300
IRUS Total
Downloads
  Altmetric

Creep monitoring using permanently installed potential drop sensors

File Description SizeFormat 
Corcoran-J-2015-PhD-Thesis.pdfThesis 10.81 MBAdobe PDFView/Open
Title: Creep monitoring using permanently installed potential drop sensors
Authors: Corcoran, Joseph
Item Type: Thesis or dissertation
Abstract: Creep is the primary life limiting mechanism of static high temperature, high pressure power station components. Creep state evaluation is currently achieved by surface inspection of microstructure during infrequent outages; a methodology which is laborious, time consuming and considered inadequate. The objective of this work is to develop a monitoring technique that is capable of on-load creep damage monitoring. A continuous update of component integrity will enable better informed, targeted inspections and outage maintenance providing increased power generation availability. A low-frequency, permanently installed potential drop system has been previously developed and will be the focus of this thesis. The use of a quasi-DC inspection frequency suppresses the influence of the electromagnetic skin effect that would otherwise undermine the stability of the measurement in the ferromagnetic materials of interest; the use of even low frequency measurements allows phase sensitive detection and greatly enhanced noise performance. By permanently installing the electrodes to the surface of the component the resistance measurement is sensitive to strain. A resistance - strain inversion is derived and validated experimentally; the use of the potential drop sensor as a robust, high temperature strain gauge is therefore demonstrated. The strain rate of a component is known to be an expression of the creep state of the component. This concept was adopted to develop an interpretive framework for inferring the creep state of a component. It is possible to monitor the accumulation of creep damage through the symptomatic relative increase in strain rate. By taking the ratio of two orthogonal strain measurements, instability and drift common to both measurements can be effectively eliminated; an important attribute considering the necessity to monitor very low strain rates over decades in time in a harsh environment. A preliminary study of using the potential drop technique for monitoring creep damage at a weld has been conducted. Welds provide a site for preferential creep damage accumulation and therefore will frequently be the life limiting feature of power station components. The potential drop technique will be sensitive to both the localised strain that is understood to act as precursor to creep damage at a weld and also the initiation and growth of a crack. Through the course of this project, two site trials have been conducted in power stations. A measurement system and high temperature hardware that is suitable for the power station environment has been developed. The focus of this thesis is the effective transfer of the technique to industry; the realisation of this is detailed in the final chapter.
Content Version: Open Access
Issue Date: Sep-2015
Date Awarded: Nov-2015
URI: http://hdl.handle.net/10044/1/28123
DOI: https://doi.org/10.25560/28123
Supervisor: Cawley, Peter
Nagy, Peter
Sponsor/Funder: Engineering and Physical Sciences Research Council
Funder's Grant Number: EP/J015431/1
Department: Mechanical Engineering
Publisher: Imperial College London
Qualification Level: Doctoral
Qualification Name: Doctor of Philosophy (PhD)
Appears in Collections:Mechanical Engineering PhD theses



Unless otherwise indicated, items in Spiral are protected by copyright and are licensed under a Creative Commons Attribution NonCommercial NoDerivatives License.

Creative Commons