IRUS Total

Numerical study of turbulent flow in eccentric annular pipe

File Description SizeFormat 
Wang-H-2011-PhD-Thesis.pdf6.47 MBAdobe PDFView/Open
Title: Numerical study of turbulent flow in eccentric annular pipe
Authors: Wang, Hengliang
Item Type: Thesis or dissertation
Abstract: An eccentric annular duct is a prototype element in many applications, for example in close-packed tubular heat exchangers and coolant channels of nuclear reactors. From a fundamental viewpoint, turbulent flow in eccentric annular ducts is an ideal model for investigating inhomogeneous turbulence. It is also a convenient model to study the laminar and turbulent interface and may serve as a test case for turbulence modelling of flows with partly turbulent regimes. Based on the approach of direct numerical simulation, numerical investigations of turbulent flow in eccentric annular pipes are carried out in this thesis. We first investigated the case of fully turbulent flow. A detailed statistical analysis of turbulent flow and heat transfer was performed. Simulation results, such as friction factors, mean velocity profiles and the secondary-motion pattern, are in overall qualitative and quantitative agreement with the existing experimental data. The components of the Reynolds stress tensor, temperature-velocity correlations and some others were obtained for the first time for such kind of a flow. The study of the partly turbulent flow case was then carried out. Three approaches for detecting interfaces between laminar and turbulent regimes in partly turbulent flow in rotating eccentric pipes were compared and discussed. Positions of laminar-turbulent and turbulent-laminar interfaces obtained from profiles of perturbation enstrophy are the same as those obtained from production terms of enstrophy. Using patterns of streaks defined by wall shear stresses to determine the locations of interfaces showed similar results. The growth rate of a small disturbance in partly turbulent flow case was also analyzed. Small perturbations were introduced into the initial flow field in two different ways. Both cases show that the global growth rate of the small disturbance normalized by the global viscous time scale is constant. This constant value is in a good agreement with that obtained in channel flows and tube flows. A new approach was proposed to distinguish the interface between laminar and turbulent flow by introducing the global and local disturbance growth rate.
Issue Date: 2011
Date Awarded: Feb-2011
URI: http://hdl.handle.net/10044/1/6349
DOI: https://doi.org/10.25560/6349
Supervisor: Chernyshenko, Sergei
Sponsor/Funder: EPSRC
Author: Wang, Hengliang
Department: Aeronautics
Publisher: Imperial College London
Qualification Level: Doctoral
Qualification Name: Doctor of Philosophy (PhD)
Appears in Collections:Aeronautics PhD theses

Unless otherwise indicated, items in Spiral are protected by copyright and are licensed under a Creative Commons Attribution NonCommercial NoDerivatives License.

Creative Commons