STUDIES OF IONIC MECHANISMS IN MODEL CELL LINES OF PROSTATE CANCER

Nahit Rizaner

Imperial College London
Division of Cell and Molecular Biology

Ph.D.
For my family.
This dissertation is the result of my own work unless otherwise acknowledged in the text or by references.

Signed: Nahit RIZANER

Date: November 8, 2010
Acknowledgements

This PhD was financially supported by Pro Cancer Research Fund (PCRF).

First of all, I would like to thank my supervisor, Prof Mustafa Djamgoz for his great support and advice. This PhD would not have been possible without him.

I would like to thank my advisors Dr H. Keun and Dr R.O.J. Weinzierl for their help and advice; Dr Scott Fraser, Dr James Diss, Dr. Dongmin Shao and Rustem Onkal for their assistance and discussion; Dr Kenji Okuse and Alessandro Pristera for advice on Ca^{2+} imaging.

I would also like to thank each member of the Neuroscience Solution to Cancer Research Group for their friendship.

Finally I would like to thank to my family for their endless support.
Abstract

Metastasis is the major problem in clinical management of cancer, including prostate cancer (PCa). Biochemical conditions in tumour microenvironment (especially O$_2$ and Ca$^{2+}$ levels) are important for modulating metastatic cell behaviours (MCBs). Ionic mechanisms, in particular voltage-gated sodium channel (VGSC) and intracellular Ca$^{2+}$ activities, were shown previously to be involved in MCBs in PCa. This PhD tested the hypotheses (1) that MCBs would be sensitive to hypoxia and be inhibited by VGSC blockers including those selective for the persistent current and (2) that VGSC activity would control intracellular Ca$^{2+}$ signalling. Experiments were carried on a variety of model cell lines in a comparative approach: strongly metastatic Mat-LyLu and weakly metastatic AT-2 rat PCa cells, and analogous human PCa cell lines (PC-3M and LnCaP, respectively). Experiments on Mat-LyLu cells showed that hypoxia (2 % O$_2$, 24 h) increased mRNA expression of Nav1.7, the predominant VGSC α-subunit expressed in PCa; however, both plasma membrane and intracellular VGSC protein levels were reduced. There was no change in cellular proliferation, Matrigel invasion or lateral motility, whilst transverse migration increased significantly. Treatment (24 h) with the VGSC blockers ranolazine, riluzole, lidocaine and procaine (micromolar concentrations) decreased Nav1.7 mRNA and total VGSC protein levels, and suppressed Matrigel invasion in both normoxia (~21 % O$_2$) and hypoxia. PC-3M (but not LNCaP or Mat-LyLu) cells showed spontaneous, transient elevations of intracellular Ca$^{2+}$ (“Ca$^{2+}$ oscillations”). Ionic substitution and pharmacological experiments suggested that Ca$^{2+}$ influx and release from intracellular stores both contributed to the oscillations. Importantly, acute treatment with tetrodotoxin and ranolazine decreased the oscillation amplitude and frequency. Thus, both hypotheses were confirmed, i.e. (1) that hypoxia increases
PCa (Mat-LyLu) cell migration and VGSC expression and (2) that intracellular Ca$^{2+}$ oscillations are downstream to VGSC activity. Overall, the thesis concludes that VGSC blockers could serve clinically as anti-metastatic agents.
Table of Contents

Acknowledgements 4
Abstract 5
Table of Contents 7
List of Figures 15
List of Tables 22
List of Videos 23
Abbreviations 25

Chapter 1 GENERAL INTRODUCTION 30
1.1 Voltage-gated sodium channels 31
1.1.1 Basic structure and molecular diversity 31
1.1.1.1 VGSCα 32
1.1.1.2 VGSCβ 41
1.2. Regulation of VGSCs 44
1.2.1 Transcription 44
1.2.2 Alternative splicing 46
1.2.3 Post-translational modification: Glycosylation 52
1.2.4 Protein synthesis and trafficking 53
1.2.5 Protein degradation 56
1.2.6 Phosphorylation 57
1.3. Metastatic disease 58
1.3.1 The case of prostate cancer 60
1.3.2 The metastatic cascade 63
1.3.3 VGSC expression in metastatic disease 68
1.3.3.1 In vitro 68
1.3.3.2 In vivo 71
1.3.4 Involvement of VGSCs in metastatic disease 71
1.3.5 Other ion channels expressed in prostate and breast cancers 77
1.3.6 Possible downstream mechanisms involved in VGSC activity-dependent promotion of MCBs 83
1.4 Aims and scope of the present study 85

Chapter 2 MATERIALS AND METHODS 87

2.1 Cell lines and culture conditions. 88
2.1.1 Dunning rat PCa cell lines 89
2.1.2 Human PCa cell lines 89
2.2 Pharmacology 90
2.2.1 Pharmacological agents 90
2.2.2 Toxicity assay 90
2.3 Polymerase chain reaction (PCR) 92
2.3.1 RNA extraction 92
2.3.2 cDNA synthesis 93
2.3.3 Real-time PCR 93
2.3.4 Agarose gel electrophoresis 95
2.4 Western blotting 99
2.4.1 Extraction of total protein 99
2.4.2 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting 99
2.4.3 Densitometry 101
2.5 Immunocytochemistry 105
2.5.1 Confocal microscopy 106
2.6 Morphological analysis
2.7 Measurement of cell number - MTT assay
2.8 Lateral motility (wound-heal) assay
2.9 Transwell migration assay
2.1 Matrigel invasion assay
2.11 Intracellular calcium imaging
2.12 Data analyses

Chapter 3 EFFECTS OF CHRONIC HYPOXIA ON VOLTAGE-GATED Na⁺ CHANNEL EXPRESSION AND METASTATIC CELL BEHAVIOURS OF DUNNING PROSTATE CANCER

3.1 Introduction
3.1.1 Aims and scope of the present study
3.2 Results
3.2.1 Some initial observations: Effects of chronic hypoxia on cell morphology
3.2.2 Effects of chronic hypoxia
3.2.2.1 Cell viability
3.2.2.2 Cellular proliferation
3.2.2.3 Nav1.7 mRNA expression
3.2.2.4 VGSCβ subunit mRNA expression
3.2.2.4.1 Normoxia
3.2.2.4.2 Hypoxia
3.2.2.5 Expression of VGSCα protein
3.2.2.5.1 Control experiments
3.2.2.5.2 Plasma membrane VGSCα protein level
3.2.2.5.3 Intracellular VGSCα protein level
3.2.2.5.4 Subcellular distribution

3.2.2.6 VGSCβ1 protein expression

3.2.2.6.1 Plasma membrane VGSCβ1 protein level

3.2.2.6.2 Intracellular VGSCβ1 protein level

3.2.2.6.3 Subcellular distribution

3.2.2.7 Studies on metastatic cell behaviours

3.2.2.7.1 Lateral motility

3.2.2.7.2 Transwell migration

3.2.2.7.3 Matrigel invasion

3.3 Discussion

3.3.1 Effect of hypoxia on morphological development

3.3.2 Effect of hypoxia on proliferation

3.3.3 Regulation of VGSCα subunit expression by hypoxia

3.3.3.1 Nav1.7 mRNA expression

3.3.3.2 VGSCα protein expression

3.3.3.3 Relative subcellular distribution of VGSC protein

3.3.4 VGSCβ subunit expression in Mat-LyLu and AT2 cells

3.3.5 Regulation of VGSCβ expression by hypoxia

3.3.5.1 VGSCβ mRNA expression

3.3.5.2 VGSCβ1 protein expression

3.3.5.3 Relative subcellular distribution of VGSCβ1 protein

3.3.6 Hypoxic regulation of metastatic activity of Mat-LyLu cells and possible involvement of VGSC activity

3.3.6.1 Lateral motility

3.3.6.2 Transverse migration
3.3.6.3 Matrigel invasion

3.4 Concluding remarks

Chapter 4 EFFECTS OF PHARMACOLOGICAL BLOCKERS ON VOLTAGE-GATED Na+ CHANNEL EXPRESSION AND METASTATIC CELL BEHAVIOURS OF DUNNING PROSTATE CANCER

4.1 Introduction

4.1.1 Aims and scope of the present study

4.2 Results

4.2.1 Effects of ranolazine

4.2.1.1 Some initial observations: Cell morphology

4.2.1.2 Cell viability

4.2.1.3 Cellular proliferation

4.2.1.4 Nav1.7 mRNA expression

4.2.1.5 Subcellular VGSCα protein expression

4.2.1.5.1 Relative distribution

4.2.1.5.2 Plasma membrane VGSCα protein level

4.2.1.5.3 Internal VGSCα protein level

4.2.1.6 Matrigel invasion

4.2.1.7 Summary of the effects of ranolazine

4.2.2 Effects of riluzole

4.2.2.1 Some initial observations: Cell morphology

4.2.2.2 Cell viability

4.2.2.3 Cellular proliferation

4.2.2.4 Nav1.7 mRNA expression

4.2.2.5 Subcellular VGSCα protein expression
4.2.2.5.1 Relative distribution

4.2.2.5.2 Plasma membrane VGSCα protein level

4.2.2.5.3 Internal VGSCα protein level

4.2.2.6 Matrigel invasion

4.2.2.7 Summary of effects of riluzole

4.2.3 Effects of procaine

4.2.3.1 Some initial observations: Cell morphology

4.2.3.2 Cell viability

4.2.3.3 Cellular proliferation

4.2.3.4 Nav1.7 mRNA expression

4.2.3.5 Subcellular VGSCα protein expression

4.2.3.5.1 Relative distribution

4.2.3.5.2 Plasma membrane VGSCα protein level

4.2.3.5.3 Internal VGSCα protein level

4.2.3.6 Matrigel invasion

4.2.3.7 Summary of effects of procaine

4.2.4 Effects of lidocaine

4.2.4.1 Some initial observations: Cell morphology

4.2.4.2 Cell viability

4.2.4.3 Cellular proliferation

4.2.4.4 Nav1.7 mRNA expression

4.2.4.5 Subcellular VGSCα protein expression

4.2.4.5.1 Relative distribution

4.2.4.5.2 Plasma membrane VGSCα protein level

4.2.4.5.3 Internal VGSCα protein level

- 12 -
4.2.4.6 Matrigel invasion 252
4.3 Discussion 252
4.3.1 Effects of hypoxia alone 258
4.3.2 Observations on cell morphology 258
4.3.3 Effects on cell number 259
4.3.4 mRNA versus protein expression 260
4.3.5 Effects of ranolazine 261
4.3.6 Effects of riluzole 263
4.3.7 Effects of procaine 266
4.3.8 Effects of lidocaine 267
4.4 Concluding remarks 268

Chapter 5 STUDY OF INTRACELLULAR Ca\(^{2+}\) OSCILLATIONS IN HUMAN METASTATIC PROSTATE CANCER PC-3M CELLS 269
5.1 Introduction 270
5.2 Aims and scope of the present study 273
5.3 Results 273
5.3.1 Spontaneous oscillations of intracellular Ca\(^{2+}\) in PCa cells: Basic 274
5.3.2 Effects of VGSC blockers on Ca\(^{2+}\) oscillations in PC-3M cells 277
5.3.2.1 Effect of TTX 277
5.3.2.2 Effect of ranolazine 277
5.3.3 Effects of Na\(^+\)-free conditions on Ca\(^{2+}\) oscillations 282
5.3.3.1 Effect of Li\(^+\)-substituted Na\(^+\)-free solution 282
5.3.3.2 Effect of choline-substituted Na\(^+\)-free solution 285
5.3.4 Involvement of extracellular Ca\(^{2+}\) in spontaneous Ca\(^{2+}\) oscillations 285
5.3.5 Effects of thapsigargin and EGTA on spontaneous Ca\(^{2+}\) oscillations 289
5.3.6 Effects of caffeine and ryanodine on spontaneous Ca\(^{2+}\) oscillations 292

5.4 Discussion 293

5.4.1 Calcium signalling in PCa cells 297

5.4.2 A model of intracellular Ca\(^{2+}\) oscillations in PC-3M cells 301

5.4.3 Role of the various subcellular mechanisms in Ca\(^{2+}\) signalling / 304

5.4.3.1 VGSC and cation (Na\(^{+}\)) influx 304

5.4.3.2 Extracellular Ca\(^{2+}\) 305

5.4.3.3 Thapsigargin 305

5.4.3.4 Ryanodine receptor 306

5.4.4 Possible pathophysiological consequence of Ca\(^{2+}\) oscillations in PCa (PC-3M) cells and future perspectives 307

Chapter 6 GENERAL DISCUSSION 310

6.1 Summary of key findings 311

6.2 Hypoxic regulation of VGSC expression and MCB in PCa 313

6.3 Ca\(^{2+}\) signalling downstream to VGSC activity possibly leading to MCB regulation 315

6.4 Pharmacological VGSC inhibition and clinical implications 317

6.5 Future perspective 318

References 321

Publications 406

Appendice 408
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Structure of voltage-gated Na(^+) channels</td>
<td>33</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Functional states of voltage-gated sodium channels</td>
<td>39</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Mechanism of fast inactivation</td>
<td>40</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Levels of regulation of VGSC expression and activity</td>
<td>45</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>VGSC regulatory sites</td>
<td>49</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>The metastatic cascade</td>
<td>65</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Visual assessment of RNA quality by agarose gel electrophoresis.</td>
<td>94</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Real-time PCR amplification and melting curves (typical examples).</td>
<td>97</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Standard calibration (dilution) curves to validate PCR efficiency.</td>
<td>98</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Protein standard calibration curve.</td>
<td>100</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Protein dilutions and standard curves used to study Western blot band intensities.</td>
<td>104</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Micrographs of a Mat-LyLu cell illustrating morphologic parameters used.</td>
<td>108</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Examples of typical standard curves for MTT assay.</td>
<td>110</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Phase-contrast light-photomicrography of Mat-LyLu cells.</td>
<td>120</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Phase-contrast light-photomicrography of AT2 cells.</td>
<td>121</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Phase-contrast light-photomicrography of Mat-LyLu cells in high magnification.</td>
<td>123</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Studies effects of hypoxia on number of non-process bearing Mat-LyLu cells.</td>
<td>125</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Studies effects of hypoxia on number of monopolar Mat-LyLu cells.</td>
<td>126</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Studies effects of hypoxia on number of bipolar Mat-LyLu cells.</td>
<td>128</td>
</tr>
</tbody>
</table>
Figure 3.7 Studies effects of hypoxia on number of multipolar Mat-LyLu cells.

Figure 3.8 Bar diagram showing quantitative effect of hypoxia on cell body diameter.

Figure 3.9 Bar diagram showing quantitative effect of hypoxia on cell area.

Figure 3.10 Histograms showing quantitative effect of hypoxia on process thickness.

Figure 3.11 Histograms showing quantitative effect of hypoxia on process length.

Figure 3.12 Bar diagram showing treatments had no toxic effect.

Figure 3.13 Time dependent effect of hypoxia (2 % O₂) on Mat-LyLu (A) and AT-2 (B) cell number.

Figure 3.14 Effect of hypoxia (2 % O₂) on Mat-LyLu and AT-2 Nav1.7 mRNA expression.

Figure 3.15 Basal mRNA expression profiles of VGSCβ subunits in Mat-LyLu and AT-2 cells.

Figure 3.16 Comparison of VGSCβ subunits mRNA expression, using Cytb5R as normalising/control gene, between Mat-LyLu and AT-2 cells.

Figure 3.17 Comparison of VGSCβ subunits mRNA expression, using α-actin as normalising/control gene, between Mat-LyLu and AT-2 cells.

Figure 3.18 Effect of hypoxia (2 % O₂) on VGSCβ subunits mRNA expression in Mat-LyLu cells.

Figure 3.19 Effect of hypoxia (2 % O₂) on VGSCβ subunits mRNA expression in AT2 cells.

Figure 3.20 Effect of hypoxia (2 % O₂) on VGSCα protein expression in Mat-LyLu cells.

Figure 3.21 Controls for Immunocytochemistry with Mat-LyLu cells.

Figure 3.22 Confocal images from immunocytochemistry of Mat-LyLu cells incubated in normoxia and hypoxia (2 % O₂) with pan-VGSC antibody.
Figure 3.23 Effect of hypoxia (2 % O\textsubscript{2}) on VGSC\textalpha protein levels in plasma membrane of Mat-LyLu cells.

Figure 3.24 Effect of hypoxia (2 % O\textsubscript{2}) on internal VGSC\textalpha protein levels of Mat-LyLu cells.

Figure 3.25 Effect of hypoxia (2 % O\textsubscript{2}) on VGSC\textalpha protein distribution along typical cellular cross-section in Mat-LyLu cells.

Figure 3.26 Confocal images from immunochemistry of Mat-LyLu cells incubated in normoxia and hypoxia (2 % O\textsubscript{2}) with VGSC\textbeta\textsubscript{1} antibody.

Figure 3.27 Effect of hypoxia (2 % O\textsubscript{2}) on VGSC\textbeta\textsubscript{1} protein levels in plasma membrane of Mat-LyLu cells.

Figure 3.28 Effect of hypoxia (2 % O\textsubscript{2}) on internal VGSC\textbeta\textsubscript{1} protein levels of Mat-LyLu cells.

Figure 3.29 Effect of hypoxia (2 % O\textsubscript{2}) on VGSC\textbeta\textsubscript{1} protein distribution along typical cellular cross-section in Mat-LyLu cells.

Figure 3.30 Effect of hypoxia (2 % O\textsubscript{2}) on lateral motility of Mat-LyLu cells.

Figure 3.31 Effect of hypoxia (2 % O\textsubscript{2}) on migration of Mat-LyLu cells.

Figure 3.32 Effect of hypoxia (2 % O\textsubscript{2}) on invasion of Mat-LyLu cells.

Figure 4.1 Phase-contrast light-photomicrography of Mat-LyLu cells treated with ranolazine.

Figure 4.2 Phase-contrast light-photomicrography of Mat-LyLu cells, treated with ranolazine in high magnification.

Figure 4.3 Bar diagram showing ranolazine treatments had no toxic effect.

Figure 4.4 Dose dependent effect of ranolazine on Mat-LyLu cell number.

Figure 4.5 Effect of ranolazine on Mat-LyLu Nav\textsubscript{1.7} mRNA expression.

Figure 4.6 Confocal immunocytochemistry study of Mat-LyLu cells incubated with ranolazine.
Figure 4.7 Typical image showing effect of ranolazine on VGSCα protein distribution along typical cellular cross-section in Mat-LyLu cells.

Figure 4.8 Effect of ranolazine on VGSCα protein distribution along typical cellular cross-section in Mat-LyLu cells.

Figure 4.9 Typical image showing effect of ranolazine on VGSCα protein levels in plasma membrane of Mat-LyLu cells.

Figure 4.10 Effect of ranolazine on VGSCα protein levels in plasma membrane of Mat-LyLu cells.

Figure 4.11 Typical image showing effect of ranolazine on internal VGSCα protein levels of Mat-LyLu cells.

Figure 4.12 Effect of ranolazine on internal VGSCα protein levels of Mat-LyLu cells.

Figure 4.13 Typical images of invaded cells showing the effect of ranolazine on invasion of Mat-LyLu invesiveness.

Figure 4.14 Effect of ranolazine on invasion of Mat-LyLu cells.

Figure 4.15 Phase-contrast light-photomicrography of Mat-LyLu cells, treated with riluzole.

Figure 4.16 Phase-contrast light-photomicrography of Mat-LyLu cells, treated with riluzole, in high magnification.

Figure 4.17 Bar diagram showing riluzole treatments had no toxic effect.

Figure 4.18 Dose dependent effect of riluzole on Mat-LyLu cell number.

Figure 4.19 Effect of riluzole on Mat-LyLu Nav1.7 mRNA expression.

Figure 4.20 Confocal immunocytochemistry study of Mat-LyLu cells incubated with riluzole.

Figure 4.21 Typical image showing effect of riluzole on VGSCα protein distribution along typical cellular cross-section in Mat-LyLu cells.

Figure 4.22 Effect of riluzole on VGSCα protein distribution along typical cellular cross-section in Mat-LyLu cells.
Figure 4.23 Typical image showing effect of riluzole on VGSCα protein levels in plasma membrane of Mat-LyLu cells.

Figure 4.24 Effect of riluzole on VGSCα protein levels in plasma membrane of Mat-LyLu cells.

Figure 4.25 Typical image showing effect of riluzole on internal VGSCα protein levels of Mat-LyLu cells.

Figure 4.26 Effect of riluzole on internal VGSCα protein levels of Mat-LyLu cells.

Figure 4.27 Typical images of invaded cells showing the effect of riluzole on invasion of Mat-LyLu invasiveness.

Figure 4.28 Effect of riluzole on invasion of Mat-LyLu cells.

Figure 4.29 Phase-contrast light-photomicrography of Mat-LyLu cells, treated with procaine.

Figure 4.30 Phase-contrast light-photomicrography of Mat-LyLu cells, treated with procaine, in high magnification.

Figure 4.31 Bar diagram showing procaine treatments had no toxic effect.

Figure 4.32 Dose dependent effect of procaine on Mat-LyLu cell number.

Figure 4.33 Effect of procaine on Mat-LyLu Nav1.7 mRNA expression.

Figure 4.34 Confocal immunocytochemistry study of Mat-LyLu cells incubated with procaine.

Figure 4.35 Typical image showing effect of procaine on VGSCα protein distribution along typical cellular cross-section in Mat-LyLu cells.

Figure 4.36 Effect of procaine on VGSCα protein distribution along typical cellular cross-section in Mat-LyLu cells.

Figure 4.37 Typical image showing effect of procaine on VGSCα protein levels in plasma membrane of Mat-LyLu cells.

Figure 4.38 Effect of procaine on VGSCα protein levels in plasma membrane of Mat-LyLu cells.

Figure 4.39 Typical image showing effect of procaine on internal VGSCα protein levels of Mat-LyLu cells.
Figure 4.40 Effect of procaine on internal VGSCα protein levels of Mat-LyLu cells.

Figure 4.41 Typical images of invaded cells showing the effect of procaine on invasion of Mat-LyLu invasiveness.

Figure 4.42 Effect of procaine on invasion of Mat-LyLu cells.

Figure 4.43 Phase-contrast light-photomicrography of Mat-LyLu cells treated with lidocaine.

Figure 4.44 Phase-contrast light-photomicrography of Mat-LyLu cells, treated with lidocaine, in high magnification.

Figure 4.45 Bar diagram showing lidocaine treatments had no toxic effect.

Figure 4.46 Dose dependent effect of lidocaine on Mat-LyLu cell number.

Figure 4.47 Effect of lidocaine on Mat-LyLu Nav1.7 mRNA expression.

Figure 4.48 Confocal immunocytochemistry study of Mat-LyLu cells incubated with with lidocaine.

Figure 4.49 Typical image showing effect of lidocaine on VGSCα protein distribution along typical cellular cross-section in Mat-LyLu cells.

Figure 4.50 Effect of lidocaine on VGSCα protein distribution along typical cellular cross-section in Mat-LyLu cells.

Figure 4.51 Typical image showing effect of lidocaine on VGSCα protein levels in plasma membrane of Mat-LyLu cells.

Figure 4.52 Effect of lidocaine on VGSCα protein levels in plasma membrane of Mat-LyLu cells.

Figure 4.53 Typical image showing effect of lidocaine on internal VGSCα protein levels of Mat-LyLu cells.

Figure 4.54 Effect of lidocaine on internal VGSCα protein levels of Mat-LyLu cells.

Figure 4.55 Typical images of invaded cells showing the effect of lidocaine on Mat-LyLu invasiveness.

Figure 4.56 Effect of lidocaine on invasion of Mat-LyLu cells.
Figure 5.1 Spontaneous Ca\(^{2+}\) oscillations in PC3M cells.

Figure 5.2 Spontaneous changes in [Ca\(^{2+}\)], in LNCaP and Mat-LyLu cells

Figure 5.3 Effect of TTX on spontaneous Ca\(^{2+}\) oscillations in PC-3M cells

Figure 5.4 Summary of the effects of TTX on spontaneous Ca\(^{2+}\) oscillations in PC-3M cells.

Figure 5.5 Effect of ranolazine on spontaneous Ca\(^{2+}\) oscillations in PC-3M cells.

Figure 5.6 Summary of the effects of ranolazine on spontaneous Ca\(^{2+}\) oscillations in PC-3M cells.

Figure 5.7 Effect of Na\(^{+}\) free (Li\(^{-}\) substituted) conditions on Ca\(^{2+}\) oscillations in PC-3M cells.

Figure 5.8 Summary of the effects of Na\(^{+}\) free (Li\(^{-}\)-substituted) conditions on spontaneous Ca\(^{2+}\) oscillations in PC-3M cells.

