1250
IRUS Total
Downloads
  Altmetric

Stiffness reduction approach for structural steel design

File Description SizeFormat 
Kucukler-M-2015-PhD-Thesis.pdfThesis18.4 MBAdobe PDFView/Open
Title: Stiffness reduction approach for structural steel design
Authors: Kucukler, Merih
Item Type: Thesis or dissertation
Abstract: Stiffness reduction offers a practical means of considering the detrimental influence of imperfections and the spread of plasticity on the strength and stability of steel structures. In this thesis, a stiffness reduction approach for structural steel design is presented. The proposed method is carried out by reducing the stiffness of steel members through developed stiffness reduction functions and performing Linear Buckling Analysis (LBA-SR) and Geometrically Nonlinear Analysis (GNA-SR). Since the deleterious influence of geometrical imperfections, residual stresses and the spread of plasticity is fully taken into account through the developed stiffness reduction functions, the proposed design approach does not require the use of member design equations, but only requires cross-section checks, thus leading to practical design. Finite element models of steel members and frames are created and validated using experimental results from the literature. Geometrically and Materially Nonlinear Analyses (GMNIA) of the validated finite element models are used to verify the proposed stiffness reduction method in all considered cases. The proposed stiffness reduction method is initially developed for the flexural buckling assessment of columns and the in-plane design of beam-columns, where a stiffness reduction function is derived using the European column buckling curves, providing the same strength predictions as determined through these curves. The proposed method is then extended to the lateral-torsional buckling assessment of steel beams and the flexural-torsional buckling assessment of steel beam-columns. Having established its validity for individual members, the proposed method is applied to steel frames. Both non-redundant and redundant benchmark frames from the literature are considered. It is observed that the proposed stiffness reduction method provides a reliable and accurate design approach.
Content Version: Open Access
Issue Date: Jun-2015
Date Awarded: Sep-2015
URI: http://hdl.handle.net/10044/1/51496
DOI: https://doi.org/10.25560/51496
Supervisor: Gardner, Leroy
Macorini, Lorenzo
Sponsor/Funder: Turkey. Ministry of National Education
Department: Civil and Environmental Engineering
Publisher: Imperial College London
Qualification Level: Doctoral
Qualification Name: Doctor of Philosophy (PhD)
Appears in Collections:Civil and Environmental Engineering PhD theses



Unless otherwise indicated, items in Spiral are protected by copyright and are licensed under a Creative Commons Attribution NonCommercial NoDerivatives License.

Creative Commons