Altmetric

Optimising tidal range power plant operation

File Description SizeFormat 
1-s2.0-S0306261917317671-main.pdfPublished version1.91 MBAdobe PDFView/Open
Title: Optimising tidal range power plant operation
Authors: Angeloudis, A
Kramer, S
Avdis, A
Piggott, M
Item Type: Journal Article
Abstract: Tidal range power plants represent an attractive approach for the large-scale generation of electricity from the marine environment. Even though the tides and by extension the available energy resource are predictable, they are also variable in time. This variability poses a challenge regarding the optimal transient control of power plants. We consider simulation methods which include the main modes of operation of tidal power plants, along with algorithms to regulate the timing of these. This paper proposes a framework where simplified power plant operation models are coupled with gradient-based optimisation techniques to determine the optimal control strategy over multiple tidal cycles. The optimisation results inform coastal ocean simulations that include tidal power plants to gauge whether the benefits of an adaptive operation are preserved once their hydrodynamic impacts are also taken into consideration. The combined operation of two prospective tidal lagoon projects within the Bristol Channel and the Severn Estuary is used as an example to demonstrate the potential benefits of an energy maximisation optimisation approach. For the case studies considered, the inclusion of pumping and an adaptive operation is shown to deliver an overall increase in energy output of 20–40% compared to a conventional two-way uniform operation. The findings also demonstrate that smaller schemes stand to gain more from operational optimisation compared to designs of a larger scale.
Issue Date: 22-Dec-2017
Date of Acceptance: 9-Dec-2017
URI: http://hdl.handle.net/10044/1/54903
DOI: https://dx.doi.org/10.1016/j.apenergy.2017.12.052
ISSN: 0306-2619
Publisher: Elsevier
Start Page: 680
End Page: 690
Journal / Book Title: Applied Energy
Volume: 212
Copyright Statement: © 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
Sponsor/Funder: Natural Environment Research Council (NERC)
Funder's Grant Number: NE/R013209/1
Keywords: 09 Engineering
14 Economics
Energy
Publication Status: Published
Appears in Collections:Faculty of Engineering
Earth Science and Engineering
Centre for Environmental Policy
Faculty of Natural Sciences



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Creative Commons