Figure 5.9 Effect of Na\(^{+}\) free (choline-substituted) MPS on Ca\(^{2+}\) oscillations in PC-3M cells.

Figure 5.10 Summary of the effects of Na\(^{+}\) free (choline-substituted) MPS on spontaneous Ca\(^{2+}\) oscillations in PC-3M cells.

Figure 5.11 Effect of varying the extracellular [Ca\(^{2+}\)] on spontaneous Ca\(^{2+}\) oscillations in PC-3M cells.

Figure 5.12 Effect of thapsigargin on Ca\(^{2+}\) oscillations in PC-3M cells.

Figure 5.13 Effect of extracellular and intracellular [Ca\(^{2+}\)] on Ca\(^{2+}\) oscillations in PC-3M cells.

Figure 5.14 Effect of caffeine on Ca\(^{2+}\) oscillations in PC-3M cells.

Figure 5.15 Effect of ryanodine on Ca\(^{2+}\) oscillations in PC-3M cells.

Figure 5.16 Summary of the effects of ryanodine on spontaneous Ca\(^{2+}\) oscillations in PC-3M cells.

Figure 5.17 A basic model explaining possible mechanisms underlying spontaneous Ca\(^{2+}\) oscillations in PC3M cells.

- 21 -
List of Tables

Table 1.1 VGSCα-binding toxins and drugs 35
Table 1.2 VGSCα-subunit gene family 36
Table 1.3 VGSCβ isoforms 43
Table 1.4 Alternative splice variants of VGSCαs 47
Table 1.5 Expression/activity of VGSCs in metastatic cancer cells 69
Table 1.6 Changes in expression of Ca^{2+} channels and pumps in cancer 82
Table 2.1 Summary of pharmacological agents used in the present study. 91
Table 2.2 PCR primer related details. 96
Table 2.3 Primary antibodies. 102
Table 2.4 Secondary antibodies. 103
Table 3.1 Summary of effect of hypoxia on Mat-LyLu cell morphology and morphological heterogeneity 124
Table 4.1 Summary of results 201
Table 5.1 Synopsis of results 298
List of Videos

Supplementary Video 1- Spontaneous Ca2+ oscillations in PC3M cells. Signal from Fluo-4 DVD

Supplementary Video 2-Spontaneous Ca2+ oscillations in PC3M cells. Bright field images DVD

Supplementary Video 3- Spontaneous changes in [Ca2+]i in LNCaP cells. Signal from Fluo-4 DVD

Supplementary Video 4- Spontaneous changes in [Ca2+]i in LNCaP cells. Bright field images DVD

Supplementary Video 5- Spontaneous changes in [Ca2+]i in Mat-LyLu cells. Signal from Fluo-4 DVD

Supplementary Video 6- Spontaneous changes in [Ca2+]i in Mat-LyLu cells. Bright field images DVD

Supplementary Video 7- Effect of TTX on spontaneous Ca2+ oscillations in PC-3M cells. Signal from Fluo-4 DVD

Supplementary Video 8- Effect of TTX on spontaneous Ca2+ oscillations in PC-3M cells. Bright field images DVD

Supplementary Video 9- Effect of ranolazine on spontaneous Ca2+ oscillations in PC-3M cells. Signal from Fluo-4 DVD

Supplementary Video 10- Effect of ranolazine on spontaneous Ca2+ oscillations in PC-3M cells. Bright field images DVD

Supplementary Video 11- Effect of Na+ free (Li+ substituted) conditions on Ca2+ oscillations in PC-3M cells. Signal from Fluo-4 DVD

Supplementary Video 12- Effect of Na+ free (Li+ substituted) conditions on Ca2+ oscillations in PC-3M cells. Bright field images DVD

Supplementary Video 13- Effect of Na+ free (choline substituted) conditions on Ca2+ oscillations in PC-3M cells. Signal from Fluo-4 DVD

Supplementary Video 14- Effect of Na+ free (choline substituted) conditions on Ca2+ oscillations in PC-3M cells. Bright field images DVD

Supplementary Video 15- Effect of varying the extracellular [Ca2+] on spontaneous Ca2+ oscillations in PC-3M cells. Signal from Fluo-4 DVD
Supplementary Video 16- Effect of varying the extracellular [Ca2+] on spontaneous Ca2+ oscillations in PC-3M cells. Bright field images DVD

Supplementary Video 17- Effect of thapsigargin on Ca2+ oscillations in PC-3M cells. Signal from Fluo-4 DVD

Supplementary Video 18- Effect of thapsigargin on Ca2+ oscillations in PC-3M cells. Bright field images DVD

Supplementary Video 19- Effect of extracellular and intracellular [Ca2+] on Ca2+ oscillations in PC-3M cells. Signal from Fluo-4 DVD

Supplementary Video 20- Effect of extracellular and intracellular [Ca2+] on Ca2+ oscillations in PC-3M cells. Bright field images DVD

Supplementary Video 21- Effect of caffeine on Ca2+ oscillations in PC-3M cells. Signal from Fluo-4 DVD

Supplementary Video 22- Effect of caffeine on Ca2+ oscillations in PC-3M cells. Bright field images DVD

Supplementary Video 23- Effect of ryanodine on Ca2+ oscillations in PC-3M cells. Signal from Fluo-4 DVD

Supplementary Video 24- Effect of ryanodine on Ca2+ oscillations in PC-3M cells. Bright field images DVD
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIS</td>
<td>Axon initial segment</td>
</tr>
<tr>
<td>AnkG</td>
<td>Ankyrin G</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AP</td>
<td>Action potential</td>
</tr>
<tr>
<td>ATX-II</td>
<td>Anemone toxin II</td>
</tr>
<tr>
<td>AU</td>
<td>Arbitrary unit</td>
</tr>
<tr>
<td>BAC</td>
<td>Bovine adrenal chromaffin</td>
</tr>
<tr>
<td>BCa</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>BFA</td>
<td>Brefeldin A</td>
</tr>
<tr>
<td>Bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumen</td>
</tr>
<tr>
<td>[Ca^{2+}]_i</td>
<td>Intracellular calcium concentration</td>
</tr>
<tr>
<td>CaC</td>
<td>Cervical cancer</td>
</tr>
<tr>
<td>CAM</td>
<td>Cell adhesion molecule</td>
</tr>
<tr>
<td>CaM</td>
<td>Calmodulin</td>
</tr>
<tr>
<td>CaMK</td>
<td>Calmodulin-dependent protein kinase</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CELEX</td>
<td>Cellular excitability</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese hamster ovary</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>con A</td>
<td>Concanavalin A</td>
</tr>
<tr>
<td>Cytb5R</td>
<td>Cytochrome b5 reductase</td>
</tr>
<tr>
<td>D</td>
<td>Domain of voltage-gated sodium channel</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>dbcAMP</td>
<td>Dibutyryl cyclic AMP</td>
</tr>
<tr>
<td>DEKA</td>
<td>Aspartate-glutamate-lysine-alanine</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DRG</td>
<td>Dorsal root ganglion</td>
</tr>
<tr>
<td>EBNA</td>
<td>Epstein-Barr virus nuclear antigen</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EEDD</td>
<td>Glutamate-glutamate-aspartate-aspartate</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal growth factor</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal growth factor receptor</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylene glycol tetraacetic acid</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>FBS</td>
<td>Foetal bovine serum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>HEK</td>
<td>Human embryonic kidney</td>
</tr>
<tr>
<td>HIF</td>
<td>Hypoxia-inducible factor</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>50% inhibition concentration</td>
</tr>
<tr>
<td>ID</td>
<td>Inter-domain linker of voltage-gated sodium channels</td>
</tr>
<tr>
<td>IFM</td>
<td>Isoleucine-phenylalanine-methionine</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IGSF</td>
<td>Immunoglobulin superfamily</td>
</tr>
<tr>
<td>I<sub>Na</sub></td>
<td>Na<sup>+</sup> current</td>
</tr>
<tr>
<td>I<sub>NaP</sub></td>
<td>Persistent Na<sup>+</sup> current</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>I_{NaT}</td>
<td>Transient Na$^+$ current</td>
</tr>
<tr>
<td>IP3R</td>
<td>Inositol 1,4,5-triphosphate receptor</td>
</tr>
<tr>
<td>LEMS</td>
<td>Lambert–Eaton myasthenic syndrome</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MCB</td>
<td>Metastatic cell behaviour</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrix metalloproteinase</td>
</tr>
<tr>
<td>MPS</td>
<td>Mammalian physiological saline</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>MTT</td>
<td>Thiazolyl blue tetrazolium bromide</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular weight</td>
</tr>
<tr>
<td>NCX</td>
<td>Na$^+$/Ca$^{2+}$ exchanger</td>
</tr>
<tr>
<td>NESOpAb</td>
<td>Polyclonal nNav1.5-specific antibody</td>
</tr>
<tr>
<td>NGF</td>
<td>Nerve growth factor</td>
</tr>
<tr>
<td>nNav1.5</td>
<td>‘neonatal’ Nav1.5</td>
</tr>
<tr>
<td>NSCLC</td>
<td>Non small cell lung carcinoma</td>
</tr>
<tr>
<td>NTC</td>
<td>No treatment control</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PC12</td>
<td>Pheochromocytoma 12</td>
</tr>
<tr>
<td>PCa</td>
<td>Prostate cancer</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyde</td>
</tr>
<tr>
<td>PKA</td>
<td>Cyclic AMP-dependent protein kinase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein kinase C</td>
</tr>
<tr>
<td>PKCI</td>
<td>Protein kinase C inhibitor peptide</td>
</tr>
<tr>
<td>P-loop</td>
<td>Pore-loop</td>
</tr>
<tr>
<td>PNS</td>
<td>Peripheral nervous system</td>
</tr>
<tr>
<td>PMCA</td>
<td>Plasma membrane Ca(^{2+}) ATPase</td>
</tr>
<tr>
<td>RE1</td>
<td>Repressor element 1</td>
</tr>
<tr>
<td>REST</td>
<td>RE1 binding silencer protein</td>
</tr>
<tr>
<td>RNAi</td>
<td>RNA interference</td>
</tr>
<tr>
<td>RPMI-1640 medium</td>
<td>Roswell Park Memorial Institute 1640 medium</td>
</tr>
<tr>
<td>rt-PCR</td>
<td>Real-time PCR</td>
</tr>
<tr>
<td>RyR</td>
<td>Ryanodine receptor</td>
</tr>
<tr>
<td>S</td>
<td>Segment of voltage-gated sodium channel</td>
</tr>
<tr>
<td>SBFI</td>
<td>Sodium-binding benzofuran isophthalate</td>
</tr>
<tr>
<td>SCLC</td>
<td>Small cell lung carcinoma</td>
</tr>
<tr>
<td>ScTX</td>
<td>Scorpion toxin</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulphate polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error</td>
</tr>
<tr>
<td>SERCA</td>
<td>Sarcoplasmic-endoplasmic reticulum Ca(^{2+}) ATPase</td>
</tr>
<tr>
<td>siRNA</td>
<td>Small-interfering RNA</td>
</tr>
<tr>
<td>SS</td>
<td>Short-segment</td>
</tr>
<tr>
<td>STX</td>
<td>Saxitoxin</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris-HCl-borate-EDTA</td>
</tr>
<tr>
<td>TRP</td>
<td>Transient receptor potential</td>
</tr>
<tr>
<td>T-tubules</td>
<td>Transverse tubules</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>TTX</td>
<td>Tetrodotoxin</td>
</tr>
<tr>
<td>TTX-R</td>
<td>Tetrodotoxin-resistant</td>
</tr>
<tr>
<td>TTX-S</td>
<td>Tetrodotoxin-sensitive</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra-violet</td>
</tr>
<tr>
<td>V_0</td>
<td>Coefficient of voltage-dependence of time to peak</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>VGCC</td>
<td>Voltage-gated calcium channel</td>
</tr>
<tr>
<td>VGPC</td>
<td>Voltage-gated potassium channel</td>
</tr>
<tr>
<td>VGSC</td>
<td>Voltage-gated sodium channel</td>
</tr>
<tr>
<td>V_m</td>
<td>Membrane potential</td>
</tr>
</tbody>
</table>
Chapter 1

GENERAL INTRODUCTION
This General Introduction is subdivided into three sections. The first two sections summarize the structure and regulation of voltage-gated sodium channels (VGSCs). The third section introduces metastatic disease and discusses current evidence on the involvement of VGSCs and other ion channels in metastatic progression. The main emphasis is upon prostate cancer (PCa).

1.1 Voltage-gated sodium channels

VGSCs are widely expressed in ‘excitable’ tissues (e.g. neurons and muscle), where they mediate the initiation and propagation of actions potentials (APs) (e.g. Ogata and Ohishi, 2002). Increasing evidence suggests, however, that VGSCs are also expressed in classically ‘non-excitable’ cell types, including glia, endothelial cells, fibroblasts and metastatic cancer cells of epithelial origin, where their functional role is less well defined (Diss et al., 2004). For instance, in metastatic colon cancer cells, functional VGSC activity was recently shown to regulate gene expression levels and patterns, the conclusion being that “… VGSC is a key regulator of a gene transcriptional network that controls cancer invasion” (House et al., 2010). In vascular endothelial cells, Na\(^+\) influx through VGSCs was found to upregulate intracellular Ca\(^{2+}\) level (i.e. via Na\(^+\)/Ca\(^{2+}\) exchange), which in turn played a key role in angiogenesis (Sage et al., 1991; Gosling et al., 1998).

1.1.1 Basic structure and molecular diversity

VGSCs are multimeric membrane proteins comprising a central α-subunit (VGSCα) and one or more auxiliary β-subunit(s) (Catterall, 2000). Basic channel functionality is achieved by the VGSCα, which forms the channel pore. VGSCβs modulate the
electrophysiological properties of VGSCαs and regulate their functional expression levels (Brackenbury and Isom, 2008).

1.1.1.1 VGSCα

The pore-forming VGSC α-subunit (220-260 kDa) is composed of four structurally homologous domains (D1-D4), each containing six α-helical transmembrane segments (S1-S6) of 19-27 amino acids (Figure 1.1A) (Yu and Catterall, 2003). The S4 segments in each of the four domains, which contain positively charged amino-acid residues (Arg or Lys) at every third position, serve as the voltage-sensors for activation (Swartz, 2008). Extracellular re-entrant pore-loops (P-loops or SS1-SS2 region) between helices S5 and S6 form the narrow entry to the Na⁺-conducting pore and act as an ion-selectivity filter containing a critical amino acid sequence: aspartate-glutamate-lysine-alanine (DEKA) (Catterall, 2000). The wider intercellular end of the pore is formed mainly by the inner S6 residues (Goldin et al., 2000; Catterall, 2010). Mutations in the DEKA motif have been shown to affect ion selectivity and permeability (Sun et al., 1997), such that a change from DEKA to EEEE switched selectivity of a VGSCα from Na⁺ to Ca²⁺ (Heinemann et al., 1992).

The 3-dimensional (3D) image of the VGSCα, obtained from helium-cooled cyro electron microscopy and single-particle image analysis, revealed four transmembrane masses (i.e. D1-D4) arrayed symmetrically around a central hydrophilic pore (Figure 1.1B; Sato et al., 2001). The VGSCα protein appeared bell-shaped, with 24% of its mass on the extracellular side and 47% on the intracellular side of the membrane (Catterall, 2001). Most of the intracellular mass was attributed to the large N- and C-termini and the large intracellular linkers connecting D1, D2 and D3 (Figure 1.1.A; Catterall, 2001). In addition, Sato et al. (2001) found that the
Figure 1.1 Structure of voltage-gated Na$^+$ channels

(A) VGSC α-subunit is shown together with the β1-subunit. VGSCα has four domains (D1-D4), each with six α-helical transmembrane segments (S1-S6). S5-S6 (pink) are the pore-lining segments and the S4 helices (yellow) form the voltage-sensors. The extracellular domain of the β1 is shown as an immunoglobulin-like fold, which interacts non-covalently with the α-subunit. Adapted from Onkal and Djamgoz, 2009. (B) 3D illustration of VGSCα structure: a, central ion permeation pore; b, gating pores. Modified from Ogata and Ohishi (2002).
central ion permeation pore branched into four ‘inlets’ and ‘outlets’ on both sides of
the membrane rather than connecting directly to the intracellular and extracellular
spaces (Figure 1.1B) (Catterall, 2001).

The VGSCα pore is permeable to several monovalent cations in the order of
\(\text{Na}^+ \sim \text{Li}^+ > \text{Tl}^+ > \text{K}^+ > \text{Rb}^+ > \text{Cs}^+ \) (Hille, 1972, 2001). The channel is also permeable
to a number of non-metallic cations including hydroxylamine and guanidinium but
impermeable to organic cations such as choline (Hille, 1971). Five classes of toxins,
including the highly specific guanidine-based natural toxin, tetrodotoxin (TTX), bind
to VGSCα at various sites and modify its activity by discrete modes of action (Table
1.1) (Cestèle and Catterall, 2000; Catterall et al., 2007). In addition, various small-
molecule VGSC blocker drugs, including local anaesthetics, anticonvulsants and
antiarrhythmics, bind to a ‘drug-pocket’ formed by multiple residues in inner D1:S6,
D3:S6 and D4:S6 (Table 1.1) (England, 2008; Clare, 2010).

To date, ten VGSCα subunits (Nav1.1-Nav1.9 and Nax) have been identified,
each having subtle but potentially significant electrophysiological and
pharmacological variability due to variable amino acid sequences (Table 1.2)
(Plummer and Meisler 1999; Catterall, 2000; Diss et al., 2004). Additional VGSCα
diversity is achieved at transcriptional, pre-translational (i.e. alternative splicing) and
post-translational levels (i.e. phosphorylation), and these are detailed separately in
Section 1.2. VGSCαs can be broadly characterized by their biophysical (e.g.
activation/inactivation kinetics) properties and sensitivity to TTX. Thus, most
VGSCαs (Nav1.1-Nav1.4, Nav1.6 and Nav1.7) are blocked by nanomolar
concentrations of TTX (TTX-S), activate around -40 mV and have fast inactivation
kinetics (Diss et al., 2004). On the other hand, a second subset of VGSCαs (Nav1.5,
Nav1.8, Nav1.9) show sensitivity to TTX only at micromolar concentrations (TTX-
Table 1.1 VGSCα-binding toxins and drugs

<table>
<thead>
<tr>
<th>Site #</th>
<th>Agent (Toxin / Drug)</th>
<th>Effect</th>
<th>Binding site</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tetrodotoxin, saxitoxin, µ-conotoxin</td>
<td>Blockage of pore: inhibition of conductance</td>
<td>SS1-SS2</td>
</tr>
<tr>
<td>2</td>
<td>Aconitine, veratridine, batrachotoxin, grayanotoxin</td>
<td>Hyperpolarization of activation: persistent activation</td>
<td>D1&D4:S6</td>
</tr>
<tr>
<td>3</td>
<td>α-scorpion toxin, β-pompilidotoxin, sea anemone toxin</td>
<td>Prevention of outward movement of D4:S4</td>
<td>D4:S3-S4</td>
</tr>
<tr>
<td>4</td>
<td>β-scorpion toxins</td>
<td>Trapping of D2:S4 in outward position</td>
<td>D2: S3:S4</td>
</tr>
<tr>
<td>5</td>
<td>Brevetoxins, ciguatoxins</td>
<td>Hyperpolarization of activation: persistent activation</td>
<td>D1:S6, D4:S5</td>
</tr>
<tr>
<td>6</td>
<td>Local anaesthetics, antiarrythmic drugs, antiepileptic drugs</td>
<td>Resting and use-dependent blockage of conductance</td>
<td>D1&D3&D4: S6</td>
</tr>
</tbody>
</table>

Abbreviations: D, domain; S, segment; SS, short-segment. Modified from Catterall et al. (2007).
Table 1.2 VGSC α-subunit gene family

<table>
<thead>
<tr>
<th>VGSCα subunit</th>
<th>Former names</th>
<th>Gene symbol</th>
<th>Chromosomal location</th>
<th>Major site of expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nav1.1</td>
<td>rat I, HBSCI, GPBI, Scn1a</td>
<td>SCN1A</td>
<td>M: 2; H: 2q24</td>
<td>CNS</td>
</tr>
<tr>
<td>Nav1.2</td>
<td>rat II, HBSCIi, HBA</td>
<td>SCN2A</td>
<td>M: 2; H: 2q23-24</td>
<td>CNS</td>
</tr>
<tr>
<td>Nav1.3</td>
<td>rat III</td>
<td>SCN3A</td>
<td>M: 2; H: 2q24</td>
<td>CNS, PNS</td>
</tr>
<tr>
<td>Nav1.4</td>
<td>SkM1, μ1</td>
<td>SCN4A</td>
<td>M: 11; H: 17q23-25</td>
<td>Skeletal muscle</td>
</tr>
<tr>
<td>Nav1.5</td>
<td>SkM2</td>
<td>SCN5A</td>
<td>M: 9; H:3p21</td>
<td>Heart</td>
</tr>
<tr>
<td>Nav1.6</td>
<td>NaCh6, PN4, Scn8, CerIII</td>
<td>SCN8A</td>
<td>M: 15; H: 12q13</td>
<td>CNS</td>
</tr>
<tr>
<td>Nav1.7</td>
<td>NaS, hNE-Na, PN1</td>
<td>SCN9A</td>
<td>M: 2; H: 2q24</td>
<td>PNS</td>
</tr>
<tr>
<td>Nav1.8</td>
<td>SNS, PN3, NaNG</td>
<td>SCN10A</td>
<td>M: 9; H: 3p22-24</td>
<td>DRG</td>
</tr>
<tr>
<td>Nav1.9</td>
<td>NaN, SNS2, PN5, NaT, SCN12A</td>
<td>SCN11A</td>
<td>M: 9; H: 3p21-24</td>
<td>DRG</td>
</tr>
<tr>
<td>Nax</td>
<td>Nav2.2, NaG, SCL11, Nav2.3</td>
<td>SCN6A, SCN7A</td>
<td>M: 2; H: 2q21-23</td>
<td>Heart, uterus, skeletal muscle</td>
</tr>
</tbody>
</table>

Abbreviations: CNS, central nervous system; PNS, peripheral nervous system; DRG, dorsal root ganglia. Modified from Goldin et al. (2000).
R), activate at more hyperpolarized potentials (-60 mV or more negative) and exhibit slower inactivation kinetics (Plummer and Meisler 1999; Goldin, 2001). Sensitivity to TTX is determined by an aromatic residue (Tyr or Phe) in the D1:S5-S6 loop; TTX-R VGSCαs have a polar residue (Cys or Ser) in this position (Figure 1.1A) (Satin et al., 1992; Heinemann et al., 1992; Fozzard and Lipkind, 2010).

