Solution of a class of reaction-diffusion systems via logarithmic Sobolev inequality

File Description SizeFormat 
HAL-FouGenZeg.pdfSupporting information618.67 kBAdobe PDFView/Open
AMBP_2017__24_1_1_0.pdfPublished version963.7 kBAdobe PDFView/Open
Title: Solution of a class of reaction-diffusion systems via logarithmic Sobolev inequality
Authors: Pierre Fougers
Ivan Gentil
Zegarlinski, B
Item Type: Journal Article
Abstract: We study global existence, uniqueness and positivity of weak solutions of a class of reaction-diffusion systems coming from chemical reactions. The principal result is based only on a logarithmic Sobolev inequality and the exponential integrability of the initial data. In particular we develop a strategy independent of dimensions in an unbounded domain.
Issue Date: 1-Apr-2017
Date of Acceptance: 1-Apr-2017
URI: http://hdl.handle.net/10044/1/53010
DOI: https://dx.doi.org/10.5802/ambp.363
Publisher: cedram
Start Page: 1
End Page: 53
Journal / Book Title: Annales Mathématiques Blaise Pascal
Volume: 24
Copyright Statement: © Annales mathématiques Blaise Pascal, 2017, Certains droits réservés. Cet article est mis à disposition selon les termes de la licence Creative Commons attribution – pas de modification 3.0 France. http://creativecommons.org/licenses/by-nd/3.0/fr/
Sponsor/Funder: The Royal Society
Funder's Grant Number: WM090064
Publication Status: Published
Article Number: 1
Appears in Collections:Pure Mathematics
Mathematics
Faculty of Natural Sciences



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Creative Commons