Effects of exposure to water Disinfection By-Products in a swimming pool: A metabolome-wide association study

File Description SizeFormat 
1-s2.0-S016041201731468X-main.pdfPublishsed version2.76 MBAdobe PDFView/Open
Title: Effects of exposure to water Disinfection By-Products in a swimming pool: A metabolome-wide association study
Authors: Chadeau, M
Van Veldhoven
Keski-Rahkonen, P
Barupal, DK
Villanueva, CM
Font-Ribera, L
Scalbert, A
Bodinier, B
Grimalt, JO
Zwiener, C
Vlaanderen, J
Portengen, L
Vermeulen, RCH
Vineis, P
Kogevinas, M
Item Type: Journal Article
Abstract: Background Exposure to disinfection by-products (DBPs) in drinking water and chlorinated swimming pools are associated with adverse health outcomes, but biological mechanisms remain poorly understood. Objectives Evaluate short-term changes in metabolic profiles in response to DBP exposure while swimming in a chlorinated pool. Materials and methods The PISCINA-II study (EXPOsOMICS project) includes 60 volunteers swimming 40 min in an indoor pool. Levels of most common DBPs were measured in water and in exhaled breath before and after swimming. Blood samples, collected before and 2 h after swimming, were used for metabolic profiling by liquid-chromatography coupled to high-resolution mass-spectrometry. Metabolome-wide association between DBP exposures and each metabolic feature was evaluated using multivariate normal (MVN) models. Sensitivity analyses and compound annotation were conducted. Results Exposure levels of all DBPs in exhaled breath were higher after the experiment. A total of 6,471 metabolic features were detected and 293 features were associated with at least one DBP in exhaled breath following Bonferroni correction. A total of 333 metabolic features were associated to at least one DBP measured in water or urine. Uptake of DBPs and physical activity were strongly correlated and mutual adjustment reduced the number of statistically significant associations. From the 293 features, 20 could be identified corresponding to 13 metabolites including compounds in the tryptophan metabolism pathway. Conclusion Our study identified numerous molecular changes following a swim in a chlorinated pool. While we could not explicitly evaluate which experiment-related factors induced these associations, molecular characterization highlighted metabolic features associated with exposure changes during swimming.
Issue Date: 24-Nov-2017
Date of Acceptance: 20-Nov-2017
ISSN: 0160-4120
Publisher: Elsevier
Start Page: 60
End Page: 70
Journal / Book Title: Environment International
Volume: 111
Copyright Statement: © 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (
Sponsor/Funder: Commission of the European Communities
Cancer Research UK
Funder's Grant Number: 308610
‘Mechanomics’ PRC project grant 22184
Keywords: Blood
Disinfection by-products
MD Multidisciplinary
Environmental Sciences
Publication Status: Published
Appears in Collections:Faculty of Medicine
Epidemiology, Public Health and Primary Care

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Creative Commons