Expression of different VGSCαs is tissue-specific and can be developmentally regulated (Table 1.2; Plummer and Meisler 1999; Catterall 2000). For instance, Nav1.1, Nav1.2 and Nav1.6 are expressed predominantly in central nervous system (CNS); Nav1.6 is mainly present in axon initial segments (AIS) and nodes of Ranvier; Nav1.2 is expressed in unmyelinated axons and AIS in myelinated axons; and Nav1.1 is localized mainly in the somata (Trimmer and Rhodes, 2004; Mantegazza et al., 2010). Nav1.3 is expressed in the CNS and also in dorsal root ganglion (DRG) neurons following peripheral nerve damage (Waxman et al., 1994; Black et al., 1999; Whitaker et al., 2001). Nav1.4 is the major VGSCα in adult skeletal muscle (Kraner et al., 1989), and Nav1.5 is the cardiac VGSCα (Gellens et al., 1992). Finally, Nav1.7, Nav1.8 and Nav1.9 are mainly expressed in the peripheral nervous system (PNS), where their function is thought to be critical for nociception (Toledo-Aral et al., 1997; Dib-Hajj et al., 1998; England, 2008). Thus, expression of multiple VGSCα isoforms can occur in single cells (both ‘excitable’ and ‘non-excitable’), and it is thought that specific cell types may achieve their unique functional output based on the subtle functional differences in the VGSCα isoform(s) that they express (Goldin, 2001; Diss et al., 2004). In other words, controlled expression of a combination of different isoforms of VGSCs is hypothesized to allow a cell to modulate and ‘fine-tune’ its response patterns (Waxman, 2007).
VGSCs have 3 main functional states: 1) closed, (2) open/activated and (3) inactivated, and cycle between these states depending on the value of the membrane potential and time (Figure 1.2). According to the “sliding helix” model of activation, upon membrane depolarization, the spiral outward movement of the S4 helices initiates the conformational change of the protein structure that leads to the opening of the channel pore (Tombola et al., 2006; Catterall, 2010). Fast inactivation of the VGSC occurs within milliseconds of channel opening and the highly conserved hydrophobic amino acid triad known as the “IFM motif” (Iso-Phe-Met) in the short intracellular loop between D3 and D4 (ID3-4) mediates rapid inactivation of the channel (Figure 1.3) (Yu and Catterall, 2003). Thus, the ‘hinged-lid’ IFM motif folds into the inner mouth of the channel pore, occluding it and hence inactivating Na\(^+\) conductance during sustained depolarization of the membrane (West et al., 1992; Goldin, 2003). The fast inactivation gate is believed to derive its voltage dependence through coupling to the outward movement of the D4:S4 during channel activation (Kontis and Goldin, 1997). Upon membrane repolarisation, VGSCs recover from inactivation due to relaxing of the inactivation gate (Figure 1.2) (Catterall, 2000). In the case where membrane repolarises before inactivation has occurred, VGSCs could undergo deactivation, directly transiting from open/activated to the closed state (Figure 1.2) (Kuo and Bean, 1994). In the case of the depolarization of the membrane for an extended period of time, VGSCs may undergo a separate form of inactivation, termed ‘slow’ inactivation (Vilin and Ruben, 2001; Goldin, 2003); this type of inactivation does not involve the fast inactivation particle in the ID3-4 linker and is hypothesized to result from a structural rearrangement of the pore (Goldin, 2003; Tikhonov and Zhorov, 2007). However, further studies are required to elucidate the precise mechanism and molecular determinant of slow inactivation.
Figure 1.2 Functional states of voltage-gated sodium channels
Schematic representation of the three functional modes of voltage-gated Na⁺ channels. At rest, the channels are in their resting (closed) state. Upon depolarization, channels activate (a) and then inactivate (aa) within milliseconds of activation. The inactivated state of the VGSCs through the binding of the inactivation gate (IFM motif) to the channel pore structure is indicated by (*). From the inactivated state, channels recover from inactivation (aaa) upon membrane repolarization. ‘Reverse’ transitions between these gating states are also possible (b, bb, bbb), but occur much less frequently: b, deactivation; bb, activation, bbb, closed-state inactivation.
Figure 1.3 Mechanism of fast inactivation
The cytoplasmic linker between domains 3 and 4 (ID3-4) forms a ‘hinged lid’ that is responsible for fast inactivation of the VGSC. The critical Phe1489 within the hydrophobic IFM motif (Ile1488-Phe1489-Met1490) occludes the intracellular mouth of the pore during the inactivation process (right). Adapted from Yu and Catterall (2003).
As described above, upon membrane depolarization, VGSCs typically activate, rapidly inactivate, and remain closed/non-conducting until repolarization occurs. However, it has become increasingly apparent that a small portion of VGSCs may inactivate and re-open during prolonged depolarisations, thereby resulting in a small but persisting Na\(^+\) current (\(I_{\text{NaP}}\)). Such \(I_{\text{NaP}}\) could be recorded from neurons and cardiomyocytes as well as in heterologous systems expressing a single VGSC\(\alpha\) subtype (Crill, 1996; Maltsev \textit{et al}., 1998; Magistretti \textit{et al}., 1999; Qu \textit{et al}., 2001; Taddese and Bean, 2002; Maltsev and Undrovinas, 2006; Saint, 2008; Aman \textit{et al}., 2009). Notably, \(I_{\text{NaP}}\) typically has a magnitude of < 1% of the peak Na\(^+\) current; however, because it is very-slowly inactivating (or non-inactivating), the amount of charge (i.e. Na\(^+\)) it carries is considerable (Saint \textit{et al}., 1992; Maltsev \textit{et al}., 1998; Zygmunt \textit{et al}., 2001). Furthermore, various (patho)physiological conditions can significantly enhance \(I_{\text{NaP}}\) in cardiomyocytes and neurons; among these are inactivation-modifying neurotoxins (e.g. sea anemone toxin ATX-II; Chahine \textit{et al}., 1996), hypoxia (Ju \textit{et al}., 1996), and Nav1.5 mutations associated with the long QT-3 syndrome (Bennett \textit{et al}., 1995; Fredj \textit{et al}., 2006).

1.1.1.2 VGSC\(\beta\)

Whilst the VGSC\(\alpha\) subunit is sufficient for functional expression, it is usually complexed with one or more smaller auxiliary VGSC\(\beta\)s (Figure 1.1), which can (1) modulate several aspects of VGSC function including channel activation/inactivation by shifting the voltage dependence of activation and inactivation, and (2) increase the level of functional VGSC expression on the plasma membrane through enhancing the intracellular trafficking of the VGSC\(\alpha\) protein to the plasma membrane and/or
through increasing the cell surface stability of VGSCαs via association with cytoskeletal molecules such as ankyrin (Isom et al., 1994; Brackenbury et al., 2008).

To date, four VGSCβ isoforms have been identified: β1-4 (33-45 kDa) (Table 1.3). The β1- and β3- subunits associate non-covalently with the α-subunit, whereas β2- and β4- subunits are covalently linked to a cysteine residue on an extracellular linker of the α-subunit (Isom et al., 1992, 1995; Morgan et al., 2000; Yu et al., 2003). Each VGSCβ possesses an extracellular N-terminal domain with an immunoglobulin (Ig)-like fold, a single membrane-spanning segment, and a cytoplasmic C-terminal region (Isom 2001; Chahine et al., 2005). Importantly, VGSCβs are unique among ion channel subunits in containing Ig-like folds, giving them structural homology to certain types of cell-adhesion molecules (CAMs). This property was first discovered for β2 (whose Ig-like domain shares 45% sequence homology with one of the six Ig motifs in the extracellular domain of neuronal CAM, contactin; Isom et al., 1995). Further experiments showed that VGSCβs can function as Ig superfamily cell adhesion molecules (IGSF-CAMs), e.g. both β1 and β2 were shown to interact trans-homophilically, facilitating cellular aggregation and ankyrin recruitment to cell-to-cell contacts (Malhotra et al., 2000, 2002). Moreover, heterophilical interaction of β1 has been documented with contactin, NrCAM, N-cadherin, neurofascin-155, neurofascin-186 and VGSCβ2, and shown to potentiate functional VGSC expression in plasma membrane (Kazarinova-Noyes et al., 2001; McEwen and Isom, 2004; McEwen et al., 2004). Finally, both β1 and β2 were found to interact with and repelled from tenascin-C and tenascin-R (both extracellular matrix (ECM) molecules), thereby suppressing cell migration (Srinivasan et al., 1998; Xiao et al., 1999).
Table 1.3 VGSC\(\beta\) isoforms

<table>
<thead>
<tr>
<th>Isoform</th>
<th>MW (kDa)</th>
<th>Gene symbol</th>
<th>Chromosomal location</th>
<th>Tissue location</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta1)</td>
<td>36</td>
<td>SCN1B</td>
<td>19q13</td>
<td>Heart, skeletal muscle, CNS, glia, PNS</td>
</tr>
<tr>
<td>(\beta1A)</td>
<td>45</td>
<td>SCN1B</td>
<td>19q13</td>
<td>Heart, skeletal muscle, adrenal gland, PNS</td>
</tr>
<tr>
<td>(\beta2)</td>
<td>33</td>
<td>SCN2B</td>
<td>11q22</td>
<td>CNS, PNS, heart, glia</td>
</tr>
<tr>
<td>(\beta3)</td>
<td>36</td>
<td>SCN3B</td>
<td>11q23</td>
<td>CNS, adrenal gland, kidney, heart, PNS</td>
</tr>
<tr>
<td>(\beta4)</td>
<td>38</td>
<td>SCN4B</td>
<td>11q23</td>
<td>Heart, skeletal muscle, CNS, PNS</td>
</tr>
</tbody>
</table>

Abbreviations: CNS, central nervous system; DRG, dorsal root ganglion; PNS, peripheral nervous system. Modified from Brackenbury *et al.* (2008).
VGSCβ diversity is achieved by developmental and tissue-specific expression of the four subtypes as well as alternative splicing (Table 1.3) (Isom, 2001; Meadows and Isom, 2005). For instance, a partially developmentally regulated intron retention event generates the β1A splice variant, which (i) shares little amino acid homology with β1 apart from the N-terminal Ig domain, and (ii) is developmentally down-regulated and replaced by β1 in rat brain (Kazen-Gillespie et al., 2000). As with VGSCαs, multiplicity of VGSCβ expression occurs in given cell types, where each isoform may have a distinct role (e.g. modulation of particular VGSCαs or interaction with differing sets of extracellular matrix of cytoskeletal proteins) (Table 1.3) (Isom, 2001; Chahine et al., 2005; Brackenbury et al., 2008).

1.2. Regulation of VGSCs

Regulation of VGSC expression/activity is highly complex and occurs at multiple stages: (1) transcriptional, (2) pre-translational (e.g. alternative splicing), and (3) post-translational (e.g. glycosylation, phosphorylation, association with other membrane-bound proteins) (Figure 1.4).

1.2.1 Transcription

VGSC gene expression can be regulated by various stimuli such as electrical activity (Sashihara et al., 1994), hormones (Tabb et al., 1994) and growth factors (Black et al., 1997; Toledo-Aral et al., 1995; Choi et al., 2001; Fanger et al., 1997), Some of these effects may occur during injury (Black et al., 1999; Iwahashi et al., 1994; Waxman et al., 1994), For example, nerve growth factor (NGF) induced expression of Nav1.7 was shown in PC12 cells (Rudy et al., 1987; Toledo-Aral et al., 1995). On the other hand, NGF induced upregulation of Nav1.8 and down regulation of Nav1.3
Figure 1.4 Levels of regulation of VGSC expression and activity
Regulation of VGSCs occur at (A) transcriptional level (e.g. transcriptional factors), followed by pre-translational modifications (B) (e.g. mRNA trafficking and splicing). Then, the channel protein is synthesized, and trafficked to the plasma membrane. Post-translation modifications (C) include phosphorylation, glycosylation, and interaction with other proteins including VSGCβs. Recycling and degradation of VGSC protein (c) is another important factor in keeping a steady-state balance of available functional VGSCs at the plasma membrane.
was reported for DRG neurons (Black et al., 1997). Interestingly, some pathological transcriptional re-expression of VGSCs can involve embryonic splice variants, as in the case of kainic acid-induced damage to mammalian brain and Nav1.3 (Gastaldi et al., 1997; Waxman et al., 1994)

Transcriptional factors are principal modulators of gene expression, and one transcription factor has been shown to effect expression of a VGSCα subtype (Chong et al., 1995). Nav1.2 expression was restricted to neurons by REST, a transcription silencer (Chong et al., 1995). REST is expressed in most tissues and binds to a specific receptor element 1 (RE-1) in the promoter region of Nav1.2 and causes suppression of its expression (Chong et al., 1995). On the other hand, absence of REST in neurons permits expression of Nav1.2 in these cells (Marban et al., 1998; Chong et al., 1995). Functioning of REST is also depends on other co-repressor proteins, CoREST and mSin3A (Andres et al., 1999; Grimes et al., 2000). Furthermore, another transcription factor Brn-3a, a POU-family homeobox protein, was shown to upregulate Nav1.7 expression in PC-3 cell line (Diss et al., 2006). Recent work has also characterized the transcriptional promoter region of Nav1.7 (Diss et al., 2008).

1.2.2 Alternative splicing

Functional diversity of the VGSC α-subunits is significantly increased by alternative mRNA splicing, which generates two or more different mRNAs from a single gene (McKeown, 1992; Blencowe, 2006). Within the modulatory region of the VGSCα subunit, there exist five major sites where alternative splicing is known to occur (Table 1.4) (Diss et al., 2004). Variability among the splice variants can be generated by inclusion, exclusion or substitution of amino acid residues in the coding sequence.
Table 1.4 Alternative splice variants of VGSCαs

<table>
<thead>
<tr>
<th>Site</th>
<th>Nav</th>
<th>Event</th>
<th>Functional consequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1:S3</td>
<td>1.1, 1.2, 1.3, 1.5, 1.6, 1.7</td>
<td>Substitution of negative Asp in ‘adult’ to a neutral or positive residue in ‘neonatal’</td>
<td>Modify voltage-dependence and kinetics activation/inactivation</td>
<td>Copley et al., 2004; Sarao et al. 1991; Gustafson et al., 1993; Chioni et al., 2005; Plummer et al., 1998; Belcher et al., 1995.</td>
</tr>
<tr>
<td>ID1-2</td>
<td>1.1, 1.3, 1.6, 1.7</td>
<td>Multiple splice forms with different ID1-2 regions</td>
<td>Modify (add / remove) phosphorylation sites</td>
<td>Schaller et al., 1992; Dietrich et al., 1998; Thimmapaya et al., 2005; Plummer et al., 1998; Toledo-Aral et al., 1997; Raymond et al., 2004.</td>
</tr>
<tr>
<td>ID2-3</td>
<td>1.5, 1.8</td>
<td>Shortened ID 2-3</td>
<td>Modify voltage-dependence of activation/inactivation; produce non-functional proteins</td>
<td>Gersdorff-Korsgaard et al., 2001; Zimmer et al., 2002; Camacho et al., 2006; Makielski et al., 2003</td>
</tr>
<tr>
<td>D3</td>
<td>1.1, 1.6</td>
<td>Alternative exon 18</td>
<td>Predominantly produce truncated ‘fail-safe’ proteins</td>
<td>Plummer et al., 1997; Oh and Waxman 1998; Schaller et al., 1995.</td>
</tr>
<tr>
<td>D4:S3</td>
<td>1.5, 1.9</td>
<td>Shortened intron in D4:S3</td>
<td>Produce truncated proteins</td>
<td>Gellens et al., 1992; Jeong et al., 2000</td>
</tr>
</tbody>
</table>

Abbreviations: D, domain; S, segment; ID, interdomain region.
These may be the consequence of (i) the alternative usage of 5’ (donor) / 3’ (acceptor) splice sites, (ii) exon skipping events (involving one or more exons) in the coding region, (iii) mutually exclusive exon usage, (iv) the alternative usage of 5’ or 3’ untranslated regions, and (v) intron to exon conversion events (McKeown, 1992; Chen and Manley, 2009).

Alternative splicing of the VGSCα genes results either in full-length, functional proteins that exhibit regulatory, electrophysiological and/or pharmacological variability (e.g. Dietrich et al., 1998; Onkal et al., 2008), or quite commonly, in highly truncated non-functional proteins (e.g. Schaller et al., 1992; Plummer et al., 1997) (Table 1.4). The role of the truncated VGSCαs has not been fully explained, but could involve the following: (1) functional interaction and association with other truncated VGSCαs in the right orientation to form ‘heteromeric’ sodium channels, and/or (2) a ‘fail-safe’ mechanism producing truncated proteins, preventing the synthesis and/or activity of functional, full-length VGSCα channels (Plummer et al., 1997; Diss et al., 2004; Schroeter et al., 2010).

Alternative splicing resulting in modified but full-length VGSCαs contributes significantly to functional VGSC diversity (Table 1.4) (Schroeter et al., 2010). Since cytoplasmic ID linkers are crucial for channel modulation (e.g. via phosphorylation or protein-protein interactions; Figure 1.5), splicing in ID1-2 and ID2-3 would be expected to produce VGSCα splice isoforms with differing functional characteristics. Indeed, an alternative splice form of Nav1.5 (Nav1.5c), which was first detected in mouse DRG neurons, was found to encode an extra glutamate residue in the ID2-3 linker region, which disrupted a putative casein kinase 2 (CK2) phosphorylation site (Kerr et al., 2004). Also, splicing in the ID1-2 linker resulted in splice variants of Nav1.1, Nav1.3, Nav1.6 and Nav1.7 with shortened ID1-2 linkers, which excluded
Figure 1.5 VGSC regulatory sites
Serine residues (S) phosphorylated by PKA or PKC are numbered (Nav1.2 numbering). Arrows indicate possible interaction sites between the VGSC α- and β-subunits. Abbreviations: An II, annexin II; Ub, ubiquitin; CaM, calmodulin; AnkG, ankyrin G; Gβγ, G-protein β-γ complex; Modified from Chahine et al. (2005).
multiple sites for putative PKA and PKC phosphorylation (Table 1.4 and Figure 1.5) (Diss et al., 2004). Moreover, Thimmapaya et al. (2005) over-expressed these Nav1.3 ID1-2 splice variants in *Xenopus* oocytes and showed that they exhibit slightly different (3-5 mV) voltage-range for activation and inactivation.

Apart from the modulatory effects of splicing in ID linkers, alternative splicing within the transmembrane VGSCα regions generally produce variants with significant electrophysiological distinction. A particularly important splicing site in this regard is D1:S3/S4 (Table 1.4) (Diss et al., 2004). Developmentally controlled splicing of two mutually exclusive alternative exons in D1:S3/S4 was first described for Nav1.2 and Nav1.3 in rat brain (Sarao et al., 1991; Gustafson et al., 1993). The two alternative exons encode part of the transmembrane segment S3, most of S4, and the S3/S4 extracellular linker (Diss et al., 2004; Chioni et al., 2005; Onkal and Djamgoz, 2009). The transcripts with the upstream (5’) exon were found to be expressed predominantly during the neonatal period, whilst the transcripts with the downstream (3’) exon were expressed only in the adult. Accordingly, for Nav1.2 and Nav1.3, the upstream exon was designated ‘neonatal’ and the counterpart downstream ‘adult’. Similar D1:S3 splicing has also been reported for Nav1.1, Nav1.5, Nav1.6 and Nav1.7 (Diss et al., 2004).

Except for Nav1.5, the ‘adult’ and ‘neonatal’ exon 6 variants differ by 19-21 nucleotides resulting in only 1-3 amino acids changes; a single amino acid in the extracellular S3-S4 linker changes consistently from a neutral to a negatively-charged residue during development (Plummer and Meisler, 1999; Diss et al., 2004). On the other hand, Nav1.5 D1:S3 variants differ from each other by 31 nucleotides and 7 amino acids, where the key amino acid switch in the extracellular D1:S3/S4 linker is a charge-reversing one: from a positive lysine in ‘neonatal’ to a negative
aspartate in the ‘adult’ (Fraser et al., 2005; Ou et al., 2005). Because of these larger differences, Chioni et al. (2005) could generate a polyclonal antibody (NESOpAb) that was selective for ‘neonatal’ Nav1.5. Using NESOpAb in immunohistochemical studies, these authors also confirmed the developmental regulation of Nav1.5 D1:S3 splicing in mouse heart (Chioni et al., 2005).

Human Nav1.7 is expressed primarily in sensory neurons of the peripheral (i.e. DRG) and sympathetic nervous systems, and in Schwann cells (Goldin, 2001). D1:S3 splice variants of Na\(_{\text{v}}\)1.7 were identified in human (Klugbauer et al., 1995, Raymond et al., 2004), rabbit (Belcher et al., 1995), and rat (ToledoAral et al., 1997). D1:S3 splice variants of Nav1.7 differ in 21 of their 92 nucleotides. The resulting ‘adult’ and ‘neonatal’ Nav1.7 proteins differ by two amino acids, i.e. at positions 201 (Leu in ‘neonatal’ and Val in ‘adult’) and 206 (Asn in ‘neonatal’ and Asp in ‘adult’) (Belcher et al., 1995; Diss et al., 2004). The low expression of the ‘adult variant’ in neonatal rabbits suggested that the D1:S3 splicing in Nav1.7 is developmentally regulated, as for Nav1.2, Nav1.3 and Nav1.5 (Sarao et al., 1991; Gustafson et al., 1993; Belcher et al., 1995; Chioni et al., 2005). Interestingly, expression of Nav1.7 ‘adult’ and ‘neonatal’ variants appears to be tissue-specific in humans: the ‘neonatal’ isoform is preferentially expressed in the PNS and CNS of adult tissues, whereas the ‘adult’ variant is found predominantly in the DRG neurons (Raymond et al., 2004). Interestingly, Fraser et al. (2005) reported that strongly metastatic MDA-MB-231 breast cancer cell line selectively expressed relatively high levels of D1:S3 ‘neonatal’ splice form Nav1.7 mRNA (which subsequently contributed ~ 20% of total Na\(^+\) current), indicating that this ‘neonatal’ isoform may be involved in the progression of metastasis in breast cancer cells (Section 1.3.3). Furthermore, in particular relevance to the present project, the predominant ‘culprit’
VGSCα expressed in strongly metastatic human (PC-3M) and rat (Mat-LyLu) prostate cancer cells in also the ‘neonatal’ D1:S3 variant of Nav1.7 (Section 1.3.3) (Diss et al., 2001; Onkal and Djamgoz, 2009).

At present, mechanisms controlling alternative splicing of VGSCα (and other ion channel) genes is not fully known but could involve changes in membrane potential (Xie and Black, 2001), growth factors (Akopian et al., 1999), and phosphorylation (Shipston, 2001) (reviewed in Diss et al., 2004). For instance, in adult rat DRG neurons, nerve growth factor (NGF) was found to upregulate a splice variant of Nav1.8 that contained a partial repeat of domain 2 (Akopian et al., 1999). In GH3 pituitary cells, membrane depolarization by adding KCl was shown to repress splicing of ‘STREX’, an exon conferring Ca2+ sensitivity in large-conductance K+ (BK) channel mRNAs (Xie and Black, 2001). Notably, alternative splicing of VGSCα mRNAs can be regulated by various mechanisms in different cell types. Thus, for example, in spinal cord astrocytes, the expression of three Nav1.6 D3 splice variants was upregulated by 48 h exposure to the membrane-permeant dibutylryl cAMP (dbcAMP), whereas a similar treatment had no effect in cerebral astrocytes (Oh and Waxman, 1998).

1.2.3 Post-translational modification: Glycosylation

All VGSC\textalpha s possess number of potential extracellular glycosylation sites located at the putative pore lining regions of D1 and D3 (Bennett, 2002 and Marban et al., 1998). Five of these sites are highly conserved and therefore it was proposed that carbohydrate have essential role in structure and localisation of VGSC (Diss et al., 2004). The extend of glycosylation is subtype specific. For example, Nav1.1 - Nav1.4 are 15 - 30 % glycosylated whilst Nav1.5 and Nav1.9 are 5 % glycosylated.
(Marban et al., 1998; Tyrrell et al., 2001). In addition, β1 and β2 subunits of VGSC are heavily glycosilated (Isom et al., 1992). Glycosylation was shown to effect electrophysiological properties of VGSC (Bennett et al., 1997). For instance, addition of negatively charged carbohydrate molecules has been shown to hyperpolarize voltage –dependence of VGSC gating (Marban et al., 1998; Cronin et al., 2005). Reduced sialylation depolarized the gating of Nav1.4 but not Nav1.5 in transfected Chinese hamster ovary (CHO) cells indicating that functional effect of glycosylation is subtype specific (Bennett, 2002). In addition, in CHO cells, highly sialylated β1-subunit hyperpolarizes the voltage dependence of Nav1.2, Nav1.5 and Nav1.7 but non- sialylated β1 had no effect (Johnson et al., 2004).

1.2.4 Protein synthesis and trafficking

Regulation of mRNA levels and protein level can be controlled separately and independently (Orphanides and Reinberg, 2002). For example, Brackenbury and Djamgoz (2006) showed that TTX treatment decreased Nav1.7 mRNA expression in Mat-LyLu cells but did not change total protein level. On the other hand, TTX induced increase in VGSCα expression at plasma membrane of Mat-LyLu suggested the role of trafficking. In separate study it was suggested that activation of cAMP – dependent protein kinase A (PKA) increased plasma membrane VGSC level via protein synthesis in BAC cells (Yuhi et al., 1996). However it should be noted that trafficking could play a role in this process.

VGSC protein level at plasma membrane can be regulated by protein trafficking via vesicular exocytosis (Herfst et al., 2004). It was show that PKA activity regulates VGSC externalisation from ER (Muniz et al., 1996, 1997; Zhou et al., 2000, 2002). For example, application of cAMP (1 h) resulted in elevation in
functional expression of VGSC in Nav1.5 expressing *Xenopus* oocytes (Frohnwieser *et al*., 1997). In addition, disruption of intracellular protein trafficking with monensin and chloroquine (Tietze *et al*., 1980; Mollenhauer *et al*., 1990) diminished the PKA-induced increase in functional expression of VGSC in *Xenopus* oocytes (Zhou *et al*., 2000).

