal Article |
Abstract: | We propose to identify the main sources of ionization of the plasma in the coma of comet 67P/Churyumov–Gerasimenko at different locations in the coma and to quantify their relative importance, for the first time, for close cometocentric distances (<20 km) and large heliocentric distances (>3 au). The ionospheric model proposed is used as an organizing element of a multi-instrument data set from the Rosetta Plasma Consortium (RPC) plasma and particle sensors, from the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis and from the Microwave Instrument on the Rosetta Orbiter, all on board the ESA/Rosetta spacecraft. The calculated ionospheric density driven by Rosetta observations is compared to the RPC-Langmuir Probe and RPC-Mutual Impedance Probe electron density. The main cometary plasma sources identified are photoionization of solar extreme ultraviolet (EUV) radiation and energetic electron-impact ionization. Over the northern, summer hemisphere, the solar EUV radiation is found to drive the electron density – with occasional periods when energetic electrons are also significant. Over the southern, winter hemisphere, photoionization alone cannot explain the observed electron density, which reaches sometimes higher values than over the summer hemisphere; electron-impact ionization has to be taken into account. The bulk of the electron population is warm with temperature of the order of 7–10 eV. For increased neutral densities, we show evidence of partial energy degradation of the hot electron energy tail and cooling of the full electron population |
Issue Date: | 10-Nov-2016 |
Date of Acceptance: | 7-Nov-2016 |
URI: | http://hdl.handle.net/10044/1/43630 |
DOI: | 10.1093/mnras/stw2891 |
ISSN: | 1365-2966 |
Publisher: | Oxford University Press |
Start Page: | S331 |
End Page: | S351 |
Journal / Book Title: | Monthly Notices of the Royal Astronomical Society |
Volume: | 462 |
Issue: | Suppl_1 |
Copyright Statement: | © 2016 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. |
Sponsor/Funder: | Science and Technology Facilities Council (STFC) Science and Technology Facilities Council (STFC) Imperial College Trust Science and Technology Facilities Council (STFC) Science and Technology Facilities Council (STFC) Science and Technology Facilities Council [2006-2012] |
Funder's Grant Number: | ST/N000692/1 ST/K001051/1 N/A ST/K001698/1 ST/P002250/1 ST/K001051/1 |
Keywords: | Science & Technology Physical Sciences Astronomy & Astrophysics plasmas methods: data analysis Sun: UV radiation comets: individual: 67P DIAMAGNETIC CAVITY NUMBER DENSITIES ELECTRON SENSOR 67P/CHURYUMOV-GERASIMENKO ION RPC ENVIRONMENT ROSINA NUCLEUS WATER Astronomy & Astrophysics 0201 Astronomical and Space Sciences |
Publication Status: | Published |
Online Publication Date: | 2016-11-10 |
Appears in Collections: | Space and Atmospheric Physics Physics Faculty of Natural Sciences |