Understanding the origin of meteoritic magnetism: implications for protoplanetary disk accretion

File Description SizeFormat 
Shah-J-2018-PhD-Thesis.pdfPhD Thesis31.82 MBAdobe PDFView/Open
Title: Understanding the origin of meteoritic magnetism: implications for protoplanetary disk accretion
Authors: Shah, Jay
Item Type: Thesis or dissertation
Abstract: Chondritic meteorites largely formed 4.6 billion years ago, and can range from being metamorphosed as a result of processing on their asteroid parent bodies to entirely unaltered since their formation in the protoplanetary disk. The magnetic grains within these meteorites can potentially record and retain the magnetic conditions on the parent body and the conditions in the protoplanetary disk during the formation of our planetary system. However, the complex history of these meteorites can make their magnetic records difficult to interpret, and their age prompts the question of whether a magnetic remanence can be retained for so long. In this thesis, to help identify the origin of the magnetic remanence, a new method for the palaeomagnetic conglomerate test that uses micro-CT scans to accurately mutually orient chondrules from chondrites was developed. When applied to Vigarano (CV3) and Bjurböle (L/LL4), a more in-depth understanding of parent body processing was achieved that provides evidence for magnetic dynamo activity on their parent bodies. To understand the magnetic record of CK chondrites, a palaeomagnetic analysis of Karoonda (CK4) was conducted, and found no evidence of a significant magnetic field recording, supporting the solar radiative heating model for the CV-CK chondrites. To determine whether magnetic remanence can be retained from the early Solar System, the high thermal stability of single and multi-vortex kamacite grains from Bishunpur (LL3.1) was demonstrated by performing in-situ temperature-dependent nanometric magnetic measurements using electron holography and numerical micromagnetic energy barrier calculations. This study found that the majority of kamacite grains in dusty olivines are capable of retaining magnetic field information from the early Solar System, a key finding in our quest to understand the formation of our Solar System.
Content Version: Open Access
Issue Date: Aug-2017
Date Awarded: Jan-2018
URI: http://hdl.handle.net/10044/1/56625
Supervisor: Muxworthy, Adrian R.
Genge, Matthew J.
Russell, Sara S.
Sponsor/Funder: Science and Technology Facilities Council (Great Britain)
Funder's Grant Number: ST/N000803/1
Department: Earth Science & Engineering
Publisher: Imperial College London
Qualification Level: Doctoral
Qualification Name: Doctor of Philosophy (PhD)
Appears in Collections:Earth Science and Engineering PhD theses

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Creative Commonsx