Ca$^{2+}$ signalling has been shown to play role in VGSC trafficking. For instance, cytosporin-A induced inhibition of calcineurin (a Ca$^{2+}$-and calmodulin–dependent protein phosphatase 2B) resulted in increase binding of [3H]STX to VGSC at BAC cell surface. Furthermore, co-application of cytosporin-A and trans-Golgi network transport inhibitor brefeldin A (BFA) reduced cell surface VGSC level implying that calcineurin plays role in reduction in externalisation of newly synthesised proteins (Shiraishi *et al*., 2001b). In another study, increase in [Ca$^{2+}$], with A23287, a Ca$^{2+}$ ionophore, was documented to reduce BAC cell surface expression of VGSC (Shiraishi *et al*., 2001a). On the other hand, this decrease in cell surface expression was prevented by Ca$^{2+}$-dependent PKC (PKC-α) inhibition (Shiraishi *et al*., 2001a). In addition, in the presence of BFA, activation of PKC-α with thymeleatin (TMX) reduced [3H]STX binding therefore it was proposed that PKC-α promote endocytotic internalisation in BAC cells (Yanagita *et al*., 2000; Kobayashi *et al*., 2002). In addition, A23187 induced decrease in cell surface VGSC level was abolished by calpastatin peptide, a calpain (a family of Ca$^{2+}$-dependent cysteine proteases) inhibitor (Shiraishi *et al*., 2001a).

It was proposed that interaction between VGSC and scaffolding proteins affects channel trafficking (Herfst *et al*., 2004). For example, it was documented that N-terminal of Nav1.8 binds to light chain (p11) of the cytoskeletal binding protein annexin II (Figure 1.5) and expression of p11 in stably transfected CHO cells
promotes trafficking of Nav1.8 to plasma membrane (Okuse et al., 2002). In addition, it was shown that Nav1.5 is coupled to dystrophin and the actin cytoskeleton via scaffolding protein syntropin (Ou et al., 2003). Co expression of CAM contactin and Nav1.9 in CHO cells was shown to increase cell surface expression of Nav1.9 (Shah et al., 2004). The membrane skeletal protein ankyrin G (AnkG) was shown to be essential for clustering of VGSC to axon initial segment (AIS) (Zhou et al., 1998). In addition, mutation in AnkG binding site (E1053K at ID2-3 linker, Figure 1.5) caused reduced and disorganised expression of Nav1.5 at the sarcolemma, intercalated discs and T-tubules in cardiomyocytes (Mohler et al., 2004).

In addition, VGSC activity was shown to effect protein trafficking. For example, long term treatment with VGSC ‘opener’ veratridine, batrachotoxin and α-scorpion toxin (α-ScTX) was shown to decrease cell surface expression of VGSCs in feta rat brain (Dargent and Couraud, 1990). Furthermore, reduction in cell surface expression of VGSC by [125I] α-ScTX was proposed to be mediated by increased internalisation (Dargent et al., 1994; Paillart et al., 1996). On the other hand, Brackenbury and Djamgoz (2006) showed by electrophysiology and confocal immunocytochemistry experiments that in strongly metastatic prostate cancer (PCa) Mat-LyLu cells long-term TTX application reduced plasma membrane expression of VGSC whilst not effecting total protein level. Similarly, long-term application of TTX reduced plasma membrane VGSC expression while not effecting total protein level in strongly metastatic human breast cancer (BCa) MDA-MB-231 cells (Chioni et al., 2010).

VGSCβs were also suggested to be involved in trafficking of VGSCα (Isom, 2002). For example, co-expression of β1 and Nav1.5 in human embryonic kidney (HEK) 293 cells revealed that they form complex in ER and β1 facilitate trafficking.
of Nav1.5 to plasma membrane (Zimmer et al., 2002a). In addition, β2-knockout mice experiments revealed that DRG neurons have decreased VGSC expression at the plasma membrane (Chen et al., 2002). Therefore, it was suggested that β2 plays role in trafficking of VGSCs. Furthermore, mutagenesis experiments revealed that β3 interacts and masks ER-retention signal located on Nav1.8 and increase cell surface expression (Zhang et al., 2008).

1.2.5 Protein degradation

An important process mediating internalization and subsequent degradation of VGSCs is ubiquitination (Herfst et al., 2004; Shao et al., 2009). Thus, for example, Nedd4 family of ubiquitin-protein ligases were found to interact with the PY motifs in the C-termini of VGSCαs, targeting the channel protein for degradation via ubiquitination (Figure 1.5) (Ingham et al., 2004). In particular, when co-expressed with Nav1.5 in Xenopus oocytes, Nedd4 reduced peak current density, suggesting removal of functional channels from the plasma membrane (Abriel et al., 2000). In addition, in HEK-293 cells, cell surface expression of Nav1.5 was reduced upon co-expression with Nedd4-2, and this effect occurred faster upon co-application of the trans-Golgi network transport inhibitor, brefeldin A (BFA), suggesting that Nedd4-2 accelerated VGSC internalisation (van Bemmelen et al., 2004; Rougier et al., 2005). Furthermore, Nedd4-2 was shown to have a similar ‘depressing’ effect on functional expression of other VGSCαs, indicating that ubiquitination is a general mechanism for VGSCα internalisation and degradation. For instance, Nedd4-2 co-expression has been found to reduce the peak current amplitude of Nav1.2 and Nav1.3 in HEK-293 cells (van Bemmelen et al., 2004; Rougier et al., 2005) and Nav1.2, Nav1.7 and Nav1.8 in Xenopus oocytes (Fotia et al., 2004).
1.2.6 Phosphorylation

VGSCαs are phosphorylated by major kinases, including cAMP-dependent protein kinase (PKA), protein kinase C (PKC), calcium calmodulin kinase II (CAM kinase II) and tyrosine kinase (Cantrell and Catterall, 2001; Carr et al., 2003; Chahine et al., 2005). Phosphorylation by PKA can occur on five sites (serine residues) in the intracellular loop connecting domains 1 and 2 (Figure 1.5) (Murphy et al., 1993; Marban et al., 1998). PKA has VGSCα subtype-specific effects; it typically reduces current amplitude of TTX-S VGSCαs whilst increasing that of TTX-R channels, without drastically affecting voltage dependence and kinetics of VGSCα gating (Catterall, 2000; Zhou et al., 2000, 2002; Carr et al., 2003; Diss et al., 2004). In particular, PKA phosphorylation was found to reduce the current amplitude of Nav1.1, 1.2 and 1.7 (Li et al., 1992; Smith and Goldin 1997, 1998; Vijayaragavan et al., 2004), whilst the effect of Nav1.5 and 1.8 was the opposite (Marban et al., 1998; Zhou et al., 2000, 2002; England et al., 1996). The differential effect of PKA on different VGSCαs is thought to be due to the dual effect of PKA: (1) direct phosphorylation of serine residues in the ID1-2 linker, and (2) modulation of VGSCα trafficking via phosphorylation of yet unidentified modulatory proteins (e.g. Section 1.2.3) (Chahine et al., 2005; Brackenbury and Djamgoz, 2006; Shao et al., 2009).

VGSCαs are also phosphorylated by PKC at a conserved serine residue in the ID3-4 linker (located near the inactivation gate particle ‘IFM’) (West et al., 1991; Murray et al., 1997; Chahine et al., 2005). PKC phosphorylation was found to slow inactivation and reduce peak current amplitude of several heterologously expressed VGSCαs including Nav1.2, Nav1.4, Nav1.5, Nav1.7 and Nav1.8 (Schreibmayer et al., 1991; Bendahhou et al., 1995; Cantrell et al., 1996; Murray et al., 1997;
Tateyama et al., 2003; Vijayaragavan et al., 2004). Notably, Murray et al. (1997) showed that mutating the ID3-4 linker serine to alanine in Nav1.5 expressed in Xenopus oocytes reduced but did not abolish the effect of PKC on channel function, suggesting that additional PKC phosphorylation site(s) may exist. Consistently, mutagenesis studies in Nav1.2 revealed that maximal reduction of current amplitude required PKC phosphorylation of multiple serine residues in the ID1-2 linker as well as the ‘classic’ PKC site the ID3-4 linker (Cantrell et al., 2002). This was in agreement with the observation that PKA and PKC phosphorylation may interact, in a convergent manner, in modulating VGSC activity (Cantrell et al., 2002; Chahine et al., 2005; Chen et al., 2006). Thus, for example, in rat DRG neurons, PKC inhibitor peptide PKCl19-36 attenuated the PKA-induced increase in VGSC current, suggesting convergence of PKA and PKC effects (Gold et al., 1998). Furthermore, mutagenesis experiments revealed that the inhibitory effect of PKA on Nav1.2 expressed in Chinese hamster ovary (CHO) cells was enhanced by PKC phosphorylation of two serine residues in the ID1-2 and ID3-4 linkers (Li et al., 1993; Cantrell et al., 2002).

1.3. Metastatic disease

Altered expression/activity of VGSCs contributes to several pathologies, such as neuropathic pain, epilepsy, cardiac conduction disorders, and metastatic disease (Diss et al., 2004; Onkal and Djamgoz, 2009). Such pathologies can occur as a result of either (i) genetic mutations in the VGSC protein (e.g. long QT syndrome, epilepsy) or (ii) dysregulation of VGSC gene expression (e.g. chronic pain, metastatic cancer) (Meisler et al., 2002; Waxman, 2007). Given its central importance to this PhD project, involvement of VGSCs in metastatic disease is described in detail as follows.
Worldwide, cancer is a leading cause of death, second only to cardiovascular diseases. In the developed Western countries, one in every four deaths is due to cancer (Edwards et al., 2005; Jemal et al., 2010). The most commonly diagnosed forms of cancer in males and females are prostate and breast cancers, respectively, and these cancer types have mortality rates second only to lung cancer in both genders (Edwards et al., 2005; Pruthi et al., 2007; Jemal et al., 2010). Most simply, normal cells become cancerous and form tumours as a result of genetic mutations (i.e. in proto-oncogenes or tumour suppressor genes) and/or epigenetic changes (i.e. hypo- or hyper-methylation) occurring in their DNA, which can result in the cells losing the control of their proliferative state (i.e. they become hyper-proliferating and apoptosis resistant) (Hanahan and Weinberg, 2000). In addition, it was proposed that cancerous cells would not be able to acquire metastatic phenotype by only genetic alteration without supporting microenvironment (Chung et al., 2005). Following primary tumorigenesis, tumor cells with invasive (metastatic) potential spread to local or distant sites and, ultimately, form secondary neoplasms (i.e. metastasis). Overall, cancer cell genotype was described by at least 6 essential alterations in normal cell physiology that result in tumorigenesis and malignant spread/growth (Hanahan and Weinberg, 2000). These “hallmarks of cancer” include: (1) self-sufficiency in growth signals, (2) insensitivity to growth-inhibitory (antigrowth) signals, (3) evasion of programmed cell death (apoptosis), (4) unlimited replicative potential, (5) sustained angiogenesis, and (6) tissue invasion and metastasis (Section 1.3.2) (Hanahan and Weinberg, 2000). It is important to note that primary tumorigenesis (steps 1-5 above) and metastasis (step 6) are two distinct processes, which depend on separate sets of molecular/cellular determinants; supporting this phenomenon is the existence of a number of metastasis suppressor genes that
block/inhibit metastasis without affecting primary tumor formation (Steeg, 2003; Weigelt et al., 2005).

Most therapeutic strategies against cancer include excision of the primary tumour usually after some initial chemotherapy. Surgery may be followed by further pharmaco-, radio- and/or immuno-therapy to destroy any residual cancer cells (Vaidya and Welch, 2007). Metastasis, which is the spreading of cancer from the primary neoplasm to form tumours in secondary sites, is the cause of cancer-related deaths in approximately 90% of cases and is usually inoperable (Stetler-Stevenson et al., 1993; Sporn, 1996; Pantel and Brakenhoff, 2004). The discovery of metastasis suppressors (Berger et al., 2004; Vaidya and Welch, 2007) has raised the possibility that metastatic disease may also be treatable by drugs. Accordingly, much research time and effort has been directed in determining the genes/proteins and signalling pathways that regulate the metastatic behaviour of cancer cells (Schwirzke et al., 1999; Weigelt et al., 2005). In this regard, ion channels have emerged as promising novel targets (Prevarskaya et al., 2010). In particular, VGSCs, which are expressed and functionally expedient in a wide variety of metastatic carcinomas, have become an exciting new class of novel anti-metastatic drug targets (Roger et al., 2006; Onkal and Djamgoz, 2009). In the following, we aim to describe the evidence regarding (i) VGSC expression in metastatic carcinomas and (ii) functional contribution of VGSCs to metastatic cell behaviours (MCBs).

1.3.1 The case of prostate cancer

Prostate cancer (PCa) is a heterogeneous and complex disease and is generally accepted to start as a prostatic intraepithelial neoplasia (PIN) (Tennant et al., 2000; Maitland and Collins, 2005). PIN is characterized by cancer-related genetic and
phenotypic changes, but is non-invasive (initially); it can be detected by biopsy only (Bostwick and Qian, 2004). Typically, the subsequent metastatic adenocarcinoma develops within 10 years and this may be paralleled by an increased level of prostate specific antigen (PSA) (Bostwick and Qian, 2004). Prostate cancer treatment strategies are designed according to prognostic evaluation of PCa. Mainstream prognostic indicators are (i) clinical stage, (ii) prostate specific antigen (PSA) levels in blood, and (iii) histological stage, i.e. Gleason grade (Rosenthal and Sandler, 2010). According to these analyses, one or a combination of the following treatment methods may be used:

I. **Active surveillance (watchful waiting):** This method involves constant surveillance of progression of cancer. If risk of cancer increases then other treatment options can be considered.

II. **Prostatectomy:** Early-stage PCa could be treated by surgically removal of all or part of the prostate with some surrounding tissue.

III. **Radiation therapy:** In this method cancer cells are destroyed by using directed radiation (X-rays) or radioactive seeds (“brachytherapy”).

IV. **Chemotherapy:** Use of chemical to kill or stop growing of PCa.

V. **Hormone therapy:** Androgen-deprivation therapy (ADT) is the main therapy for PCa treatment. Huggins and Hodges (1941) showed that surgical castration or oestrogen injection induced PCa tumour regression. In the same study, androgen was shown to increase growth of prostate tumours. Therefore, surgical castration was used as an ADT with decreasing popularity with time because of irreversibility and gradual availability of pharmacological drugs that induce chemical castration by reducing level or
activity of testosterone (Schulman et al., 2010). Chemical castration can be achieved as follows:

i. Luteinising hormone-releasing hormone (LHRH) receptor agonist: LHRH receptor (found in pituitary gland) induces release of luteinising hormone (LH) which in turn induces secretion of testosterone. LHRH can be downregulated by its agonist after initial increase in activity. Downregulation of LHRH receptor expression causes reduction in LH release and therefore in testosterone levels and androgen receptor (AR) activity.

ii. LHRH receptor antagonist: These antagonists compete with LHRH binding to its receptor and reduce endogenous LHRH receptor activity. This reduced receptor activity results in reduction of LH and testosterone levels.

iii. Antiandrogens: These drugs reduce directly androgen receptor activity by competing with testosterone and reducing its binding to AR.

In addition to castration, oestrogen therapy was shown to be effective against PCa growth (Huggins and Hodges, 1941). Therefore, oestrogen was used for PCa therapy. It was first applied orally but because of its side effects such as gynecomastia and cardiovascular toxicity, popularity of this therapy declined (Rosenthal and Sandler 2010). On the other hand, recent advances in application techniques resulted in renewed interest in this therapy (Langley et al., 2010).

ADT in combination with radiation therapy is the recommended treatment strategy for advanced PCa (Schulman et al., 2010). However, following ADT, because of the presence of some ADT-resistant cells, PCa can return as more aggressive castration-
resistant prostate cancer (CRPC). CRPC cells are resistant to ADT because of mutations, overexpression or genomic amplification of AR (Koochekpour, 2010). Interestingly, the androgen receptor cascade of some CRPC cells can be activated by subcastration level of androgens, produced by adrenal cortex and prostate cancer itself (Brawer, 2008). In combination with improved chemotherapy, this technique became popular treatment for CRPC (Rosenthal and Sandler 2010).

In a subset of PCa tumours, cells may undergo neuroendocrine differentiation, which results in (i) castration resistance, (ii) growth factor dependence, and (iii) an aggressive phenotype (invasive / metastatic potential) (Kim et al., 2002). Aggressive PCa cells metastasize mainly to bone, which is presumed to provide a hospitable microenvironment (e.g. growth factor and high Ca\(^{2+}\) content) that favours secondary tumour formation (Keller et al., 2001; Fidler, 2002; Liao et al., 2006).

1.3.2 The metastatic cascade

Metastasis is a complex process involving a series of interactive steps, in which primary tumour cells spread to secondary sites, where they ultimately form secondary tumours if provided with a favourable microenvironment with the right chemotactic agents and growth factors (i.e. ‘seed and soil hypothesis’) (Paget, 1889; Fidler, 2003). Only some tumour cells have ability to metastasize and only a minority of these metastatic cells (~ 0.01%) survive the multi-step metastatic cascade to form secondary tumours in distant body part(s) (Hunter, 2004). Moreover, each step of the metastatic cascade can be rate-limiting and failure to complete any of the steps can stop the entire process (Fidler, 2003). Notably, metastasis of solid tumours is
different than that of blood cancers (i.e. leukaemias), which do not require all the essential stages of metastasis described as follows (Figure 1.6):

1. Single cells or cell aggregates *detach* from primary tumour and degrade the basement membrane, by releasing proteolytic enzymes, and *invading* through local host stroma.

2. *Intravasation*: embolization of single or aggregated tumour cells through endothelium into vascular and/or lymphatic systems. Thin-walled lymphatic channels provide the most common route for tumour-cell entry into the circulation, since they offer little resistance to penetration by tumour cells.

3. *Transport in circulation*. After entering circulation, cells may be subject to immune defence and mechanical stress, and will often aggregate with other cancer cells or platelets, which may help their survival.

4. The surviving tumour cells become *arrested* in the capillary beds of distant organ(s) (secondary sites) and *re-attach* to the endothelial cells.

5. *Extravasation* and invasion into secondary sites (i.e. organ parenchyma). Extravasation requires the tumour cells that are attached to the endothelium to release certain protolytic enzymes and migrate through the basement membrane surrounding the blood vessel.

6. Invading tumour cells then migrate through stroma and *proliferate* within the organ parenchyma, which results in the formation of secondary tumours (micro-metastases”).

7. *Angiogenesis*: secondary tumor growth requires development of a new vascular network, which facilitates the growth by supplying O₂, survival factors, etc. and removing waste products. This essentially completes the metastatic process.
Figure 1.6 The metastastic cascade

a, Cellular transformation and primary tumorigenesis; b, extensive vascularization and tumor expansion; c, migration and invasion through local stroma; d, detachment and embolization followed by circulation and adherance to capillary endothelium of single or aggregated tumor cells; e, extravasation; f, secondary tumorigenesis and tumor expansion following angiogenesis. Adapted from Fidler (2003).
The tumour cells can then re-enter the circulation and produce additional metastases.

In spite of this cascade appearing well-organized, in fact, metastasis is a highly inefficient process (Hunter, 2004). A generally held “progression” model of metastasis explains this insufficiency, stating that a primary tumour progress to a premalignant state from which cells with metastatic ability arise due to stochastic genetic events (Fidler and Kripke, 1977; Hunter, 2004). Discovery of at least 11 metastasis suppressor genes, which inhibit the metastatic cascade without interfering primary tumourigenesis supports this model (Berger et al., 2004; Vaidya and Welch, 2007). The finding of consistent chromosomal aberrations specifically associated with malignant rather than benign tumours also supports this hypothesis (Goodison et al., 2005). However, more recent evidence has challenged the progression model, suggesting that metastatic ability may be “pre-coded” in primary tumours (Bacac and Stamenkovic, 2008, Bernards and Weinberg, 2002). For example, gene expression of a subset of primary tumours was found to be similar to that of metastatic secondary tumours, suggesting that metastatic potential may be encoded within the primary tumour tissue (Ramaswamy et al., 2003). In addition, 5% of metastatic disease cases have no clinically detectable primary tumour, which is also in support of the “pre-coded” model of metastasis (Hunter, 2004).

An ‘integrative’ model reconciles the two conflicting theories of metastasis (Hynes, 2003; Hunter, 2004; Weigelt et al., 2005). According to this model, primary tumours can be distinguished according to their metastatic potential, but rare subpopulations of variant cells, which are capable of forming metastases, are found within the primary tumours. The ‘integrative’ model encompasses three principles, as follows. First and foremost, tumour cells constitute a very heterogeneous population
in terms of their metastatic potential (Nguyen and Massague, 2007). For example, it has been shown that genes/proteins associated with various steps of metastasis such as proliferation, angiogenesis, cohesion, motility and invasion vary among different regions of neoplasms (Poste and Fidler, 1980; Simone et al., 1998). Second, during disease progression, the pre-existing metastatic tumour acquire further genetic variability, which may result in additional changes in their metastatic potential (Fidler, 2003; Vecchi et al., 2008; Gupta et al., 2007). Third, the cross-talk between the variant, metastasizing cells and the homeostatic mechanisms of the surrounding microenvironment can also influence the biologic behaviour of the metastatic cells (Fidler, 2002; Hunter, 2004). For instance, O_2 deprivation (hypoxia), a major tumour microenvironmental stress condition, has been associated with increased risk of metastatic dissemination in vivo (Pouyssègur et al., 2006; Bertout et al., 2008) and was shown to enhance invasiveness of several cancer cells in vitro (e.g. via upregulating expression/activity of various matrix metalloproteinase (MMPs) and cathepsins) (Canning et al., 2001; Burke et al., 2003; Brat et al., 2004; Ridgway et al., 2005). Furthermore, it has been shown that cancer cells prepare a “fertile ground” for their arrival in the secondary sites (Kaplan et al., 2005, Vaidya and Welch, 2007). Thus, melanoma cells were found to release soluble factors that stimulated lung fibroblasts to secrete fibronectin, thereby creating an attachment site for the arrival of vascular endothelial growth factor receptor (VEGFR) positive hematopoietic progenitor cells (Kaplan et al., 2005). These progenitor cells then secreted metalloproteinases that attracted chemokine receptor 4 (CXCR4) positive tumour cells (Kaplan et al., 2005).

Collectively, the observations summarised above support the view that new therapies and prognostic markers of metastasis should be targeted against not only
the metastatic cancer cells but also the surrounding microenvironmental (host) factors that interact with metastasizing tumour cells, promoting different stages of metastasis (Fidler, 2002). A better understanding of the metastasis as a multi-step process, with respect to such host homeostatic factors, could lead to identification of more effective diagnostic and/or therapeutic anti-metastasis targets. Clearly, therefore, an important task would be to identify novel genes/proteins involved in the mediation of the metastatic cascade. One promising target in this regard is the VGSC (Onkal and Djamgoz, 2009).

