A hybrid variational principle for the Keller-Segel system in R-2

File Description SizeFormat 
KSPP2_150126.pdfAccepted version389.85 kBAdobe PDFDownload
Title: A hybrid variational principle for the Keller-Segel system in R-2
Author(s): Blanchet, A
Carrillo, JA
Kinderlehrer, D
Kowalczyk, M
Laurencot, P
Lisini, S
Item Type: Journal Article
Publication Date: 1-Nov-2015
URI: http://hdl.handle.net/10044/1/28318
DOI: http://dx.doi.org/10.1051/m2an/2015021
ISSN: 0764-583X
Publisher: EDP Sciences S A
Start Page: 1553
End Page: 1576
Journal / Book Title: ESAIM-Mathmetaical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse numerique
Volume: 49
Issue: 6
Copyright Statement: © EDP Sciences, SMAI 2015
Keywords: Science & Technology
Physical Sciences
Mathematics, Applied
Mathematics
Chemotaxis
Keller-Segel model
minimizing scheme
Kantorovich-Rubinstein-Wasserstein distance
Gradient flow
Chemotaxis model
Aggregation
Convergence
Publication Status: Published
Appears in Collections:Applied Mathematics and Mathematical Physics
Faculty of Natural Sciences



Items in Spiral are protected by copyright, with all rights reserved, unless otherwise indicated.

Creative Commons