An $L^2$ theory for differential forms on path spaces. I

Title: An $L^2$ theory for differential forms on path spaces. I
Authors: Elworthy, KD
Li, X-M
Item Type: Journal Article
Issue Date: 1-Jan-2008
Date of Acceptance: 1-Oct-2007
URI: http://hdl.handle.net/10044/1/54123
DOI: https://dx.doi.org/10.1016/j.jfa.2007.09.016
ISSN: 0022-1236
Start Page: 196
End Page: 245
Journal / Book Title: Journal of Functional Analysis
Volume: 254
Copyright Statement: © 2007 Elsevier Inc. All rights reserved. This article is under Elsevier's Open Archive policy.
Keywords: Science & Technology
Physical Sciences
Mathematics
MATHEMATICS
path space
L-2 cohomology
Hodge decomposition
Malliavin calculus
Banach manifolds
Bismut tangent spaces
Markovian connection
it(o)over-cap map
infinite dimensional
curvature
exterior products
differential forms
COMPACT RIEMANNIAN MANIFOLD
HODGE-KODAIRA DECOMPOSITION
WIENER SPACE
LOOP SPACE
INFINITE DIMENSIONS
TANGENT PROCESSES
SMOOTH FUNCTIONS
VECTOR-FIELDS
DIVERGENCE
FORMULAS
math.PR
0101 Pure Mathematics
General Mathematics
Notes: mrclass: 58J65 (60H07) mrnumber: 2375069 mrreviewer: Maria Gordina
Open Access location: http://www.sciencedirect.com/science/article/pii/S0022123607003643?via=ihub
Article Number: 1
Appears in Collections:Pure Mathematics
Mathematics
Faculty of Natural Sciences



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Creative Commons