1.3.3 VGSC expression in metastatic disease

1.3.3.1 In vitro

Functional VGSC expression has been shown to be up-regulated significantly in metastatic cancers of various epithelial origins (i.e. breast, prostate) both in vitro and in vivo, and correlated with the potentiation of a number of metastatic cell behaviours (MCBs) in vitro (e.g. invasion, adhesion, etc.) (Table 1.5; Roger et al., 2006; Brackenbury et al., 2008; Onkal and Djamgoz, 2009). Functional VGSC expression in metastatic cancer cells was initially detected in the Dunning rat model of PCa, whereby strongly metastatic Mat-LyLu cells expressed TTX-S Na\(^+\) currents, whereas the weakly metastatic AT-2 cells did not (Grimes et al., 1995). Similarly, strongly metastatic human PCa cell line, PC-3, expressed functional VGSCs whereas there was no/little expression of VGSCs in weakly metastatic LNCaP cells (Laniado et al., 1997). Furthermore, TTX-R VGSCs were found in the strongly metastatic MDA-MB-231 human breast cancer (BCa) cells, but not in the weakly metastatic MCF-7 cells (Fraser et al., 2005). To date, VGSC expression has also been evidenced in several other carcinomas in vitro and, in some cases, in vivo, including, melanoma
Table 1.5 Expression/activity of VGSCs in metastatic cancer cells

<table>
<thead>
<tr>
<th>Cancer (cell line)</th>
<th>Major VGSC(s)¹</th>
<th>MCB(s)</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCa (MDA-MB-231)</td>
<td>nNav1.5</td>
<td>Transwell migration, Matrigel invasion, lateral motility, galvanotaxis,</td>
<td>Fraser et al. (2005); Roger et al. (2003); Brackenbury et al. (2007); Gillet</td>
</tr>
<tr>
<td></td>
<td>(1800x), Nav1.6, Nav1.7</td>
<td>endocytic membrane activity</td>
<td>et al. (2009); Chioni et al. (2010)</td>
</tr>
<tr>
<td>PCa (PC-3M, LNCaP, Mat-LyLu)</td>
<td>nNav1.7</td>
<td>Process extension, galvanotaxis, lateral motility, endocytosis; detachment,</td>
<td>Fraser et al. (1999, 2003); Djamgoz et al. (2001); Mycielska et al. (2003,</td>
</tr>
<tr>
<td></td>
<td>(1100x), Nav1.2, Nav1.3, Nav1.6</td>
<td>gene expression, Matrigel invasion</td>
<td>2005); Palmer et al. (2008); Grimes et al. (1995); Laniado et al. (1997);</td>
</tr>
<tr>
<td>SCLC (H69, H209, H510)</td>
<td>TTX-R², Nav1.3, Nav1.5, Nav1.6, Nav1.9</td>
<td>Endocytic membrane activity</td>
<td>Bennett et al. (2004); Nakajima et al. (2009)</td>
</tr>
<tr>
<td>NSCLC (H23, H460, Calu-1)</td>
<td>Nav1.5, Nav1.6, Nav1.7</td>
<td>Matrigel invasion</td>
<td>Roger et al. (2007)</td>
</tr>
<tr>
<td>Lymphoma (Jurkat)</td>
<td>Nav1.5, Nav1.6, Nav1.7, Nav1.9</td>
<td>Matrigel invasion</td>
<td>Fraser et al. (2004)</td>
</tr>
<tr>
<td>Mesothelioma (MPM)</td>
<td>Nav1.2, Nav1.6, Nav1.7</td>
<td>Lateral motility</td>
<td>Fulgenzi et al. (2006)</td>
</tr>
<tr>
<td>Colon cancer</td>
<td>Nav1.5</td>
<td>Matrigel invasion</td>
<td>House et al. (2010)</td>
</tr>
<tr>
<td>Ovarian cancer (Caov-3, SKOV-3)</td>
<td>Nav1.5, Nav1.2, Nav1.4, Nav1.7</td>
<td>Matrigel invasion, Transwell migration</td>
<td>Gao et al. (2010)</td>
</tr>
<tr>
<td>Neuroblastoma (nB1)</td>
<td>nNav1.5</td>
<td>ND</td>
<td>Ou et al. (2005)</td>
</tr>
<tr>
<td>Cervical cancer (JP, 085, 354)</td>
<td>Nav1.2, Nav1.7 Nav1.4, Nav1.6</td>
<td>ND</td>
<td>Diaz et al. (2007)</td>
</tr>
<tr>
<td>Melanoma (C8161, C8146)</td>
<td>ND</td>
<td>ND</td>
<td>Allen et al. (1997)</td>
</tr>
</tbody>
</table>

Abbreviations: BCa, breast cancer; MCB, metastatic cell behaviour; ND, not determined; nNav1.5, neonatal Nav1.5; NSCLC, non-small cell lung cancer; PCa, prostate cancer; SCLC, small cell lung cancer; VGSC, voltage-gated sodium channel. ¹ Pre-dominant isoforms are denoted in bold. Number in brackets indicates fold upregulation compared with corresponding weakly metastatic cells. ² Predominant isoform unknown, but IC₅₀ for TTX was 215 nM (Blandino et al., 1995). Modified from Onkal and Djamgoz (2009).
(Allen et al., 1997), small-cell lung cancer (SCLC) (Blandino et al., 1995; Onganer et al., 2005), non-small-cell lung cancer (NSCLC) (Roger et al., 2007), lymphoma (Fraser et al., 2004), neuroblastoma (Ou et al., 2005), cervical cancer (Diaz et al., 2007), mesothelioma (Fulgenzi et al., 2006), ovarian cancer (Gao et al., 2010) and colon cancer (House et al., 2010) (Table 1.5).

As regards the molecular identity of the VGSCα(s) expressed in metastatic PCa and BCa cell-lines, the predominant subtypes were Nav1.7 and Nav1.5, respectively, with much lower expression of various other VGSCα subtypes, as detailed in Table 1.5 (Diss et al., 2001; Fraser et al., 2005; Onkal and Djamgoz, 2009). Nav1.7 mRNA expression was ~1000-fold higher in strongly metastatic Mat-LyLu and PC-3 cell-lines, compared with the corresponding weakly metastatic cells (Diss et al., 2001). Similarly, Nav1.5 expression was found to be upregulated ~1800-fold in MDA-MB-231 cells, compared with the weakly metastatic MCF-7 cells (Table 1.5; Fraser et al., 2005; Chioni et al., 2009). Interestingly, in both Mat-LyLu and MDA-MB-231 cells, Nav1.7 and Nav1.5 were expressed primarily in their D1:S3 ‘neonatal’ splice-forms (Diss et al., 2001; Chioni et al., 2005; Fraser et al., 2005). In particular, there are 7 amino acid differences between ‘neonatal’ and ‘adult’ Nav1.5 in D1:S3/S4 linker region of the channel protein, which enabled the generation of a novel ‘neonatal’ Nav1.5 selective polyclonal antibody, NESOpAb that was used to confirm that functional ‘neonatal’ Nav1.5 expression was higher in MDA-MB-231 vs. MCF-7 cells (Section 1.2.2; Diss et al., 2004; Chioni et al., 2005; Fraser et al., 2005).

‘Neonatal’ Nav1.5 mRNA expression has also been detected in human neuroblastoma cells (Ou et al., 2005). As regards PCa, ‘neonatal’ and ‘adult’ D1:S3 splice variants of Nav1.7 differ only by two amino acids (Section 1.2.2), which would make the production of an antibody selective for ‘neonatal’ Nav1.7 more difficult.
1.3.3.2 In vivo

Consistent with in vitro evidence, ‘neonatal’ Nav1.5 expression was found to be upregulated in metastatic BCa biopsy samples using immunohistochemistry with NESOpAb (Fraser et al., 2005). Real-time PCR data revealed that Nav1.7 was upregulated at the mRNA level in PCa biopsy samples compared with normal epithelium and benign hyperplasia (Diss et al., 2005; Onkal and Djamgoz, 2009). Moreover, immunohistochemical staining of normal prostate and metastatic PCa specimens on a tissue microarray slide has shown that overall VGSC expression was upregulated in a subset of metastatic PCa tissues (Abdul and Hoosein, 2002). Similar immunohistochemical results were also obtained using SCLC biopsies (Onganer et al., 2005). Diss et al., (2005) performed an analysis of “receiver operator characteristics” of Nav1.7 mRNA expression in PCa samples concluded that Nav1.7 has sufficient selectivity and sensitivity to be viable prognostic marker of metastatic PCa. More recently, (i) multiple VGSCαs (i.e. Nav1.2, 1.4, 1.6, 1.7) have been identified in primary cultures as well as biopsy samples of cervical cancer (Diaz et al., 2007), (ii) strong immunohistochemical Nav1.5 staining have been detected in colon cancer specimens but not in normal colon tissues (House et al., 2010), and (iii) Nav1.5 and Nav1.4 expression have been found by real-time PCR to be upregulated in cancerous vs. normal ovarian tissue; immunohistochemistry experiments also revealed that grade and metastasis of ovarian cancer correlated well with VGSC expression (Gao et al., 2010).

1.3.4 Involvement of VGSCs in metastatic disease

There is substantial evidence, obtained using various independent techniques, for VGSC-mediated upregulation of a range of MCBs in vitro (Table 1.5). On the main
part, TTX, a highly selective VGSC blocker, has been employed to show that VGSC activity potentiates cellular behaviours related to metastatic cascade, including process extension (Fraser et al., 1999), galvanotaxis (Djamgoz et al., 2001; Fraser et al., 2005), lateral motility (Fraser et al., 2003), Transwell migration (Roger et al., 2003; Fraser et al., 2005), detachment (Palmer et al., 2008; Chioni et al., 2009), gene expression (Mycielska et al., 2005; House et al., 2010), secretory membrane activity (Mycielska et al., 2003), and Matrigel invasion (Grimes et al., 1995; Laniado et al., 1997; Bennett et al., 2004; Fraser et al., 2005; Brackenbury and Djamgoz, 2006, 2007; Brackenbury et al., 2007; Gillet et al., 2009; Chioni et al., 2010; House et al., 2010).

Changes in cell morphology is important in terms of migratory activities of cancer cells and TTX has been shown to reduce cellular process extension of strongly metastatic Mat-LyLu, but not weakly metastatic AT-2 rat PCa cell line, which do not express functional VGSCs (Fraser et al., 1999). Such effect of VGSCs on cell morphology has also been described in neurons (e.g. Wilkemeyer and Angelides 1996). VGSCs also play a role in motility of metastatic cancer cells; TTX (1 μM) decreased lateral motility of Mat-LyLu cells by 47% whilst aconitine (a VGSC ‘opener’) increased motility by 15%; neither drug had any effect on motility of AT-2 cells (Fraser et al., 2003). The directional movement of Mat-LyLu cells in direct-current electric field (‘galvanotaxis’) was also dependent on VGSC activity, since it was suppressed by TTX and enhanced by veratridine (another VGSC ‘opener’ drug) (Djamgoz et al., 2001). TTX also suppressed galvanotaxis and Transwell migration of highly metastatic MDA-MB-231 BCa cells (Roger et al., 2003; Fraser et al., 2005; Brackenbury et al., 2007; Chioni et al., 2009, 2010). Possible mechanisms of in vitro involvement of VGSC activity in motility of metastatic cancer cells can be explained
as follows: 1) Intracellular enzymes implicated in cellular motility, such as protein kinase C (PKC) (Glauthier et al., 2003) and/or protein kinase A (PKA) (Chioni et al., 2010) may be stimulated by VGSC activity. (2) Cell-surface pH may change (acidify) which may promote proteolytic enzyme (e.g. cathepsin) activity, digestion of the tumour periphery and invasion (Gillet et al., 2009; Li et al., 2011). (3) Association with cytoskeletal elements, e.g. through VGSCβs which has significant structural homology with immunoglobulin-type cell adhesion molecule (CAM) (Brackenbury and Isom, 2008). (4) VGSC-mediated regulation of expression of genes involved in cellular motility, such as CAMs (Itoh et al., 2004; House et al., 2010).

Cancer cells are known to synthesize and release protolytic enzymes during various stages of the metastatic cascade, particularly during the process of local invasion (Fidler, 2002; 2003; Nguyen and Massague, 2007; Roger et al., 2007). Secretory membrane activities of Mat-LyLu and AT-2 cell lines were investigated by employing a non-cytotoxic secretory tracer, horseradish peroxidase (HRP) (Mycielska et al., 2003). It was shown that HRP uptake into strongly metastatic Mat-LyLu cells was approximately twice that of weakly metastatic AT-2 cells. Importantly, TTX significantly reduced uptake into Mat-LyLu cells without affecting that of AT-2 cells, which suggested a role for VGSCs in secretory (endocytic) membrane activities of metastatic cancer cells (Mycielska et al., 2003). Similar results were obtained from SCLC cell lines (Onganer and Djamgoz, 2005). In addition, Krasowska et al. (2004) showed that VGSC activity was also involved in patterning of endocytic/vesicular activity of rat PCa cell lines. Also, in LNCaP and PC-3 human PCa cell lines, it was found using immunoanalytical techniques that VGSC-blocking anticonvulsants carbamazepine and phenytoin inhibited secretion of PSA (Abdul and Hoosein, 2001).
There is also strong evidence that VGSC activity enhances *invasiveness* of metastatic cancer cells. Originally, Grimes *et al.* (1995) showed that treatment of Mat-LyLu cells with TTX (600 nM) significantly reduced the Matrigel invasiveness of this cell line *in vitro*. The same dose of TTX had no effect on weakly metastatic AT-2 cells. Parallel studies on human PCa cells (highly metastatic PC-3 and lowly metastatic LNCaP) revealed similar results (Laniado *et al.*, 1997; Smith *et al.*, 1998). In a particularly significant study, three human PCa LNCaP cell lines with increasing invasive potential (/LC, C4 and C4-2) were shown to express corresponding increasing levels of VGSC protein (Bennett *et al.*, 2004). Importantly, transient expression of Nav1.4 in these three cell lines significantly enhanced their invasive potential, whilst treatment with TTX reduced their invasiveness back to control levels. This suggested that functional VGSCs are “necessary and sufficient” to enhance invasive phenotype of metastatic cancer cells (Bennett *et al.*, 2004). An important implication of this study was that although the predominant VGSCα expressed in metastatic human PCa cells is Nav1.7, over-expression of another VGSCα isoform (Nav1.4) was adequate to enhance invasiveness. This raised the question of whether the precise VGSCα subtype expressed is important to enhancement of MCBs or whether functional expression of any VGSC would suffice (Onkal and Djamgoz, 2009).

VGSC activity was also shown to play a role in the invasive behaviour of highly metastatic MDA-MB-231 BCa cells (Roger *et al.*, 2003; Fraser *et al.*, 2005; Gillet *et al.*, 2009). Both of these studies have shown that Matrigel invasion of MDA-MB-231 cells was reduced by up to some 50% following TTX treatment. Importantly, ‘neonatal’ Nav1.5, the predominant VGSCα in metastatic BCa cells (Fraser *et al.*, 2005; Chioni *et al.*, 2005), has been shown to be primarily responsible for the VGSC-
dependent enhancement of migration and invasion of MDA-MB-231 cells (Brackenbury et al., 2007; Chioni et al., 2010). Suppression of ‘neonatal’ Nav1.5 activity with (i) small interfering RNA (siRNA) or (ii) NESOpAb also reduced migration of MDA-MB-231 cells by ~40%. Both treatments also significantly reduced Matrigel invasion of MDA-MB-231 cell line (Brackenbury et al., 2007). Consistently, the role of VGSC in cell invasiveness has also been reported for Jurkat cells, a human T-cell leukemia cell line (Fraser et al., 2004). In NSCLC cell lines, H23, H460 and Calu-1, where multiple isoforms of VGSCs are expressed (predominantly Nav1.5, Nav1.6 and Nav1.7), TTX reduced in vitro invasion by 40-50% (Roger et al., 2007). This study proposed that VGSCs may play a role in the enhancement of metastatic processes, such as invasion, through their involvement in the regulation of intracellular [Na+] homeostasis (Roger et al., 2007). More recently, through TTX and siRNA experiments, VGSCs were found also to control invasiveness in ovarian and colon cancer cell lines in vitro (Gao et al., 2010; House et al., 2010).

The cellular mechanism(s) though which VGSCs participate in the modulation of invasiveness remains unknown. VGSCs have been shown to be involved in secretory activities of cancer cells (as noted above; also Mycielska et al., 2003). Thus, VGSC activity may control additional substances, such as presently unidentified proteases, growth factors etc. The invasive properties of non-small cell lung cancer (NSCLC) cell lines, as well as the metastatic breast cancer cell line MDA-MB-231 have been shown to be under control of proteolytic enzymes, such as metalloproteinases (MMPs) and cathepsins (Egeblad and Werb, 2002; Roger et al., 2003; Gillet et al., 2009, 2011). Moreover, VGSC (‘neonatal’ Nav1.5) activity was shown to result in acidification of the ‘perimembrane’ pH, which in turn enhanced the
proteolytic activity of secreted cysteine cathepsins, thereby ultimately upregulating the invasiveness of MDA-MB-231 BCa cells (Gillet et al., 2009, 2011).

It has also been suggested that VGSC activity is involved in hyper-proliferative state of cancer cells. For example, various VGSC blockers (e.g. hydroxyamides and hydantoin) have been shown to inhibit PC-3 cell proliferation in a reversible, non-cytotoxic manner (Anderson et al., 2003). VGSC blocking drugs riluzole and flunarizine were found to inhibit the proliferation of LNCaP, MDA-PCA-2B, PC-3 and DU145 PCa cell lines, whereas the VGSC ‘opener’ veratridine increased proliferation, suggesting a role for VGSC in the hyper-proliferating state of cancer cells (Abdul and Hoosein, 2002). However, these drugs are not specific for VGSC and are known to affect other ion channels (e.g. Duprat et al., 2000; Fraser et al., 2000). In fact, when the highly specific VGSC blocker TTX was applied to Mat-LyLu, PC-3 or MDA-MB-231 cells, no effect on proliferation was seen (Laniado et al., 1997; Fraser et al., 2000; Roger et al., 2003; Fraser et al., 2005; Chioni et al., 2009, 2010; Nakajima et al., 2009).

In contrast to the plethora of evidence for functional VGSC expression in metastatic cancer cells, the mechanism(s) responsible for the upregulation of VGSCs in these cells is not fully known. It has recently been shown that epidermal growth factor (EGF) increased VGSC current density and was partially responsible for the enhancement of migration in Mat-LyLu cell line (Ding et al., 2008). Serum factors are also known to be important in the upregulation of VGSCs in Mat-LyLu cells (Ding and Djamgoz, 2004). Increasing serum concentration from 0% to 5% for 24 h reduced VGSC current density and increased TTX sensitivity, which suggests that serum components may be responsible for transcriptional and/or post-translational modifications of VGSC expression in vitro. It has been shown that nerve growth
factor (NGF) upregulated the total VGSC α-subunit protein level, increased VGSC current density in a dose- and time-dependent manner, and produced currents with faster kinetics of activation (Brackenbury and Djamgoz, 2007). This study also showed that PKA activity was involved in NGF induced increase in VGSC current density, since PKA inhibitor KT5720 completely abrogated the effect of NGF on VGSC current enhancement (Brackenbury and Djamgoz, 2007). In addition, in the strongly metastatic Mat-LyLu cell line, activity dependent (auto) upregulation of VGSCs (Nav1.7) was described, and this shown to occur via a positive feedback mechanism involving PKA as a signalling intermediate (Brackenbury and Djamgoz, 2006). A similar positive auto-regulatory loop was also reported for functional VGSC (‘neonatal’ Nav1.5) expression in MDA-MB-231 BCa cells (Chioni et al., 2010).

Overall, VGSC autoregulation through positive feedback is unusual, and would suggest that blockage of VGSC activity in the short-term could lead to suppression of functional VGSC activity and expression in the long term. Clearly, this characteristic could contribute to VGSCs being an ideal anti-metastatic target.

1.3.5 Other ion channels expressed in prostate and breast cancers

Ion channels other than VGSCs have been shown to be involved in metastatic BCa and PCa. Both Mat-LyLu and AT-2 rat PCa cell lines expressed delayed-rectifier type voltage-gated potassium channel (VGPC) currents; however, the VGPC current density was significantly bigger for the weakly metastatic AT-2 cell line, in contrast to the higher / functional VGSC expression / activity in strongly metastatic Mat-LyLu cells (Fraser et al., 2000; 2003). Similar results were obtained in human PCa cell lines; weakly metastatic LNCaP cells possessed a larger VGPC current density compared to the corresponding strongly metastatic PC-3 cell line (Laniado et al., 2001). Fraser et al (2003) reported that the predominant VGPC isoform was Kv1.3,
alongside Kv1.4 and Kv1.6 in rat and human PCa cell lines. Consistently, in human BCa cells, weakly metastatic MCF-7 cells expressed much larger outward currents (consistent with VGPCs) as compared to small outward currents of the strongly metastatic MDA-MB-231 cells (Fraser et al., 2005). Combined pharmacology and immunocytochemistry data revealed that the primary isoform expressed in MCF-7 cell line was Kv1.1 (Ouadid-Ahidouch et al., 2000). Importantly, Kv1 family specific blocker α-dendrotoxin (α-DTX) reduced proliferation of MCF-7 cells, suggesting a role for Kv1.1 in growth regulation in this cell-line (Ouadid-Ahidouch et al., 2000). Several other studies have also observed this VGPC-dependent upregulation of proliferation in cancer cells (Wonderlin and Strobl, 1996; Fraser et al., 2000; 2003). It has been proposed that VGPCs may control/promote progression through the cell cycle G1 checkpoint by hyperpolarizing the membrane potential, which, in turn, might promote Ca$^{2+}$ release from intracellular stores, and/or Na$^+$-dependent membrane transport (Wonderlin and Strobl, 1996; Pardo et al., 2005).

Taken together, weakly metastatic cells have higher VGPC, but lower VGSC expression/activity, compared to strongly metastatic PCa and BCa cells. Interestingly, a similar phenomenon occurs also in the case of NSCLC (Roger et al., 2007). This implies that there may be swift down-regulation of VGPCs, concomitant with the upregulation of VGSCs during the progression of the metastatic disease (Onkal and Djamgoz, 2009). It would follow from such pairing of channel activities that the reduced VGPC activity may depolarize the resting membrane potential, which would favour VGSC activity (Onganer and Djamgoz, 2005; Fraser et al., 2005; Prevarskaya et al., 2007). Based on these observations, a “cellular excitability” (CELEX) hypothesis of cancer metastasis was recently proposed (Djamgoz and Isbilen, 2006; Onkal and Djamgoz, 2009); this agrees favourably with the well-
evidenced ‘neuronal’ phenotype of aggressive cancer cells (Liotta and Clair, 2000; Hagel and Stavrou, 2007; Brackenbury et al., 2008; Onganer et al., 2005). Another important aspect of the pairing between VGSC-VGPC activities is that the proposed role of VGPCs in proliferation might be important in terms of tumourigenesis, whilst the VGSC activity has been shown to enhance various metastatic cell behaviours, including motility and invasion. This is a clear example of primary tumourigenesis and metastatic being driven by non-identical sets of molecular controls. Targeting/inhibition of VGSC expression and activity may thus present novel diagnostic markers and therapeutic approaches that are specifically directed at the metastatic disease (Sikes et al., 2003; Rogers et al., 2006; Onkal and Djamgoz, 2009).

Apart from VGSCs and VGPCs, Ca\(^{2+}\) channel and pump activity has also been implicated in metastatic behaviour of cancer cell lines such as those of prostate cancer, breast cancer, head and neck squamous cell carcinoma, pulmonary adenocarcinoma, rhabdomyoblastoma, fibrosarcoma and retinoblastoma (Wang et al., 2010; Liao et al., 2006; Huang et al., 2004; Zhong et al., 2010; Wu et al., 1997; Amuthan et al., 2002; Amuthan et al., 2001; Cook and Lockyer, 2006; Wertz and Dixit, 2000; Lehen’kyi et al., 2007). Changes in intracellular Ca\(^{2+}\) level have been shown to play important role in cellular processes including fertilization (Ozlil and Swann, 1995), cell cycle (Ding et al., 2010), apoptosis (Norberg et al., 2008), mitochondrial redox state (Hajnóczky et al., 1995), differential gene expression (Wang et al., 2010; Liao et al., 2006; Dolmetsch et al., 1998; Li et al., 1998; Haisenleder et al., 2001; Buonanno and Fields, 1999; Olson and Williams, 2000), motility / invasion (Amuthan et al., 2002; Wei et al., 2009; Huang et al., 2004; Komuro and Rakic, 1996), muscle contraction (Baylor and Hollingworth, 2010),
pacemaker activity (Méry et al., 2005), growth cone turning / migration (Gomez et al., 1995; Gomez et al., 2001), axonal growth (Tang et al., 2003), development of neurotransmitter phenotype (Ciccolini et al., 2003), formation of nodules in plant root hairs (Ehrhardt et al., 1996), development of muscles (Ferrari et al., 1998), release of cytokines (Uhlén et al., 2000), exocytosis (Tse et al., 1993), adhesion (Giannone et al., 2002; Liao et al., 2006), chemotaxis (Mycielska et al., 2004), and synaptic plasticity (Parkash and Asotra, 2010; Berridge, 1998, 2009).

Basal \([\text{Ca}^{2+}]_i\) is tightly controlled and maintained at \(\leq 100\) nM (higher level / long periods of \([\text{Ca}^{2+}]_i\) rise can be cytotoxic), while extracellular \(\text{Ca}^{2+}\) concentration is at mM level. The intracellular \(\text{Ca}^{2+}\) is maintained by a complex set of mechanisms including channels, exchangers and pumps (Parkash and Asotro, 2010; Berridge et al., 2003; Berridge et al., 1998). Accordingly, \(\text{Ca}^{2+}\) signals must be mediated only by brief changes in \([\text{Ca}^{2+}]_i\) (Parkash and Asotro, 2010; Rey et al., 2010; Clapman, 2007; Berridge et al., 1998). These brief changes can be mediated by influx of extracellular \(\text{Ca}^{2+}\) and/or release of \(\text{Ca}^{2+}\) from intracellular stores (Roderck and Cook, 2008; Clapham, 2007; Berridge et al., 2003; Berridge et al., 1998). Channels that are responsible for influx of \(\text{Ca}^{2+}\) can be divided into three groups: Voltage-gated, receptor-operated and store-operated \(\text{Ca}^{2+}\) channels (Berridge et al., 1998). Another significant mediator of \(\text{Ca}^{2+}\) influx is \(\text{Na}^+ - \text{Ca}^{2+}\) exchanger (NCX) operating in reverse-mode. Under resting conditions, following an increase in \([\text{Ca}^{2+}]_i\), NCX works by extruding one \(\text{Ca}^{2+}\) ion in exchange of three \(\text{Na}^+\) ions (Blaustein and Lederer, 1999). Importantly, it was shown that influx of \(\text{Na}^+\) through opening of VGSCs can significantly raise localized intracellular \(\text{Na}^+\) concentration and can consequently slow or reverse NCX activity and thus significantly increase the intracellular \(\text{Ca}^{2+}\) concentration (Sagel et al., 1991; Gosling et al., 1998) as well as
TRP channels (Poburka, et al., 2007; Eder et al., 2005; Rosker et al., 2004; Arnon et al., 2000). In addition, two channels, ryanodine receptor (RyR) and inositol-triphosphate receptor (IP$_3$R) have been implicated in release of Ca$^{2+}$ from intracellular stores (Campbell et al., 1987; Streb et al., 1983). Furthermore, sarcoplasmic-endoplasmic reticulum Ca$^{2+}$-ATPase (SERCA), plasma membrane Ca$^{2+}$-ATPase (PMCA) and mitochondrial Ca$^{2+}$ uniporter can also contribute to Ca$^{2+}$ signalling (Berridge et al., 2003; Berridge et al., 1998).

