Organic transistors and complementary circuits

File Description SizeFormat 
Higgins-SG-2015-PhD-Thesis.pdfThesis49.62 MBAdobe PDFDownload
Title: Organic transistors and complementary circuits
Author(s): Higgins, Stuart Gregory
Item Type: Thesis or dissertation
Abstract: This thesis describes the development of a process flow to allow the fabrication of organic field effect transistors with self-aligned source and drain electrodes, and sub-micron channel lengths on flexible plastic substrates. This was achieved using a combination of bilayer nanoimprint lithography, gravure printed or photolithographically patterned dielectric, and bilayer self-aligned lithography. Effective channel lengths over an order of magnitude could be defined from 375-3800 nm. Electrode overlaps between gate-drain and gate-source of 100-200 nm are demonstrated, yielding very low channel-length normalised overlap capacitances of 0.1-0.6 fF per μm. The viability and behaviour of these architectures was investigated using zone-cast, gravure and inkjet printed semiconductors. State-of-the-art transition frequencies in the range 1-6 MHz were achieved at operating biases < 30 V. The molecular packing of a zone-cast small molecule p-type semiconductor (TIPS-pentacene) was observed to be influenced by the underlying architecture. Simple techniques were developed to quantify gravure printed film quality. Periodic modulation of printed films was observed to be a function of gravure cliché cell geometry and ink formulation. Both gravure and inkjet printed p- and n-type semiconductors (DPPT-TT and P(NDI2OD-T2)) were studied. Thin gravure printed dielectrics were observed to systematically increase effective mobilities, at the expense of an increase in leakage current. Complementary self-aligned inverters are presented, with a peak gain of 28 achieved for devices operating below 20 V, along with NAND and NOR logic gates operating up to 20 kHz. The viability of gravure printing an indacenodithiophene-benzothiadiazole (C16IDT-BT) on plastic is demonstrated yielding effective mobilities in the range 0.04-0.4 cm squared per V per s at V(DS) < 20 V, exceeding previous reports for the behaviour of this material in a bottom-gate, bottom-contact configuration. Keywords: plastic electronics; organic electronics; flexible; organic field effect transistor (OFET); complementary circuit; inverter; logic gate; printing; gravure; inkjet; zone-casting; photolithography; nano-imprint lithography (NIL); self-aligned; cliché; shim; image analysis; transition frequency; megahertz.
Content Version: Open Access
Publication Date: Oct-2014
Date Awarded: Mar-2015
URI: http://hdl.handle.net/10044/1/44835
Advisor: Campbell, Alasdair
Sponsor/Funder: Engineering and Physical Sciences Research Council
European Commission
Funder's Grant Number: EP/P505550/1
FP7/2007-2013, grant agreement no 247978, ‘Printable, Organic and Large-Area Realisation of Integrated Circuits’ (POLARIC)
Department: Physics
Publisher: Imperial College London
Qualification Level: Doctoral
Qualification Name: Doctor of Philosophy (PhD)
Appears in Collections:Physics PhD theses



Items in Spiral are protected by copyright, with all rights reserved, unless otherwise indicated.

Creative Commons