WikiSensing: A collaborative sensor management system with trust assessment for big data

File Description SizeFormat 
Silva-DS-2014-PhD-Thesis.pdfThesis4.79 MBAdobe PDFView/Open
Title: WikiSensing: A collaborative sensor management system with trust assessment for big data
Authors: Silva, Dilshan
Item Type: Thesis or dissertation
Abstract: Big Data for sensor networks and collaborative systems have become ever more important in the digital economy and is a focal point of technological interest while posing many noteworthy challenges. This research addresses some of the challenges in the areas of online collaboration and Big Data for sensor networks. This research demonstrates WikiSensing (www.wikisensing.org), a high performance, heterogeneous, collaborative data cloud for managing and analysis of real-time sensor data. The system is based on the Big Data architecture with comprehensive functionalities for smart city sensor data integration and analysis. The system is fully functional and served as the main data management platform for the 2013 UPLondon Hackathon. This system is unique as it introduced a novel methodology that incorporates online collaboration with sensor data. While there are other platforms available for sensor data management WikiSensing is one of the first platforms that enable online collaboration by providing services to store and query dynamic sensor information without any restriction of the type and format of sensor data. An emerging challenge of collaborative sensor systems is modelling and assessing the trustworthiness of sensors and their measurements. This is with direct relevance to WikiSensing as an open collaborative sensor data management system. Thus if the trustworthiness of the sensor data can be accurately assessed, WikiSensing will be more than just a collaborative data management system for sensor but also a platform that provides information to the users on the validity of its data. Hence this research presents a new generic framework for capturing and analysing sensor trustworthiness considering the different forms of evidence available to the user. It uses an extensible set of metrics that can represent such evidence and use Bayesian analysis to develop a trust classification model. Based on this work there are several publications and others are at the final stage of submission. Further improvement is also planned to make the platform serve as a cloud service accessible to any online user to build up a community of collaborators for smart city research.
Content Version: Open Access
Issue Date: Mar-2014
Date Awarded: Aug-2014
URI: http://hdl.handle.net/10044/1/24792
Supervisor: Yike, Guo
Sponsor/Funder: Engineering and Physical Sciences Research Council
Department: Computing
Publisher: Imperial College London
Qualification Level: Doctoral
Qualification Name: Doctor of Philosophy (PhD)
Appears in Collections:Computing PhD theses



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Creative Commonsx