Changes in expression profiles of these Ca$^{2+}$ channels and pumps have been documented in various cancer types (Table 1.6) and it has been proposed that such changes can play an important role in carcinogenesis (Parkash and Asotor, 2010; Monteith et al., 2007). For example, various cation-permeant transient receptor potential (TRP) channel family members, including TRPC1, TRPC3, TRPC4, TRPV2, TRPV6 and TRPM8, were detected in PCa cells (Abeele et al., 2003a; Abeele et al., 2003b; Abeele et al., 2004; Fixemer et al., 2003; Schmidt et al., 2006; Thebault et al., 2005). Importantly, increases in TRPM8 (Tsavaler et al., 2001; Fuessel et al., 2003; Schimidt et al., 2006) and TRPV6 (Zhuang et al., 2002; Fixemer et al., 2003; Wissenbach et al., 2001; Peng et al., 2001) mRNA expression were documented in prostate cancer tissue samples. Interestingly, in Mat-LyLu and AT-2 cells, voltage gated calcium channel (VGCC) activity was not present (Ding et al., 2008). However, using Indo-1 microfluorimetry, AT-2 cells were found to have higher [Ca$^{2+}$]$_i$ than Mat-LyLu cells (Ding et al., 2008). That study also found that raising extracellular [Ca$^{2+}$] increased while raising extracellular [K$^+$] decreased [Ca$^{2+}$]$_i$ in AT-2 but had no effect on Mat-LyLu cells. It was proposed, therefore, that the weakly metastatic AT-2 cells possessed a voltage-independent Ca$^{2+}$ permeation mechanism, which was down-regulated/absent in the strongly metastatic Mat-LyLu
Table 1.6 Changes in expression of Ca\(^{2+}\) channels and pumps in cancer

<table>
<thead>
<tr>
<th>Ca(^{2+}) Channel/pump</th>
<th>Type of cancer</th>
<th>mRNA level</th>
<th>Protein level</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage gated channels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaV1.2</td>
<td>Colon cancer</td>
<td>↑</td>
<td>n.d.</td>
<td>Wang et al., 2000</td>
</tr>
<tr>
<td>CaV1.1</td>
<td>Colorectal cancer</td>
<td>↑</td>
<td>n.d.</td>
<td>Zhang et al., 1997</td>
</tr>
<tr>
<td>CaV3.1</td>
<td>Glioma</td>
<td>↑</td>
<td>n.d.</td>
<td>Latour et al., 2004</td>
</tr>
<tr>
<td>CaV3.3</td>
<td>Colon cancer</td>
<td>↓</td>
<td>n.d.</td>
<td>Toyota et al., 1999</td>
</tr>
<tr>
<td>TRP channels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRPV1</td>
<td>Bladder cancer</td>
<td>n.d.</td>
<td>↓</td>
<td>Lazzeri et al., 2005</td>
</tr>
<tr>
<td></td>
<td>Glioma</td>
<td>↑</td>
<td>↑</td>
<td>Contassot et al., 2004</td>
</tr>
<tr>
<td>TRPV6</td>
<td>Prostate, breast, ovary, thyroid and</td>
<td>↑</td>
<td>n.d.</td>
<td>Fixemer et al., 2003; Zhuang et al., 2002</td>
</tr>
<tr>
<td></td>
<td>colorectal cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRPM1</td>
<td>Melanoma</td>
<td>↓</td>
<td>n.d.</td>
<td>Deeds et al., 2000</td>
</tr>
<tr>
<td>TRPM8</td>
<td>Prostate, colorectal cancer</td>
<td>↑</td>
<td>n.d.</td>
<td>Schmidt et al., 2006; Tsavalet et al., 2001</td>
</tr>
<tr>
<td>Pumps</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERCA2</td>
<td>Colon and lung cancer</td>
<td>↓</td>
<td>n.d.</td>
<td>Korosec et al., 2006</td>
</tr>
<tr>
<td></td>
<td>Tyroid, oral, cancer; squamous cell cancer</td>
<td>↓</td>
<td>↓</td>
<td>Pacifico et al., 2003; Endo et al., 2004</td>
</tr>
<tr>
<td></td>
<td>Colorectal cancer</td>
<td>↑</td>
<td>n.d.</td>
<td>Chung et al., 2006</td>
</tr>
<tr>
<td>SERCA3</td>
<td>Colon cancer</td>
<td>n.d.</td>
<td>↓</td>
<td>Brouland et al., 2005</td>
</tr>
<tr>
<td>PMCA</td>
<td>Skin and lung cancer</td>
<td>n.d.</td>
<td>↓</td>
<td>Reisner et al., 1997</td>
</tr>
<tr>
<td></td>
<td>Oral cancer, squamous cell carcinoma</td>
<td>↓</td>
<td>↓</td>
<td>Saito et al., 2006</td>
</tr>
<tr>
<td>PMCA1</td>
<td>Breast cancer</td>
<td>↑</td>
<td>n.d.</td>
<td>Lee et al., 2002</td>
</tr>
<tr>
<td></td>
<td>Skin cancer</td>
<td>↓</td>
<td>n.d.</td>
<td>Reisner et al., 1997</td>
</tr>
<tr>
<td>PMCA2</td>
<td>Breast cancer</td>
<td>↑</td>
<td>n.d.</td>
<td>Lee et al., 2005</td>
</tr>
<tr>
<td>PMCA4</td>
<td>Skin cancer</td>
<td>↓</td>
<td>n.d.</td>
<td>Reisner et al., 1997</td>
</tr>
<tr>
<td>Store-release channels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RyR1</td>
<td>Thymoma</td>
<td>↓</td>
<td>n.d.</td>
<td>Kusner et al., 1998</td>
</tr>
<tr>
<td>IP3R2</td>
<td>Non-small-cell lung cancer</td>
<td>↑</td>
<td>n.d.</td>
<td>Heighway et al., 1996</td>
</tr>
<tr>
<td>IP3R3</td>
<td>Gastric cancer</td>
<td>↑</td>
<td>↑</td>
<td>Sakakura et al., 2003</td>
</tr>
</tbody>
</table>

CaV, voltage-gated Ca\(^{2+}\) channel; TRP, transient receptor potential canonical; TRPM, transient receptor potential melastatin; TRPV, transient receptor potential vanilloid; SERCA, sarcoplasmic/endoplasmic reticulum Ca\(^{2+}\)-ATPase; PMCA, plasma membrane Ca\(^{2+}\)-ATPase; RyR, ryanodine receptor; IP3R, inositol 1,4,5-triphosphate receptor; n.d., not determined; ↑, increase; ↓, decrease. Modified from Parkash and Asotro, 2010.
cells (Ding et al., 2008). On the other hand, VGCC expression was detected in LNCaP cell line in one study (Mariot et al., 2002; Toyota et al., 1999; Steinsapir et al., 1991), but not in another (Skryma et al., 1997).

It was suggested that extracellular Ca2+ concentration is a possible mediator of PCa bone metastasis (Liao et al., 2006). Thus, Liao et al. (2006) showed that extracellular Ca2+ enhanced proliferation of skeletal metastatic PC-3 and C4-2B cells but not non-skeletal metastatic LNCaP human prostate cells. In addition, extracellular Ca2+ was shown to increase adhesion of PC-3 cells via the anti-apoptotic Akt signalling pathway (Liao et al., 2006). As mentioned above, Ca2+ signalling was shown to be important in MCBs of cancer cell lines, including in PCa (Wang et al., 2010; Monet et al., 2010; Gkika et al., 2010; Liao et al., 2006; Mycielska and Djamgoz, 2003; Mycielska and Djamgoz, 2004). For example, Mycielska and Djamgoz (2003, 2004) proposed that Ca2+ signalling plays important role in galvanotaxis and endocytosis membrane activity of Mat-LyLu cells. In addition, Ca2+ signalling was shown to regulate PCa cell motility via the Ca2+/calmodulin-dependent protein kinases II (CaM kinases II) pathway (Wang et al., 2010). TRP channels were shown to be involved in MCBs of PCa cells. For instance, silencing of TRPV2 by siRNA reduced growth and invasion of PC-3 cells (Monet et al., 2010). On the other hand, TRP8M activation by PSA was reported to decrease motility of PC-3 cells (Gkika et al., 2010).

1.3.6 Possible downstream mechanisms involved in VGSC activity-dependent promotion of MCBs

The possible cellular mechanism(s) which are downstream to VGSC activity that lead to modulation of MCBs remains unknown. However, a number of possible mechanisms can be suggested, as follows:
I. VGSC mediated change in gene expression: House et al. (2010) showed that Nav1.5, predominant VGSCα subunit functionally expressed in colon cancer cells, activity regulates genes expression including genes involved in cell migration, invasion and cycle control.

II. Association with other proteins: Multiple proteins were shown to interact with VGSC such as ankyrin, calmodulin, VGSCβ and annexin and these were suggested to play role in MCBs. For example, VGSCβs that have homology with immunoglobulin CAMs can associate with cytoskeletal elements (Brackenbury and Isom 2008).

III. Activating of the cAMP/PKA pathway: Blackenbury and Djamgoz (2006) showed that increase in intracellular Na\(^+\) (including by VGSC activity) leads to increase in phosphorylated PKA level. In turn, the increase in PKA activity could phosphorylate cytoskeletal proteins that is involved in MCBs (Mycielska et al., 2003).

IV. VGSC mediated change in pH: Na\(^+\) influx through activity of VGSC was suggested to be capable of altering intracellular pH by disrupting activity of Na\(^+\)/H\(^+\) exchange (Mycielska et al., 2003). On the other hand, Gillet et al., (2009) showed that VGSC activity results in perimembrane acidification and intracellular alkalization which leads to increased proteolytic activity of cathepsins and therefore increased invasiveness of MDA-MB-231 cells.
V. Modulation Ca\(^{2+}\) signalling by VGSC activity: The influx of Na\(^+\) can slow or even reverse Na\(^+\)/Ca\(^{2+}\) exchanger (NCX) activity which, in turn, can result in increased intracellular Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_i\)) (Poburko et al., 2007; Eder et al., 2005; Rosker et al., 2004; Arnon et al., 2000; Blaustein and Lederer, 1999; Matsuka and Hilgemann; Miura and Kimura, 1989). This increase in [Ca\(^{2+}\)]\(_i\) may activate Ca\(^{2+}\)-sensitive signalling mechanisms and modulate MCBs (Parkash and Asotro, 2010; Monteith et al., 2007). For instance an increase in [Ca\(^{2+}\)]\(_i\) on the anodal side was suggested to determine the directionality of galvanotaxis in metastatic cells (Mycielska and Djamgoz 2004). Similarly, Mycielska and Djamgoz (2003) proposed that an increase in [Ca\(^{2+}\)]\(_i\) could lead to increased endocytosis and secretion by activation of protein kinase C and/or CaM kinase.

1.4 Aims and scope of the present study

It is clear from this Introduction that ionic mechanisms such as VGSC expression/activity and Ca\(^{2+}\) signalling are important in the control of MCBs in PCa. Therefore, it was suggested that targeting ionic mechanisms could be useful in cancer therapy. Importantly, Ca\(^{2+}\) signalling may be downstream to VGSC activity leading to potentiation of MCBs. In addition, microenvironmental factors, such as O\(_2\) level, were proposed to regulate VGSC expression/activity. The main aim of this study was to elucidate cellular / ionic mechanisms related to functional VGSC expression in PCa cells. A multi-faceted approach was used, including real-time PCR (to measure changes in mRNA expression), Western blotting (to measure total protein level),
immunocytochemistry and confocal microscopy (to measure sub-cellular distribution of proteins), live Ca\(^{2+}\) imaging (to measure changes in intracellular Ca\(^{2+}\) level), and *in vitro* lateral motility, transverse migration, and Matrigel invasion assays (to evaluate effects on MCBs). The specific aims were as follows:

1. To investigate VGSC α- and β- subunit regulation by long-term hypoxia (24 h, 2 % O\(_2\)) in strongly metastatic (Mat-LyLu) and weakly metastatic (AT-2) rat PCa cell lines;

2. To evaluate possible effects of clinical pharmacological blockers of VGSCs on (i) VGSC α expression and (ii) MCBs in Mat-LyLu cells under normoxic (21 % O\(_2\)) and hypoxic (2 % O\(_2\)) conditions; and

3. To characterise intracellular Ca\(^{2+}\) signalling and its dependence on VGSC activity in human metastatic PCa PC3M cells.
Chapter 2

MATERIALS AND METHODS
The present study employed a variety of materials and techniques. These are detailed in this chapter.

2.1 Cell lines and culture conditions

The following prostate cancer (PCa) cell lines were used: Dunning rat, AT-2 and Mat-LyLu, and human LNCaP and PC-3M. Mat-Lylu and PC-3M cells are strongly metastatic; AT-2 and LNCaP are weakly/non-metastatic (Isaacs et al., 1981; Chu et al., 2001). The Dunning cell lines at least partially reflect clinical behaviour. Mat-LyLu cells are strongly metastatic whilst AT-2 cells are weakly metastatic cells, corresponding to a central issue in clinical management of PCa, i.e. which tumour cells would metastasise and which would not. A possible limitation of the Dunning (Mat-LyLu) cells is that, when injected into Copenhagen rats, they tend not to metastasise to bone, one of the main secondary sites of human PCa. Human PC-3M cells were used in order to increase the clinical relevance of the effects observed. All cells were seeded into 100 mm Falcon tissue culture dishes (Becton Dickinson Ltd.) and grown in an incubator (Sanyo, IncuSafe MCO-18AIC) at 37 °C, 100 % relative humidity and 5 % CO₂. Cells were grown to confluence and serially passaged every 24 h using fresh culture medium. In ‘chronic hypoxia’ experiments, cells were grown in a dedicated hypoxia chamber (RSBioptech, Galaxy 14S), which maintained 2 % O₂ by flow of nitrogen which was regulated by built-in calibrated O₂ meter. In order to avoid passage-dependent effects on cultured cells’ phenotype, passage numbers of cells were restricted to a maximum of 15. In addition, cell lines were monitored routinely by checking morphology and expression/activity of VGSC, as indirect controls for any change in phenotype. Finally, our collaborators at Istanbul
University showed routinely that Mat-LyLu cells injected subcutaneously into Copenhagen rats induced extensive lung metastases (within about 3 weeks).

2.1.1 Dunning rat PCa cell lines

AT-2 and Mat-LyLu were derived originally from a spontaneously occurring prostatic tumour of a Copenhagen rat; the tumour was well-differentiated, slow growing and heterogeneous, i.e. composed of both androgen–dependent and androgen–independent tumour cells (Dunning 1963; Isaacs et al., 1981). Both AT-2 and Mat-LyLu cells are androgen-insensitive, fast-growing and anaplastic. AT-2 cells are associated with a low rate of metastasis (less than 1 %); Mat-LyLu cells are strongly metastatic (75-90 %) (Isaacs et al., 1981). The cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium (Invitrogen) supplemented with 2 mM L-glutamine (Invitrogen), 250 nM dexamethasone (Sigma-Aldrich) and 1 % foetal bovine serum (FBS) (Invitrogen), as described previously (e.g. Grimes et al., 1995). These cells lines were selected since they are well characterized, had markedly different metastatic ability (as mentioned above) and had significantly different VGSC expression/activity profiles. In particular, the strongly metastatic Mat-LyLu cells express a high level of functional VGSC (Grimes et al., 1995). Intracellular Ca\(^{2+}\) measurements were made on PC3M cells, which also express functional VGSCs (Laniado et al., 1997), in order to be able to relate increase the clinical relevance of the data.

2.1.2 Human PCa cell lines

The PC-3M cells were originally isolated from a liver metastasis produced in nude mice by injection of the parental human PCa PC-3 cells (Kaighn et al., 1979; Kozlowski et al., 1984). The LNCaP cell line was isolated originally from a lymph
node metastasis of a 50-year old Caucasian male PCa patient (Horoszewicz et al., 1980). LNCaP cells are generally much less aggressive than the PC-3M cells (Chu et al., 2001). Both PC-3M and LNCaP cells were maintained in RPMI 1640 medium (Invitrogen) supplemented with 4 mM L-glutamine (Invitrogen) and 10 % foetal bovine serum (FBS) (Invitrogen), as described previously (Laniado et al., 2001). Intracellular Ca$^{2+}$ measurements were made on PC3M cells, which also express functional VGSCs (Laniado et al., 1997), in order to be able to relate increase the clinical relevance of the data.

2.2 Pharmacology

2.2.1 Pharmacological agents

Pharmacological agents were prepared as stock solutions in appropriate solvents (Table 2.1) and stored at -20 °C. Stock solutions were diluted to working concentration in culture medium or mammalian physiological saline (MPS) minutes before application. In all treatments that lasted longer than 24 h, culture medium ± pharmacological agents was replaced every 24 h.

2.2.2 Toxicity assay

In order to determine the possible cellular toxicity of the pharmacological agents used at their working concentrations, trypan blue exclusion assay was used as described previously (Fraser et al., 2003). Briefly, cells were plated into 35 mm Falcon tissue culture dishes at a density of 3 x 104/ml and allowed to settle overnight before treatment. Cell culture medium ± pharmacological agent was then replaced with 0.1 % trypan blue (Sigma-Aldrich) in normal medium. Following incubation for 10 min at 37 °C, the solution was replaced with 1 ml fresh cell culture medium and the cells were viewed at 40x magnification under an inverted microscope (Carl
Table 2.1 Summary of pharmacological agents used in the present study.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Solvent</th>
<th>Working concentration</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTX</td>
<td>Water/MPS</td>
<td>1 μM</td>
<td>Alomone</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>Water</td>
<td>1 – 1000 μM</td>
<td>Sigma</td>
</tr>
<tr>
<td>Procaine</td>
<td>Water</td>
<td>1 – 1000 μM</td>
<td>Sigma</td>
</tr>
<tr>
<td>Ranolazine</td>
<td>Water</td>
<td>20 – 300 μM</td>
<td>Sigma</td>
</tr>
<tr>
<td>Riluzole</td>
<td>DMSO (30%) in water</td>
<td>1 – 100 μM</td>
<td>Sigma</td>
</tr>
<tr>
<td>Thapsigargin</td>
<td>MPS</td>
<td>5 μM</td>
<td>Sigma</td>
</tr>
<tr>
<td>Caffeine</td>
<td>MPS</td>
<td>10 mM</td>
<td>Sigma</td>
</tr>
<tr>
<td>Ryanodine</td>
<td>MPS</td>
<td>50 μM</td>
<td>Sigma</td>
</tr>
</tbody>
</table>

Abbreviations: TTX (tetrodotoxin), MPS (mammalian physiological saline), DMSO (dimethyl sulfoxide)
Zeiss). For each treatment, the percentage of dead cells was determined from 30 randomly selected fields of view which had at least 30 cells. This procedure was repeated in three separated dishes. Data are presented as averages of 3x30 measurements.

2.3 Polymerase chain reaction (PCR)

2.3.1 RNA extraction
Total RNA was extracted from cells using TRIzol® reagent (Invitrogen), according to the manufacturer’s instructions. Briefly, after washing the cells with ice-cold phosphate buffered saline (PBS) (Invitrogen), cells were lysed by adding 1 ml of TRIzol® reagent and homogenised by pipetting several times. Samples were mixed with 0.2 ml chloroform (Sigma-Aldrich) after 5 min incubation at room temperature. Following centrifugation (Labofuge 400R, Heraus) at 12,000 x g for 15 min at 4 °C, the top aqueous phase, which contains the RNA, was transferred to a fresh tube and mixed with 0.5 ml isopropyl alcohol (Sigma-Aldrich). Samples were incubated at room temperature for 10 min and centrifuged at 12,000 x g for 10 min at 4 °C. After removing supernatant, precipitated RNA was washed with 1 ml of 75 % (v/v) ethanol (Sigma-Aldrich) and centrifuged at 7,500 x g for 5 min at 4 °C. Supernatant was removed and RNA samples were air dried for 30 min before redissolving in RNase and DNase free water (Invitrogen). RNA samples were treated with DNaseI (Amersham Biosciences) in order to remove any DNA contamination. The quantity of the extracted RNA was checked by spectrophotometric absorbance at 260 nm (NanoDrop 1000A, Thermo Scientific). The quality of the RNA was confirmed by the 260 : 280 nm spectrophotometric absorbance ratio, where a value of ≥ 2.0 indicated good quality of extracted RNA (Sambrook et al., 1989). In addition, RNA
quality was assessed visually by agarose gel electrophoresis by observing 28S and 18S rRNA bands (Section 2.3.4; Figure 2.1). All RNA samples were stored at -20 °C for 1 month.

2.3.2 cDNA synthesis

One µg of RNA was used as a template for reverse-transcription into cDNA, as described previously (Mycielska et al., 2005). Each reaction contained 1 µg RNA, 250 ng random hexamer mix (Amersham Biosciences), 1 µl Superscript II reverse-transcriptase (Invitrogen), 2 µl 0.1 M DTT (Invitrogen), 4 µl Superscript II first strand buffer (x5) (Invitrogen), 1 µl 10 mM dNTP mix (Pharmacia Biotech), 1 µl (33.8 U) porcine RNA guard (Amersham Biosciences), and DNase and RNase free distilled water to make up final volume to 20 µl. For each sample, a control reaction was performed in which Superscript II reverse transcriptase was replaced with H2O as a control for any genomic contamination. Synthesized cDNA was stored at -20 °C after it was diluted (x5) in DNase and RNase free distilled water.

2.3.3 Real-time PCR

Real-time PCR employing SYBR I Green technology was used to study and quantify gene expression, as described previously (Mycielska et al., 2005). Briefly, 10 µl of QuantiTech SYBR Green PCR mix (Qiagene), 5 µl cDNA, 0.5 µM of both sense and antisense primers (Eurofin MWG) were mixed. Final volume was made up to 20 µl with RNase and DNase free distilled water. Amplification was performed using the DNA Engine Opticon 2 System (MJ Research). Reaction was started by heating at 95 °C for 15 minutes to activate HotStar Taq. This was followed by 3-step 40 cycles of
Figure 2.1 Visual assessment of RNA quality by agarose gel electrophoresis.
The quality of the extracted RNA was characterized by observing higher intensity of 28S rRNA band and low intensity 18S rRNA band. 5 µl of total RNA from AT-2 cells (lane 1) and Mat-LyLu cells (lane 2) were run on a 0.8 % agarose gel.
95 °C for 30 seconds, annealing temperature depending on the primer used for 30 seconds (Table 2.2) and 72 °C for 30 seconds. After each cycle, the fluorescence emitted by incorporation of SYBR Green to double stranded DNA was measured (Figure 2.2A-D). In order to verify the product composition, a melting curve was carried out from 65 °C to 95 °C with 0.3 °C steps at the end of the reaction (Figure 2.2E-H). For each cDNA sample, duplicate reactions were performed for both the target gene and the normalizing (control) gene (Cyth5R/ β-actin) simultaneously. Each set of reaction also included a non-template control, where the cDNA was replaced by DNase- and RNase-free distilled water. Standard calibration curve for each target gene using four serial dilutions of a cDNA template was also carried out (Figure 2.3). PCR product sizes were controlled by agarose gel electrophoresis (see Section 2.3.4). Opticon Monitor 2 software (MJ Research) was used to determine the threshold amplification cycles (Ct). The $2^{ΔΔCt}$ method (Livak and Schmittgen, 2001) was used to analyze the data using following equation:

$$y = 2^{-([mean ΔC_t] - [mean ΔC_t _control])}$$

equation 2.1

where y is the target gene mRNA level relative to control sample, and ΔCt is the difference in amplification threshold cycle numbers between target and normalizing genes. The relative target gene levels were expressed as mean ± standard error (SEM) from at least three separate repeats.

