Identification of ABC Transporter Interaction of a Novel Cyanoquinoline Radiotracer and Implications for Tumour Imaging by Positron Emission Tomography

File Description SizeFormat 
journal.pone.0161427.PDFPublished version2.9 MBAdobe PDFView/Open
Title: Identification of ABC Transporter Interaction of a Novel Cyanoquinoline Radiotracer and Implications for Tumour Imaging by Positron Emission Tomography
Authors: Slade, RL
Pisaneschi, F
Nguyen, QD
Smith, G
Carroll, L
Beckley, A
Kaliszczak, MA
Aboagye, EO
Item Type: Journal Article
Abstract: BACKGROUND: The epidermal growth factor receptor (EGFR) is overexpressed in many cancers including lung, ovarian, breast, head and neck and brain. Mutation of this receptor has been shown to play a crucial role in the response of non-small cell lung carcinoma (NSCLC) to EGFR-targeted therapies. It is envisaged that imaging of EGFR using positron emission tomography (PET) could aid in selection of patients for treatment with novel inhibitors. We recognised multi-drug resistant phenotype as a threat to development of successful imaging agents. In this report, we describe discovery of a novel cyanoquinoline radiotracer that lacks ABC transporter activity. METHODS: Cellular retention of the prototype cyanoquinoline [18F](2E)-N-{4-[(3-chloro-4-fluorophenyl)amino]-3-cyano-7-ethoxyquinolin-6-yl}-4-({[1-(2-fluoroethyl)-1H-1,2,3-triazol-4-yl]methyl}amino)-but-2-enamide ([18F]FED6) and [18F](2E)-N-{4-[(3-chloro-4-fluorophenyl)amino]-3-cyano-7-ethoxyquinolin-6-yl}-4-[({1-[(2R,5S)-3-fluoro-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]-1H-1,2,3-triazol-4-yl}methyl)amino]but-2-enamide ([18F]FED20) were evaluated to establish potential for imaging specificity. The substrate specificity of a number of cyanoquinolines towards ABC transporters was investigated in cell lines proficient or deficient in ABCB1 or ABCG2. RESULTS: FED6 demonstrated substrate specificity for both ABCG2 and ABCB1, a property that was not observed for all cyanoquinolines tested, suggesting scope for designing novel probes. ABC transporter activity was confirmed by attenuating the activity of transporters with drug inhibitors or siRNA. We synthesized a more hydrophilic compound [18F]FED20 to overcome ABC transporter activity. FED20 lacked substrate specificity for both ABCB1 and ABCG2, and maintained a strong affinity for EGFR. Furthermore, FED20 showed higher inhibitory affinity for active mutant EGFR versus wild-type or resistant mutant EGFR; this property resulted in higher [18F]FED20 cellular retention in active mutant EGFR expressing NSCLC. CONCLUSION: [18F]FED20 binds EGFR but is devoid of ABC transporter activity, thus, has potential for EGFR imaging.
Issue Date: 23-Aug-2016
Date of Acceptance: 5-Aug-2016
ISSN: 1932-6203
Publisher: Public Library of Science
Journal / Book Title: PLOS One
Volume: 11
Issue: 8
Copyright Statement: © 2016 Slade et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Sponsor/Funder: Cancer Research UK
Funder's Grant Number: C2536/A16584
Keywords: General Science & Technology
MD Multidisciplinary
Publication Status: Published
Article Number: e0161427
Appears in Collections:Division of Surgery
Division of Cancer
Faculty of Medicine

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Creative Commonsx