Altmetric

K-theoretic and categorical properties of toric Deligne-Mumford stacks

File Description SizeFormat 
Properties_toricstacks_PAMQ_finalversion.pdfAccepted version393.87 kBUnknownView/Open
Title: K-theoretic and categorical properties of toric Deligne-Mumford stacks
Authors: Coates, T
Iritani, H
Jiang, Y
Segal, EP
Item Type: Journal Article
Abstract: We prove the following results for toric Deligne–Mumford stacks, under minimal compactness hypotheses: the Localization Theorem in equivariant KK-theory; the equivariant Hirzebruch–Riemann–Roch theorem; the Fourier–Mukai transformation associated to a crepant toric wall-crossing gives an equivariant derived equivalence.
Issue Date: 31-Dec-2015
Date of Acceptance: 12-Oct-2015
URI: http://hdl.handle.net/10044/1/31194
DOI: http://dx.doi.org/10.4310/PAMQ.2015.v11.n2.a3
ISSN: 1558-8599
Publisher: International Press of Boston
Start Page: 239
End Page: 266
Journal / Book Title: Pure and Applied and Mathematics Quarterly
Volume: 11
Issue: 2
Copyright Statement: © 2015 International Press of Boston, Inc. All rights reserved.
Sponsor/Funder: The Royal Society
Commission of the European Communities
The Royal Society
Funder's Grant Number: 516002.K5822/kk
240123
UF090056
Keywords: Science & Technology
Physical Sciences
Mathematics, Applied
Mathematics
Toric Deligne-Mumford stacks
orbifolds
K-theory
localization
derived category of coherent sheaves
Fourier-Mukai transformation
flop
K-equivalence
equivariant
variation of GIT quotient
RIEMANN-ROCH THEOREM
GROUP SCHEME ACTIONS
FORMULA
INDEX
RING
General Mathematics
Pure Mathematics
Applied Mathematics
Publication Status: Published
Appears in Collections:Pure Mathematics
Mathematics
Faculty of Natural Sciences



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Creative Commonsx