2.3.4 Agarose gel electrophoresis

PCR products were separated by agarose gel electrophoresis. Five µl samples were mixed with 1 µl of loading buffer (x6; containing bromophenol blue and glycerol) and loaded on 0.8 % (w/v) agarose (Sigma-Aldrich), 1 x Triz-HCl-Borate EDTA (TBE; Invitrogen) gel containing 5 µl of SYBRSafe™ DNA gel stain (Invitrogen).
<table>
<thead>
<tr>
<th>Target gene</th>
<th>Primer sequence</th>
<th>T_a (°C)</th>
<th>Product size (bp)</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rNav1.7</td>
<td>Sense 5'-TGACCTGGGAAGCTGGGAAAC-3' 5'-TTCCAAGGGGCTACGAGGA-3'</td>
<td>60</td>
<td>414</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Antisense 5'-TTCCAAGGGGCTACGAGGA-3' 5'-TGACCTGGGAAGCTGGGAAAC-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGSCβ1</td>
<td>Sense 5'-AACCACTCTGGCGACTACGA-3' 5'-TTCCCAGGACCTGGTATG-3'</td>
<td>60</td>
<td>258</td>
<td>Seda et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>Antisense 5'-TTCCCAGGACCTGGTATG-3' 5'-AACCACTCTGGCGACTACGA-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGSCβ2</td>
<td>Sense 5'-TGGACTTACCAGGAGTGTGCAA-3' 5'-AGGCACCACGATGACTG-3'</td>
<td>60</td>
<td>295</td>
<td>Seda et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>Antisense 5'-AGGCACCACGATGACTG-3' 5'-TGGACTTACCAGGAGTGTGCAA-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGSCβ3</td>
<td>Sense 5'-TCCTCACCTGTGGCTGT-3' 5'-ACCTGGGCCACTGGTATG-3'</td>
<td>60</td>
<td>233</td>
<td>Seda et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>Antisense 5'-ACCTGGGCCACTGGTATG-3' 5'-TCCTCACCTGTGGCTGT-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGSCβ4</td>
<td>Sense 5'-TCCTCAATAACACAGCGGATTTCC-3' 5'-TCCCTCTCTTCCGGTTTCT-3'</td>
<td>60</td>
<td>215</td>
<td>Seda et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>Antisense 5'-TCCCTCTCTTCCGGTTTCT-3' 5'-TCCTCAATAACACAGCGGATTTCC-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-actin</td>
<td>Sense 5'-TCCTGGGAAGAGCTACGA-3' 5'-ATCTGCTGGGAGGAGGAACG-3'</td>
<td>60</td>
<td>362</td>
<td>Seda et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>Antisense 5'-ATCTGCTGGGAGGAGGAACG-3' 5'-TCCTGGGAAGAGCTACGA-3'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytb5R</td>
<td>Sense 5'-ACACGCATCCCCAAGTTTCCA-3' 5'-CATCTCCTCATCCGAGCC-3'</td>
<td>60</td>
<td>425</td>
<td>Diss et al. (2001)</td>
</tr>
<tr>
<td></td>
<td>Antisense 5'-CATCTCCTCATCCGAGCC-3' 5'-ACACGCATCCCCAAGTTTCCA-3'</td>
<td></td>
<td></td>
<td>Brackenbury et al. (2007)</td>
</tr>
</tbody>
</table>
Figure 2.2 Real-time PCR amplification and melting curves (typical examples).

Fluorescence from SYBER green incorporation to double stranded DNA was measured after each PCR cycle (A-D). PCR product composition was verified by heating from 65 °C to 95 °C in 0.3 °C steps at the end of the PCR amplification (E-H). These experiments carried out using x1, x10, x100 and x1000 diluted cDNA which was synthesized from RNA of Mat-LyLu cells grown (24 h) at control conditions. Amplified products were, Cytb5R (A and E), β-actin (B and F), Nav1.7 (C and G) and VGSCβ1 (D and H).
Figure 2.3 Standard calibration (dilution) curves to validate PCR efficiency.

Four dilutions (x1, x10, x100, and x1000) of cDNA, synthesised from Mat-LyLu cells which were grown in control conditions, were amplified using PCR reaction in order to determine efficiency of each primer set used. Two sample ΔCₜ calibration curves are shown, where target genes are Nav1.7 (A) and VGSCβ1 (B), and normalizing gene is β-actin. ΔCₜ was calculated by subtracting threshold amplification cycle of normalizing gene from target gene. Data are presented as means ± SEM (n = 3) and were fitted using linear regression analysis (solid line). Slopes of linear regression lines were statistically (non-paired t-test, p >0.05) not different from zero, indicating that efficiency of primers used are similar, validating the 2⁻ΔΔCₜ method (Livak and Schmittgen, 2001).
Samples were visualised with an ultraviolet (UV) imager (Uvitec system, Jencons-Pls).

2.4 Western blotting

2.4.1 Extraction of total protein

Cells from 70-80 % confluent 35 mm Falcon tissue culture dishes were washed twice in ice cold PBS and lysed in ice-cold lysis buffer (Upstate Biotechnology) containing 50 mM Tris-HCl (pH 7.4), 1 % NP-40, 0.25 % Na-deoxycholate, 150 mM NaCl, 1 mM EDTA, 1 mM NaF, 1 µg/ml aprotinin, 1 µg/ml leupeptin, 1 µg/ml pepstatin and 1 mM phenylmethanesulfonylfluoride (PMSF) as described previously (Laniado et al., 1997). Lysate was gently mixed on a rocker for 15 min at 4 °C. Lysates were centrifuged (Labofuge 400R, Heraus) at 13000 x g at 4 °C for 15 min and supernatant was transferred to a fresh tube. Protein yield was determined using a Bradford dye binding assay (Bio-Rad) according to manufacturer’s instructions. Briefly, cell lysates were mixed with Bradford assay dye reagent and spectrophotometric absorbance at 595 nm was recorded (Cecil, CE 1020). Protein yield was calculated from standard calibration curve produced by measuring absorbance of serial dilutions of bovine serum albumin (BSA; Sigma-Aldrich) at 595 nm (Figure 2.4).

2.4.2 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting

Unless otherwise stated, all chemicals were from Sigma-Aldrich. Equivalent amounts of protein from different lysates samples (50 µg) and a wide-range prestained molecular marker (Page Ruler protein ladder; Fermentas) were separated as
Figure 2.4 Protein standard calibration curve.

Eleven dilutions (0 to 100 µg) of BSA were used to construct standard calibration curve with a Bradford dye binding assay (BioRad). Spectrophotometric absorbance was measured at 595 nm. For each experiment, a new curve was constructed. Data were fitted using linear regression analysis (solid line).
described previously (Brackenbury and Djamgoz, 2006). Protein samples were mixed with LAEMMLI sample buffer incubated for 10 min at 37 °C and boiled for 5 min immediately before loading. Samples were separated using a 5 % acrylamide stacking gel and a 7.5 % acrylamide running gel, in a buffer containing 25 mM Tris, 192 mM glycine and 0.1 % (w/v) SDS at 100 V for 2 h and electroblotted onto nitrocellulose membrane (Hybond ECL, GE Healthcare) at 4 °C in a buffer containing 25 mM Tris and 192 mM glycine at 80 V for 2 h. Following the transfer, blots were blocked for 1 h in 5 % (w/v) non-fat dried milk (Marvel) in PBS and 30 min in 2 % (w/v) BSA/PBS. Blots were than incubated with primary antibodies (all antibodies were diluted in 2 % BSA/PBS; Table 2.3) for 16 h at 4 °C. Blots were washed three times in 0.2 % (v/v) Tween-20/PBS for 15 min before incubating with appropriate horseradish peroxidise (HRP)-conjugated secondary antibodies (Table 2.4) for 1 h at room temperature. Finally, blots were washed three times in 0.2 % (v/v) Tween-20/PBS for 15 min. The following negative controls were used: (i) blots were probed with pan-VGSC that had been pre-absorbed with 5x excess immunizing peptide for 30 min at room temperature, and (ii) blots were incubated with 2 % (w/v) BSA/PBS with no primary antibody added.

2.4.3 Densitometry

Blots were developed using the ECL chemiluminescence (Amersham) and protein bands were visualized by exposure to Super RX100NF film (Fujifilm). Densitometric analysis was performed using ImageJ software (NIH) on 600 dpi scanned images. Anti-actinin antibody was used as loading control and the pan-VGSC signal intensity was normalized to anti-actinin intensity. The linearity of the relationship between protein loading and signal intensity was confirmed for the pan-VGSC and the anti-actinin antibodies using serial dilution of protein extracts (20-100 µg) (Figure 2.5).
Table 2.3 Primary antibodies.
ICC: Immunocytochemistry; WB: Western blot; MW: Molecular weight; kDa: Kilo daltons

<table>
<thead>
<tr>
<th>Primary antibody</th>
<th>Species</th>
<th>Stock concentration</th>
<th>Dilution for ICC</th>
<th>Dilution for WB</th>
<th>MW (kDa)</th>
<th>Source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pan-VGSC</td>
<td>Rabbit polyclonal</td>
<td>1 µg/µl</td>
<td>1:100</td>
<td>1:1000</td>
<td>220</td>
<td>Upstate</td>
<td>Brackenbury et al. (2007)</td>
</tr>
<tr>
<td>VGSCβ1</td>
<td>Rabbit polyclonal</td>
<td>-</td>
<td>1:500</td>
<td>-</td>
<td>36</td>
<td>L. Isom</td>
<td>Malhotra et al. (2000); Xiao et al. (1999)</td>
</tr>
<tr>
<td>Anti-actinin</td>
<td>Mouse monoclonal</td>
<td>1 µg/µl</td>
<td>-</td>
<td>1:1000</td>
<td>100</td>
<td>Sigma</td>
<td>-</td>
</tr>
<tr>
<td>Secondary antibody</td>
<td>Species</td>
<td>Stock Concentration</td>
<td>Dilution</td>
<td>Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-rabbit Alexa 568 (H+L)</td>
<td>Goat</td>
<td>2 mg/ml</td>
<td>1:100</td>
<td>Invitrogen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-rabbit HRP</td>
<td>Goat</td>
<td>13.1 μg/μl</td>
<td>1:10000</td>
<td>Sigma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-mouse HRP</td>
<td>Goat</td>
<td>1 μg/μl</td>
<td>1:1000</td>
<td>DAKO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.4 Secondary antibodies.
Figure 2.5 Protein dilutions and standard curves used to study Western blot band intensities.

Examples of Western blotting images of pan-VGSC and anti-actinin bands for serial dilution of protein extracted from Mat-LyLu cells (A). Band intensity, determined using ImageJ software, was plotted against protein concentration and fitted by linear regression line (solid line) for pan-VGSC (B) and anti-actinin (C). Data are presented as means ± SEM (n = 3). Linear relationship between protein level and band intensity within working range (50 µg) validated densitometric analysis.
2.5 Immunocytochemistry

Unles otherwise stated, all chemicals were from Sigma-Aldrich. Cells (5 x 10⁴) were plated onto 0.025 mg/ml poly-L-lysine coated glass coverslips (13 mm, BDH) in 24-well Falcon tissue culture plates (Becton Dickinson) and allowed to settle overnight. After treatment samples were fixed in 4 % paraformaldehyde (PFA)/PBS for 15 min. Where appropriate, cells were labelled with 20 µg/100 µl fluorescein isothiocyanate (FITC)-conjugated concanavalin A, prepared in 5 % (w/v) BSA/PBS, for 45 min as a plasma membrane marker (Brackenbury and Djamgoz, 2006). Coverslips were washed three times with PBS for 10 min before permeabilization in 0.1 % (w/v) saponin/PBS for 4 min. Following permeabilization, samples were washed three times with PBS for 10 min. Cells were blocked for 1 h with 5 % BSA/PBS at room temperature and incubated with primary antibody (Table 2.3), prepared in 5 % (w/v) BSA/PBS, for 1 h. Coverslips were washed three times with PBS for 10 min, and then incubated with Alexa-568 conjugated goat anti-rabbit secondary antibody (Table 2.4), prepared in 5 % (w/v) BSA/PBS, for 1 h. Coverslips were washed three times in PBS and once in water. Vectashield mounting medium (Vector Laboratories) was used for mounting the samples. Mounted samples were stored at 4 °C in dark for 16 h before microscopy. The following negative controls were used:

i. Primary antibody specificity: Immunocytochemistry was performed as above except that primary antibody was substituted with an equal amount of 5 % BSA/PBS.

ii. Non-specific rabbit IgG: Immunocytochemistry was performed as above except that primary antibody was substituted with 0.002-0.004 µg/µl non-specific rabbit IgG (Dako).
iii. Pre-absorbed primary antibody: Immunocytochemistry was performed as above except that the pan-VGSC primary antibody was pre-absorbed with 5x excess of the immunizing peptide for 30 min at room temperature.

2.5.1 Confocal microscopy

Immunostained cells were examined using a Leica SP5 MP microscope under oil immersion (x63 magnifications). Fluorescence was studied using a Leica Confocal laser scanner (Leica TCS-NT with an Ar/He laser). Antibodies conjugated with FITC힔 and/or Alexa568 were exited with the 488 nm and 568 nm laser lines, respectively. Images (1024 x 1024 pixels) were obtained simultaneously from the two channels using a Confocal pinhole of 229.96 µm. The following densitometric analyses were performed using the Leica LAS AF Lite software (Brackenbury and Djamgoz, 2006):

a. **Freeform line profile.** This determined the cell-surface expression of protein. For this function, the cell periphery was traced using the concanavalin A staining as a guide. Data were presented as total staining in arbitrary unit (AU) per µm. Measurements were taken from randomly chosen cells \((n \geq 30) \) per condition, from at least three independent repeat experiments.

b. **Area histogram.** This covered a 16 µm\(^2\) rectangular section of cytoplasm avoiding the nucleus and was used to measure the intracellular protein level (Brackenbury and Djamgoz, 2006; Chioni et al., 2010). Data were presented as total staining (AU). Measurements were taken from randomly chosen cells \((n \geq 30) \) per condition, from at least three independent experimental repeats.
c. **Cross-sectional profile.** For this function, a straight line was drawn across the cell avoiding nucleus in order to study the relative subcellular distribution of the protein under investigation (Okuse et al., 2002; Shah et al., 2004, Brackenbury and Djamgoz, 2006). Peripheral (i.e. plasma membrane region) signal intensity was set to cover 1.5 µm inward from the edge of the concanavalin A staining. Internal (i.e. cytoplasmic) signal intensity was specified as the central 30 % of the line profile. Both peripheral and internal protein signals were normalised to total staining and expressed as percentages. Measurements were taken from randomly chosen cells (n ≥ 15) per condition, from at least three independent experimental repeats.

2.6 **Morphological analysis**

Possible morphological effects of pharmacological treatment on several cellular parameters were studied as described previously (Fraser et al., 1999) with some modifications. Briefly, cells (3 x 10^4/ml) were plated in to 35 mm Falcon tissue culture dishes and allowed to settle overnight. After treatment, randomly selected cells were viewed under an inverted microscope (Axiovert 200, Carl Zeiss) and photographed under x200 magnification with a digital camera (Power-Shot G5, Canon). Images were quantitatively analysed using ImageJ software (NIH). The “cell body diameter” was defined as the diameter of the largest circle that could be fitted into the cell body (Figure 2.6A). An extension from a cell body which was at least one and half times the diameter of the cell body was accepted as a cell process. “Process length” was determined as the distance between tip of the process and centre of the cell body (Figure 2.6B). “Process thickness” was determined at the
Figure 2.6 Micrographs of a Mat-LyLu cell illustrating morphologic parameters used.

Cell body diameter (A) - diameter of the largest circle that could be fitted in to the cell. Process length (B) - distance between tip of the process and centre of the cell body. Process thickness (C) - thickness of the process at its half length; cell area (D). Scale bar (20 µM) applicable to all panels.
halfway point in the length of process (Figure 2.6C). Finally, the total “cell area” was calculated by tracing the cell outline (Figure 2.6D).

2.7 Measurement of cell number - MTT assay

Any change in cell number after long-term pharmacological treatment was assessed by the colorimetric 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) (Alfa Aesar) assay as described previously (Grimes et al., 1995). Briefly, cells (4 x 10^4) were plated in 12-well Falcon tissue culture plates (Becton Dickinson) allowed to settle 24 h and treatment was applied. After the treatment period, culture medium was replaced with a control medium containing 1 mg/ml MTT and incubated at 37 °C for 2 h. MTT was removed and replaced with 0.89 ml DMSO and 0.11 ml glycine buffer (0.1 M glycine and 0.1 M NaCl, pH 10.5). Following 10 min incubation at room temperature, absorbance at 570 nm was measured on a multi-well plate reader (ELx800, BioTek Instruments). The measurements were carried out in dark in duplicates and each treatment was repeated at least three times. Spectrophotometric absorbance readings were normalized to the zero-hour recording measured after the initial 24 h. Standard calibration curves was created in order to verify linear relationship between cell number and absorbance at 570 nm (Figure 2.7). Briefly, eleven serial dilutions of cells (from 1200000 cells) were plated in to 12-well plates, allowed to settle for 4 h and MTT assay was performed as described above. For every freshly prepared MTT solution, the calibration was performed three times.
Figure 2.7 Examples of typical standard curves for MTT assay.
Relationship between cell number and absorbance at 570 nm was determined by MTT assay for (A) Mat-LyLu and (B) AT2 cells. Data are presented as means ± SEM ($n \geq 4$) and were fitted using linear regression analysis (solid line).
2.8 Lateral motility (wound-heal) assay

Lateral motility of the cells was assessed as described previously (Fraser et al., 2003). Briefly, three parallel vertical lines and fifteen intersecting lines were marked under the 35 mm culture dishes. Cells were seeded into these dishes and incubated for 24 h which produced a near-monolayer culture. Then, three wounds of 0.5 - 0.8 mm width were created, guided by the vertical lines, using a sterile 200 µl Gilson pipette tips. The medium was replaced with fresh medium ± pharmacological agent and the wounds (3 x 15) were photographed using a digital camera (Power-shot G5, Canon) mounted on an inverted microscope (Axiovert 200, Zeiss) at x10 magnification. Wound widths were measured from these images using ImageJ software (NIH). Media (± treatment) were replaced and wounds were re-photographed every 24 h. Each experiment was carried out in triplicate and repeated at least three times. Lateral motility was calculated as the motility index (MoI), defined as follows:

\[
MoI = 1 - \left(\frac{W_t}{W_0} \right)
\]

where \(W_t\) is the width of the wound at time \(t\) (24 or 48 h), while \(W_0\) is the initial wound width (time = 0 h). Thus, as limits, \(MoI = 0\) corresponded to no movement of cells into the wound, whilst \(MoI = 1\) represented complete closure of the wound.

2.9 Transwell migration assay
Migration of Mat-LyLu cells were studied using Transwell migration assays. Briefly, cells (4 x 10⁵) were plated on to Transwell migration filters (8µm pores) (Becton Dickinson). Cells were incubated in medium ± pharmacological agent in 0.5-5 % FBS chemotactic gradient for 24 h. Following the treatment, non-migrated cells were removed by swapping the upper surface of the Transwell filter. Migrated cells were stained with 0.5 % (w/v) crystal violet (Sigma-Aldrich) in 25 % methanol for 15 min at room temperature after fixation with 100 % ice-cold methanol for 15 min. Transwell filters were washed in water and let to air dry for 1 h. For each inserts randomly selected 3 fields of view were photographed using a digital camera (Power-shot G5, Canon) mounted on an inverted microscope (Axiovert 200, Zeiss) at 10x magnification. Images were analysed using ImageJ software (NIH). Experiments were performed in duplicates. Average of cell counts obtained from six fields of view (2 duplicate x 3 fields of view) represents one repeat. Experiments were repeated at least 3 times and results were normalised to corresponding controls.

2.10 Matrigel™ invasion assay

Invasion of Mat-LyLu cells were studied using Matrigel™ invasion assays. Briefly, cells (4 x 10⁵) were plated on to Transwell migration filters (8µm pores) (Becton Dickinson) which were coated with 1.25 mg/ml Matrigel™ basement membrane matrix (Becton Dickinson) and incubated at 37 °C for 30 min before cell plating as described previously (Zhu et al., 2009). Cells were incubated in medium ± pharmacological agent in 0.5-5 % FBS chemotactic gradient for 24 h. Following the treatment, non-invaded cells were removed by swapping the upper surface of the Transwell filter. Invaded cells were stained with 0.5 % (w/v) crystal violet in 25 % methanol for 15 min at room temperature after fixation with 100 % ice-cold methanol for 15 min. Transwell filters were washed in water and let to air dry for 1 h.
For each inserts randomly selected 3 fields of view were photographed using a digital camera (Power-shot G5, Canon) mounted on an inverted microscope (Axiovert 200, Zeiss) at 10x magnification. Images were analysed using ImageJ software (NIH). Experiments were performed in duplicates. Average of cell counts obtained from six fields of view (2 duplicate x 3 fields of view) represents one repeat. Experiments were repeated at least 3 times and results were normalised to corresponding controls.

2.11 Intracellular calcium imaging

Changes in the concentration of intracellular free calcium ion ([Ca$^{2+}$]$_i$) were measured using a membrane soluble fluorescent Ca$^{2+}$-indicator dye (Fluo-4 AM; Invitrogen) as described previously (Lioudyno et al., 2008). Cells (5 x 104) were plated on a glass coverslip, embedded on a 35 mm tissue culture dish (MatTek corporation), after coverslip was coated with 0.25 µg/ml poly-L-lysine (Sigma). Cells were allowed to settle for 24 h. An hour before recording, cells were washed three times with MPS and incubated in 4 µM Fluo-4 AM for 30 min in the dark. The cells were then rinsed twice and bathed in MPS for 30 min in the dark before imaging started. Cells were placed on a 37 °C heated chamber and imaged with a Leica SP5 confocal microscope with a x20 objective. Excitation of fluo-4 AM was provided by the 488 nm line of an argon laser. Images were acquired at 1 sec intervals. Data were analysed by Leica LAS AF Lite software. For each cell under investigation, mean intensity of fluorescence (F) was calculated for a sampling area of 9 x 9 µm2, located centrally in the cell. The baseline reading was subtracted and the change in [Ca$^{2+}$]$_i$ was calculated as follows:

$$\frac{\Delta F}{F_0} = 100 \times \frac{F_t - F_0}{F_0} \tag{equation 2.3}$$
where F_t is mean intensity of fluorescence at time t, F_0 is mean intensity of fluorescence at ‘baseline’ level calculated by averaging mean intensity of 20-50 consecutive images in the absence of transient and $\Delta F/F_0$ (%) is a relative measure of free intracellular calcium as described previously (Williams and Sims, 2007). An increase in fluorescence was considered to be a transient when $\Delta F/F_0 \geq 50 \%$. Cells were accepted as “oscillating” when at least three transients were recorded under control conditions within 10 min recording.

2.12 Data analyses

All quantitative data were presented as means ± standard errors of the mean (SEMs). Data analysis were performed using Excel 2003 (Microsoft), Origin 6.1 (Origin Lab) and SigmaStat 2.0 (Systat Software Inc.). Pairwise statistical significance were determined using paired or unpaired Student’s t-test, or Mann-Whitney rank sum test, as appropriate (Krawetz, 2009). For comparisons involving more than two groups, statistical significance were determined using analysis of variance (ANOVA) followed by Newman-Keuls post hoc analysis, or Kruskal-Wallis analysis of variance as appropriate (Krawetz, 2009). Comparisons of linear regression slopes were performed using the following equation:

\[
t = \frac{P_1 - P_2}{\sqrt{(SE \ of \ P_1)^2 + (SE \ of \ P_2)^2}}.
\]

equation 2.4
where P_1 and P_2 are parameters (slopes) being compared. Real-time PCR data were analyzed using the $2^{\Delta\Delta Ct}$ method (Livak and Schmittgen, 2001). Results were considered significant at $P < 0.05$ (*) and highly significant at $P < 0.001$ (**).
Chapter 3

EFFECTS OF CHRONIC HYPOXIA ON VOLTAGE-GATED Na\(^+\) CHANNEL EXPRESSION AND METASTATIC CELL BEHAVIOURS OF DUNNING PROSTATE CANCER
3.1 Introduction

Hypoxia, reduced tissue oxygen level, has been detected in various human cancers, including cancers of prostate, breast, lung, pancreas, rectum, cervix, vulva, head and neck, brain, skin, liver and kidney (Vaupel et al., 2007; Harrison and Blackwell, 2004). Accordingly, oxygen measurements from prostate tissue of patients showed that cancerous tissue has significantly lower O$_2$ level (9.9 mmHg / ~1.5 % O$_2$) compared to the normal muscle tissue (28.6 mmHg / ~4 % O$_2$; Movsas et al., 2000). In addition, hypoxia is a natural characteristics of aging organs (Tanaka et al., 2006; Aalami et al., 2003). Tissue hypoxia is caused by poor/altered vascularisation, deterioration of diffusion geometry or anaemia (Vaupel et al., 2007). In carcinomas of cervix, head and neck, and soft tissue sarcomas, primary tumour hypoxia has been associated with increase incidence of metastases (Cairns et al., 2001). In prostate cancer, significant positive correlations between hypoxia level and clinical stage and patient age were reported (Movsas et al., 2000). Hypoxia is considered to be a crucial event promoting invasion and metastasis of many human cancer cells, including MDA-MB-231, MDA-MB-468, MCF7 and 4T1 (breast cancer), HCT116 and HT-29 (colon carcinoma), HepG2 (hepatoblastoma) and PANC-1 (pancreatic carcinoma) (Cronin et al., 2010; Lester et al., 2007; Graham et al., 1999, Krishnamachary et al., 2003). Although hypoxia can contribute to death of some tumour cells, it selects mainly for dedifferentiation, apoptosis resistance, cells with mutated p53 and increased metastatic capacity (Alqawi et al., 2007; Watson et al., 2009; Salnikow et al., 2000; Ghafar et al., 2003; Butterworth et al., 2008; Harris 2002; Graeber et al., 1996; Yu et al., 2002; Subarsky and Hill 2003).
Hypoxia can regulate gene expression and regulate many signalling pathways, including those involving: 3'-5' adenosine monophosphate (cAMP) / protein kinase A (PKA), Ca^{2+}-calmodulin, mitogen-activated protein kinase (MAPK), stress-activated protein kinase (SAPK) and phosphatidylinositol 3-kinase (PI3K) - Akt (Seta et al., 2002). Genome-wide DNA methylation and histone acetylation caused by hypoxia was documented in human prostate cancer cells (Watson et al., 2009).

