On the statistics of proto-cluster candidates detected in the Planck all-sky survey

File Description SizeFormat 
stx1367.pdfPublished version892.43 kBAdobe PDFView/Open
Title: On the statistics of proto-cluster candidates detected in the Planck all-sky survey
Authors: Negrello, M
Gonzalez-Nuevo, J
De Zotti, G
Bonato, M
Cai, ZY
Clements, D
Danese, L
Dole, H
Greenslade, J
Lapi, A
Montier, L
Item Type: Journal Article
Abstract: Observational investigations of the abundance of massive precursors of local galaxy clusters ('proto-clusters') allow us to test the growth of density perturbations, to constrain cosmological parameters that control it, to test the theory of non-linear collapse and how the galaxy formation takes place in dense environments. The Planck collaboration has recently published a catalogue of ≳2000 cold extragalactic sub-millimeter sources, i.e. with colours indicative of z ≳ 2, almost all of which appear to be overdensities of star-forming galaxies. They are thus considered as proto-cluster candidates. Their number densities (or their flux densities) are far in excess of expectations from the standard scenario for the evolution of large-scale structure. Simulations based on a physically motivated galaxy evolution model show that essentially all cold peaks brighter than S545GHz= 500 mJy found in Planck maps after having removed the Galactic dust emission can be interpreted as positive Poisson fluctuations of the number of high-z dusty proto-clusters within the same Planck beam, rather then being individual clumps of physically bound galaxies. This conclusion does not change if an empirical fit to the luminosity function of dusty galaxies is used instead of the physical model. The simulations accurately reproduce the statistic of the Planck detections and yield distributions of sizes and ellipticities in qualitative agreement with observations. The redshift distribution of the brightest proto-clusters contributing to the cold peaks has a broad maximum at 1.5 ≤ z ≤ 3. Therefore follow-up of Planck proto-cluster candidates will provide key information on the high-z evolution of large scale structure.
Issue Date: 11-Sep-2017
Date of Acceptance: 31-May-2017
ISSN: 0035-8711
Publisher: Oxford University Press
Start Page: 2253
End Page: 2261
Journal / Book Title: Monthly Notices of the Royal Astronomical Society
Volume: 470
Issue: 2
Copyright Statement: © 2017 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.
Keywords: 0201 Astronomical And Space Sciences
Astronomy & Astrophysics
Publication Status: Published
Online Publication Date: 2017-06-03
Appears in Collections:Physics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Creative Commonsx