96
IRUS Total
Downloads
  Altmetric

A mirror theorem for toric stacks

File Description SizeFormat 
S0010437X15007356a.pdfPublished version735.79 kBAdobe PDFView/Open
Title: A mirror theorem for toric stacks
Authors: Coates, T
Corti, A
Iritani, H
Tseng, HH
Item Type: Journal Article
Abstract: © The Authors 2015. We prove a Givental-style mirror theorem for toric Deligne-Mumford stacks χ. This determines the genus-zero Gromov-Witten invariants of χ in terms of an explicit hypergeometric function, called the I-function, that takes values in the Chen-Ruan orbifold cohomology of χ.
Issue Date: 1-Oct-2015
Date of Acceptance: 2-Oct-2014
URI: http://hdl.handle.net/10044/1/24475
DOI: 10.1112/S0010437X15007356
ISSN: 0010-437X
Publisher: Cambridge University Press (CUP)
Start Page: 1878
End Page: 1912
Journal / Book Title: Compositio Mathematica
Volume: 151
Issue: 10
Copyright Statement: This journal is © Foundation Compositio Mathematica 2015. This article is distributed with Open Access under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided that the original work is properly cited.
Sponsor/Funder: Commission of the European Communities
The Royal Society
The Royal Society
The Leverhulme Trust
Engineering & Physical Science Research Council (EPSRC)
Engineering & Physical Science Research Council (EPSRC)
Engineering & Physical Science Research Council (EPSRC)
Funder's Grant Number: 240123
UF090056
516002.K5822/kk
MATH_P36759
EP/E022162/1
EP/I008128/1
EP/G06170X/1
Keywords: Science & Technology
Physical Sciences
Mathematics
Gromov-Witten theory
toric Deligne-Mumford stacks
orbifolds
quantum cohomology
mirror symmetry
Givental's symplectic formalism
hypergeometric functions
GROMOV-WITTEN THEORY
QUANTUM RIEMANN-ROCH
ORBIFOLD CHOW RING
GW THEORY
D-MODULES
COHOMOLOGY
RESOLUTIONS
LEFSCHETZ
math.AG
math.AG
14N35 (Primary) 14A20, 53D45, 83E30 (Secondary)
0101 Pure Mathematics
General Mathematics
Publication Status: Published
Online Publication Date: 2015-06-01
Appears in Collections:Pure Mathematics
Mathematics
Faculty of Natural Sciences



This item is licensed under a Creative Commons License Creative Commons