Freudenthal triple classification of three-qubit entanglement

File Description SizeFormat 
PhysRevA.80.032326.pdfPublished version583.14 kBAdobe PDFView/Open
Title: Freudenthal triple classification of three-qubit entanglement
Authors: Borsten, L
Dahanayake, D
Duff, MJ
Rubens, W
Ebrahim, H
Item Type: Journal Article
Abstract: We show that the three-qubit entanglement classes, (0) null, (1) separable A−B−C, (2a) biseparable A−BC, (2b) biseparable B−CA, (2c) biseparable C−AB, (3) W, and (4) Greenberger-Horne-Zeilinger, correspond respectively to ranks 0, 1, 2a, 2b, 2c, 3, and 4 of a Freudenthal triple system defined over the Jordan algebra C⊕C⊕C. We also compute the corresponding stochastic local operations and classical communication orbits.
Issue Date: 1-Sep-2009
Date of Acceptance: 1-Sep-2009
URI: http://hdl.handle.net/10044/1/68479
DOI: https://dx.doi.org/10.1103/PhysRevA.80.032326
ISSN: 1050-2947
Publisher: American Physical Society
Journal / Book Title: Physical Review A
Volume: 80
Issue: 3
Copyright Statement: © 2009 American Physical Society.
Sponsor/Funder: Science and Technology Facilities Council (STFC)
Funder's Grant Number: ST/G000743/1
Keywords: Science & Technology
Physical Sciences
Optics
Physics, Atomic, Molecular & Chemical
Physics
MAXWELL-EINSTEIN SUPERGRAVITY
JORDAN ALGEBRAS
BLACK-HOLES
MULTIPARTICLE ENTANGLEMENT
SCHMIDT DECOMPOSITION
EXCEPTIONAL GROUPS
ATTRACTORS
STATES
ORBITS
OCTONIONS
quant-ph
hep-th
math.RA
Publication Status: Published
Article Number: 032326
Online Publication Date: 2009-09-22
Appears in Collections:Physics
Faculty of Natural Sciences



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Creative Commons