Testing and Analysis of Composite Cold-Formed Steel and Wood-Based Flooring Systems

Title: Testing and Analysis of Composite Cold-Formed Steel and Wood-Based Flooring Systems
Authors: Kyvelou, P
Gardner, L
Nethercot, DA
Item Type: Journal Article
Abstract: An experimental study was conducted into the degree of composite action that can arise between cold-formed steel joists and wood-based flooring panels. A series of material, push-out and 4-point bending tests were carried out, and alternative means of shear connection, featuring fasteners and adhesives, were investigated. It was found that the spacing of the fasteners and the application of structural adhesive at the beam-board interface had a significant influence on the attained degree of shear connection and, hence, the moment capacity and flexural stiffness of the system. The highest degree of shear connection (up to approximately 60%) was obtained using the structural adhesive, bringing corresponding increases in capacity and stiffness of approximately 100 and 40%, respectively, over the bare steel. Smaller, but still very significant, increases in capacity and stiffness were achieved through the use of screws alone. On the basis of the results of the push-out tests, a load-slip relationship for screw fasteners in wood-based floorboards was proposed; this was designed for use in future analytical and numerical models. The findings of this research demonstrate, for the first time, the benefits that can be derived through the practical exploitation of composite action in cold-formed steel flooring systems in terms of enhanced structural performance and efficiency of material use.
Issue Date: 18-Aug-2017
Date of Acceptance: 11-May-2017
URI: http://hdl.handle.net/10044/1/54046
DOI: https://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0001885
ISSN: 0733-9445
Publisher: American Society of Civil Engineers
Journal / Book Title: Journal of Structural Engineering
Volume: 143
Issue: 11
Copyright Statement: © ASCE
Keywords: 0905 Civil Engineering
Civil Engineering
Publication Status: Published
Article Number: 04017146
Appears in Collections:Faculty of Engineering
Civil and Environmental Engineering

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Creative Commons