As reviewed in the General Introduction (Chapter 1, Section 1.3.3), functional voltage-gated Na^{+} channel (VGSC) expression has been associated with several metastatic carcinomas (Grimes et al., 1995; Laniado et al., 1997; Grimes and Djamgoz, 1998; Abdul and Hoosein, 2002; Brackenbury and Djamgoz, 2006; Nakajima et al., 2009; Fraser et al., 2005; Roger et al., 2003; Gao et al., 2009; Fraser et al., 2004; Blandino et al., 1995; Onganer and Djamgoz 2005; Onganer et al., 2005; Roger et al., 2007; Fulgenzi et al., 2006; Ou et al., 2005; Allen et al., 1997; Diaz et al., 2007; Gao et al., 2010; House et al., 2010). The sodium current generated by VGSC activity has two components: transient current (I_{NaT}) and inactivation-resistant persistent current (I_{NaP}). Amplitude of I_{NaP} is generally 0.1 - 1 % of I_{NaT}; however, much greater amounts of Na^{+} can be carried by I_{NaP} since it persists for longer time (Saint, 2008). It was previously reported that hypoxia increases I_{NaP} amplitude in neurons and cardiac cells (Hammarström and Gage 1998; Ju et al., 1996; Wang et al., 2007). In contrast, hypoxia-induced small decrease of I_{NaT} was reported for neurons and myocytes (Hammarström and Gage 1998; Wang et al., 2007). Importantly, increase in internal Na^{+} concentration was reported as a result of hypoxia (Haigney et al., 1994; Xiao and Allen, 1999). It was proposed that hypoxia could affect channel gating by formation or disruption of intermolecular disulfides.
which causes conformational changes in VGSC protein (Hammarström and Gage 2002).

Therefore, in this chapter, we hypothesised that hypoxia would enhance MCBs of PCa cells by increasing the activity of VGSC, mainly through I_{NaP}.

3.1.1 Aims and scope of the present study

The main aim of this study was to investigate VGSC α- and β- subunit regulation by chronic hypoxia in strongly metastatic (Mat-LyLu) and weakly metastatic (AT2) rat prostate cancer cell lines. The specific aims were as follows:

1. To test if hypoxia was involved in regulation of VGSC α- and β- subunit mRNA and protein levels;
2. To test if hypoxia regulates metastatic cell behaviours (MCBs) - lateral motility, migration and invasion; and
3. To test if possible effects of hypoxia on MCBs could involve VGSC expression / activity.

3.2 Results

3.2.1 Some initial observations: Effects of chronic hypoxia on cell morphology

No change in the basic appearance or distribution of Mat-LyLu and AT2 cells in culture was observed under hypoxic (2 % O$_2$) condition over 24 h or 48 h (Figures 3.1A,C and 3.2A,C). Also, 24 h or 48 h treatment of Mat-LyLu and AT2 cells with 1 µM TTX under either normoxic or hypoxic conditions did not effect the cells’ two-dimensional distribution (Figures 3.1B, D and 3.2B, D). On the other hand, the
Figure 3.1 Phase-contrast light-photomicrography of Mat-LyLu cells.
Mat-LyLu cells were grown for 24 h (A & B) and 48 h (C & D) with (B & D) or without (A & C) 1µM TTX treatment in normoxia (left-hand pictures) or hypoxia (2 % O₂; right-hand pictures). Micrographs are typical of 3 experiments.
Figure 3.2 Phase-contrast light-photomicrography of AT2 cells.
AT2 cells were grown for 24 h (A & B) and 48 h (C & D) with (B & D) or without (A & C) 1µM TTX treatment in normoxia (left-hand pictures) or hypoxia (2 % O₂; right-hand pictures). Micrographs are typical of 3 experiments.
number of Mat-LyLu cells in each field of view appeared less while no change was observed in AT2 cells when incubated under hypoxia for 48 h (Figures 3.1C, D and 3.2C, D).

Both Mat-LyLu and AT2 cells have extensive morphological heterogeneity. At the plating densities used, AT2 cells tended to form clusters, which dramatically reduced the number of single cells that could be used for morphological analysis (Figure 3.2). Therefore, morphological study of AT2 cells was not carried out. Morphological heterogeneity of Mat-LyLu cells were studied by subdividing cells into four groups: non-process bearing, monopolar, bipolar, multipolar, according to number of process possessed by the cells. Compared with normoxia, hypoxia did not change the percentage of non-process bearing cells (Figure 3.4A) both at 24 h (27.8 ± 7.3 % vs. 36.8 ± 6 %, respectively; p > 0.05; n = 3; Figures 3.3A and 3.4B; Table 3.1) and 48 h (18.0 ± 1.0 % vs. 11.4 ± 2.5 %, respectively; p > 0.05; n = 3; Figures 3.3C and 3.4C; Table 3.1). Treatment with 1 µM TTX for 24 h or 48 h also had no effect on percentage of non-process bearing cell in normoxia (26.2 ± 2.1 % vs. 6.4 ± 3.3 %, respectively; p > 0.05; n = 3; Figures 3.3 & 3.4B,C; Table 3.1) and hypoxia (30.5 ± 3.2 % vs. 16.8 ± 6.9 %, respectively; p > 0.05; n = 3; Figures 3.3 and 3.4B,C; Table 3.1). The percentage of monopolar cells (Figure 3.5A) also was not effected by 24 h incubation in normoxic condition with TTX (1 µM) and hypoxic conditions with or without 1µM TTX (29.8 ± 5.2 %, 26.6 ± 3.3 %, 26.2 ± 3.4 % and 25.3 ± 3.2 %, respectively; p > 0.05; n = 3; Figures 3.3A,B and 3.5B; Table 3.1). When the incubation period was increased to 48 h, 1 µM TTX or hypoxia again did not affect the proportion of monopolar cells (p > 0.05; n = 3; Figures 3.3C,D and 3.5C; Table 3.1). However, when hypoxia and TTX (1 µM) were co-applied for 24 h, monopolar cells decreased significantly from 17.8 ± 3.0 % to 9.8 ± 1.3 % (p < 0.05; n = 3;
Figure 3.3 Phase-contrast light-photomicrography of Mat-LyLu cells in high magnification.

Mat-LyLu cells were grown for 24 h (A & B) and 48 h (C & D) with (B & D) or without (A & C) 1µM TTX treatment in normoxia (left-hand pictures) or hypoxia (2% O₂, right-hand pictures). Micrographs are typical of 3 experiments.
Table 3.1 Summary of effect of hypoxia on Mat-LyLu cell morphology and morphological heterogeneity. (↑) increase; (↓) decrease; (-) no change.

<table>
<thead>
<tr>
<th></th>
<th>Normoxia</th>
<th>Hypoxia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>TTX</td>
</tr>
<tr>
<td>Non-process bearing cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h</td>
<td>27.8±3.3 %</td>
<td>26.28±2.1 %</td>
</tr>
<tr>
<td>48h</td>
<td>18.0±1.0 %</td>
<td>6.4±3.3 %</td>
</tr>
<tr>
<td>Monopolar cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h</td>
<td>29.8±5.2 %</td>
<td>26.6±3.3 %</td>
</tr>
<tr>
<td>48h</td>
<td>17.7±3.0 %</td>
<td>20.5±2.7 %</td>
</tr>
<tr>
<td>Bipolar cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h</td>
<td>37.6±5.7 %</td>
<td>39.0±3.3 %</td>
</tr>
<tr>
<td>48h</td>
<td>49.1±7.2 %</td>
<td>56.4±3.0 %</td>
</tr>
<tr>
<td>Multipolar cells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h</td>
<td>4.6±2.3 %</td>
<td>7.9±0.9 %</td>
</tr>
<tr>
<td>48h</td>
<td>14.9±6.3 %</td>
<td>16.5±3.2 %</td>
</tr>
<tr>
<td>Cell body diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h</td>
<td>15.0±0.2 µm</td>
<td>14.9±0.2 µm</td>
</tr>
<tr>
<td>48h</td>
<td>14.4±0.2 µm</td>
<td>13.7±0.3 µm</td>
</tr>
<tr>
<td>Cell area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h</td>
<td>4.8±0.1 x10³ µm²</td>
<td>4.8±0.1 x10³ µm²</td>
</tr>
<tr>
<td>48h</td>
<td>5.4±0.1 x10³ µm²</td>
<td>6.2±0.2 x10³ µm²</td>
</tr>
<tr>
<td>Process thickness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h</td>
<td>5.5±0.2 µm</td>
<td>5.1±0.2 µm</td>
</tr>
<tr>
<td>48h</td>
<td>5.6±0.3 µm</td>
<td>6.3±0.3 µm</td>
</tr>
<tr>
<td>Process length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h</td>
<td>37.9±1.5 µm</td>
<td>38.8±1.4 µm</td>
</tr>
<tr>
<td>48h</td>
<td>37.8±1.1 µm</td>
<td>39.5±1.2 µm</td>
</tr>
</tbody>
</table>
Figure 3.4 Studies effects of hypoxia on number of non-process bearing MatLyLu cells.

(A) Shows example phase-contrast light microscopy image of non-process bearing cells. Bar diagram show percentages of non-process bearing cells treated 24 h (B) or 48 h (C) ± TTX (1 µM) in normoxia or hypoxia (2 % O₂). Inset: table of multiple comparisons between treatments for statistical significance. Data are presented as means ± SEM and collected from ≥ 109 randomly selected individual cells (n = 3). Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis.
Figure 3.5 Studies effects of hypoxia on number of monopolar Mat-LyLu cells.

(A) Shows example phase-contrast light microscopy image of monopolar cells. Bar diagram show percentages of monopolar cells treated 24 h (B) or 48 h (C) ± TTX (1 µM) in normoxia or hypoxia (2 % O₂). Inset: table of multiple comparisons between treatments for statistical significance. Data are presented as means ± SEM and collected from ≥ 109 randomly selected individual cells (n = 3). Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis.
Figures 3.3C,D and 3.5C; Table 3.1). The proportion of bipolar Mat-LyLu cells (Figure 3.6A) was not effected when incubated for 24 h or 48 h in normoxia with TTX (1 µM) or hypoxia with or without TTX (1 µM) (p > 0.05; n = 3; Figures 3.3 & 3.6B,C; Table 3.1). Under the same conditions, the percentage of multipolar cells (Figure 3.7A) remained unchanged (n = 3; Figures 3.3 and 3.7B,C; Table 3.1).

In addition to the analysis of the morphological diversity of MatLyLu cells, possible effects of the treatments on cell body diameter, cell-surface area, process length and process thickness were studied. When Mat-LyLu cells were treated for 24 h or 48 h with 1 µM TTX, there was no change in cell body diameter (Figure 3.8; Table 3.1). On the other hand, 24 h and 48 h incubation under hypoxic conditions increased Mat-LyLu cell body diameter from 15.0 ± 0.2 µm to 16.3 ± 0.2 µm and from 14.4 ± 0.2 µm to 15.7 ± 0.3 µm, respectively (p < 0.05; n ≥ 109; Figure 3.8; Table 3.1). Similarly, 24 h and 48 h incubation of MatLyLu cells in the presence of TTX (1 µM) under hypoxic conditions increased cell body diameter to 15.8 ± 0.3 µm and 15.6 ± 0.3 µm, respectively (p < 0.05; n ≥ 114; Figure 3.8; Table 3.1). Mat-LyLu cell area (Figure 3.9A) did not change under both normoxic and hypoxic conditions with or without TTX (1 µM) over 24 h (p > 0.05; n ≥ 127; Figure 3.9; Table 3.1). On the other hand, incubating Mat-LyLu cells under hypoxic conditions for 48 h increased their surface area from 5.4 ± 0.1 x10^3 µm^2 to 6.5 ± 0.3 x10^3 µm^2 (p < 0.05; n ≥ 109; Figure 3.9; Table 3.1). In addition, 48 h treatment with TTX in normoxia and hypoxia increased cell-surface area to 6.2 ± 0.2 x10^3 and 6.6 ± 0.2 x10^3, respectively (p < 0.05; n ≥ 113; Figure 3.9; Table 3.1). However, cell process thickness (Figure 3.10A) and process length (Figure 3.11A) were not affected by TTX (1 µM) or hypoxia with or without TTX (1 µM) treatment (p > 0.05; n ≥ 84; Figures 3.10 and 3.11; Table 3.1).
Figure 3.6 Studies effects of hypoxia on number of bipolar Mat-LyLu cells.

(A) Shows example phase-contrast light microscopy image of bipolar cells. Bar diagram show percentages of bipolar cells treated 24 h (B) or 48 h (C) ± TTX (1 µM) in normoxia or hypoxia (2 % O₂). Inset: table of multiple comparisons between treatments for statistical significance. Data are presented as means ± SEM and collected from ≥109 randomly selected individual cells (n = 3). Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis.
Figure 3.7 Studies effects of hypoxia on number of multipolar Mat-LyLu cells.

(A) Shows example phase-contrast light microscopy image of multipolar cells. Bar diagram show percentages of multipolar cells treated 24 h (B) or 48 h (C) ± TTX (1 µM) in normoxia or hypoxia (2 % O₂). Inset: table of multiple comparisons between treatments for statistical significance. Data are presented as means ± SEM and collected from ≥109 randomly selected individual cells (n = 3). Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis.
Figure 3.8 Bar diagram showing quantitative effect of hypoxia on cell body diameter.

(A) Image of a Mat-LyLu cells illustrating cell body diameter measurement. Histogram shows quantitative measurement of cell body diameter (µm) of Mat-LyLu cells which were treated 24h (B) or 48h (C) ± TTX (1 µM) in normoxia or hypoxia (2 % O₂). Inset: table of multiple comparisons between treatments for statistical significance. Data are presented as means ± SEM (n ≥109). Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis.
Figure 3.9 Bar diagram showing quantitative effect of hypoxia on cell area.

(A) Image of a Mat-LyLu cells illustrating cell area measurement. Histogram shows quantitative measurement of cell area (µm²) of Mat-LyLu cells which were treated 24h (B) or 48h (C) ± TTX (1 µM) in normoxia or hypoxia (2 % O₂). Inset: table of multiple comparisons between treatments for statistical significance. Data are presented as means ± SEM (n ≥109). Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis.
Figure 3.10 Histograms showing quantitative effect of hypoxia on process thickness.

(A) Image of a Mat-LyLu cells illustrating process thickness measurement. Bar diagram shows quantitative measurement of process thickness (µm) of Mat-LyLu cells which were treated 24h (B) or 48h (C) ± TTX (1 µM) in normoxia or hypoxia (2 % O₂). Inset: table of multiple comparisons between treatments for statistical significance. Data are presented as means ± SEM (n ≥84). Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis.
Figure 3.11 Histograms showing quantitative effect of hypoxia on process length.

(A) Image of a Mat-LyLu cells illustrating process length measurement. Bar diagram shows quantitative measurement of process length (µm) of Mat-LyLu cells which were treated 24h (B) or 48h (C) ± TTX (1 µM) in normoxia or hypoxia (2 % O₂). Inset: table of multiple comparisons between treatments for statistical significance. Data are presented as means ± SEM (n ≥84). Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis.
3.2.2 Effects of chronic hypoxia

3.2.2.1 Cell viability

Hypoxia was not toxic to Mat-LyLu and AT2 cells over 24 h and 48 h periods (Figure 3.12A&B). In addition, 24 and 48h treatment with TTX (1 µM) did not affect the viability of Mat-LyLu and AT2 cells under both normoxic and hypoxic conditions.

3.2.2.2 Cellular proliferation

Incubating Mat-LyLu cells for 24 h under hypoxic condition did not affect the cell number, compared with normoxia (Figure 3.13A). However, 48 and 72 h of hypoxia decreased number of Mat-LyLu cells significantly by 30 % and 59 %, respectively (p < 0.05 and p < 0.001, respectively; n = 4; Figure 3.13A). In contrast, hypoxia up to 72 h did not affect the number of AT2 cells (p > 0.05; n = 3; Figure 3.13B). Treating Mat-LyLu and AT2 cells with TTX (1 µM) up to 3 days did not affect cell numbers under both normoxic and hypoxic conditions (p > 0.05; n ≥ 3; Figure 3.13C, D, E&F).

3.2.2.3 Nav1.7 mRNA expression

Expression of Nav1.7 and VGSCβ subunit mRNAs was studied using real-time PCR technique. Mat-LyLu and AT2 cells were incubated for 24 h under normoxic or hypoxic conditions. Agarose gel electrophoresis of Mat-LyLu cells confirmed specific single bands at the expected sizes for Nav1.7 and β-actin (414 nt and 362 nt respectively; Figure 3.14A). No Nav1.7 mRNA could be detected in AT2 cells, grown in normoxic or hypoxic conditions (Figure 3.14B). In both cells, no-template
Possible toxic effects of 24h (light grey columns) or 48h (dark grey columns) treatment with or without TTX (1 µM) in normoxia or hypoxia (2 % O₂) was studied in Mat-LyLu (A) and AT2 (B) cells. Data are represented as means ± SEM (n=3). Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis. (X) p > 0.05.
Figure 3.13 Time dependent effect of hypoxia (2 % O₂) on Mat-LyLu (A) and AT-2 (B) cell number.

TTX (1µM) do no effect cell number of Mat-LyLu (C & E) and AT-2 (D & F) in both normoxia (C & D) and hypoxia (E & F). Data are presented as means ± SEM (n ≥ 3). Significance: (*) p < 0.05; (**) p < 0.001.
Figure 3.14 Effect of hypoxia (2 % O₂) on Mat-LyLu and AT-2 Nav1.7 mRNA expression.

Agarose gel electrophoresis picture showing typical PCR product of Nav1.7 (414 bp) and normalising/control gene β-actin (362 bp) mRNA in Mat-LyLu (A) and AT2 (B) cells that was incubated under normoxic or hypoxic (2% O₂) conditions for 24 h. Lane (1) normoxia; (2) hypoxia; (3) no-template control. (C) Bar diagram showing result of real-time PCR experiment which effect of hypoxia on Nav1.7 mRNA expression was studied. The data were normalized to Cytb5R (light grey column) or β-actin (dark grey column) using the 2⁻ΔΔCₜ method and described as relative to normoxic mRNA expression. Inset: bar diagram showing that both control/normalising genes Ct values was not affected by hypoxic treatment. Un-paired student t-test was used for statistic analysis. Data are presented as means ± SEM (n ≥ 3). Significance: (**) p < 0.001; (X) p > 0.05.
controls did not give any signal (Figures 3.14 A&B). Hypoxia (24 h) significantly increased Nav1.7 mRNA expression by 309 ± 38.7 % (normalized to Cytb5R) / 336 ± 45.5 % (normalized to β-actin) (p < 0.001; n = 12; Figure 3.14C). Possible changes in the expression levels of the normalising/control genes, Cytb5R and β-actin (which should not be affect by treatments), were studied by plotting amplification threshold (Cт) values. Hypoxia did not have any significant effect on the Mat-LyLu normalising/control genes Cт values (p > 0.05; n = 4; Figure 3.14C inset).

3.2.2.4 VGSCβ subunit mRNA expression

3.2.2.4.1 Normoxia

Mat-LyLu and AT2 cells were incubated 24 h under normoxic conditions, and VGSCβ subunit mRNA expression was assessed by real-time PCR. Agarose gel electrophoresis of the PCR products of Mat-LyLu cells, grown in normoxic conditions, confirmed a specific single bands at the expected sizes for VGSCβ1, VGSCβ2, VGSCβ4, β-actin and Cytb5R (258 nt, 295 nt, 215 nt, 362 nt and 362 nt respectively; Figure 3.15A). However, no band was detected for VGSCβ3 (233 nt). On the other hand, a specific single band at the expected size for VGSCβ1, VGSCβ2, VGSCβ3, VGSCβ4, β-actin and Cytb5R (258 nt, 295 nt, 233 nt, 215 nt, 362 nt and 425 nt respectively) was detected for the PCR product of AT2 cells (Figure 3.15A). In both cells, no-template controls did not give any signal. VGSCβ1 was the predominant VGSCβ subunit that was expressed in both Mat-LyLu and AT2 cells. However, in Mat-LyLu cells, VGSCβ1 mRNA level was 30-fold and 5-fold higher than VGSCβ2 and VGSCβ4 mRNA levels, respectively; VGSCβ4 was ~6-fold
Figure 3.15 Basal mRNA expression profiles of VGSCβ subunits in Mat-LyLu and AT-2 cells.

(A) Agarose gel electrophoresis pictures showing typical PCR product of VGSCβ1 (258 bp), VGSCβ2 (295 bp), VGSCβ3 (233 bp), VGSCβ4 (215 bp) and normalising/control genes β-actin (362 bp) and Cytb5R (425 bp) mRNA in Mat-LyLu and AT2 cells that was incubated under normoxic conditions for 24 h. (B) Bar diagram showing result of real-time PCR experiment which basal mRNA expression of VGSCβ subunits were studied in Mat-LyLu cells. Inset: table of multiple comparisons between treatments for statistical significance. (C) Bar diagram showing result of real-time PCR experiment which basal mRNA expression of VGSCβ subunits were studied in AT2 cells. Inset: table of multiple comparisons between treatments for statistical significance. The data were normalized to Cytb5R (light grey column) or β-actin (dark grey column) using the 2^ΔΔCT method and described as relative to VGSCβ1 mRNA expression. Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis. Data are presented as means ± SEM (n ≥ 3).
higher than VGSCβ2 (p < 0.05; n = 6; Figure 3.15B). Again, no VGSCβ3 expression was detected in Mat-LyLu cells (Figure 3.15B). In AT2 cells, the VGSCβ1 mRNA level was 411-fold, 384-fold and 2599-fold higher than the mRNA levels of VGSCβ2, VGSCβ3 and VGSCβ4, respectively (p < 0.05; n = 3; Figure 3.15C). VGSCβ2 and VGSCβ3 mRNA levels were same in AT2 cells while the VGSCβ4 mRNA level was significantly less (15-fold and 14-fold, respectively; p < 0.05; n = 3; Figure 3.15C).

AT2 cells had 9-fold higher VGSCβ1 mRNA than Mat-LyLu cells (p < 0.05; n = 3; Figure 3.16A&B). VGSCβ2 mRNA levels were not different in both cell lines (p > 0.05; n = 3; Figure 3.16A&C). VGSCβ3 was expressed in AT2 cells but not in Mat-LyLu cells (p < 0.001; n = 3; Figure 3.16A&D). Mat-LyLu cells had 39-fold higher VGSCβ4 mRNA than AT2 cells (p < 0.05; n = 3; Figure 3.16A&E). Essentially identical results were obtained when β-actin was used as the normalizing/control gene instead of Cytb5R (Figure 3.17).

3.2.2.4.2 Hypoxia

Agarose gel electrophoresis of the real-time PCR products from Mat-LyLu cells, grown in normoxic and hypoxic conditions, confirmed specific single bands at the expected size for VGSCβ1, VGSCβ2, VGSCβ4, β-actin and Cytb5R (258 nt, 295 nt, 215 nt, 362 nt and 425 nt, respectively; Figure 3.18A). However, no band was detected for VGSCβ3 (233 nt) in both conditions. No-template control experiment did not give any signal. When Mat-LyLu cells were incubated under hypoxic conditions, VGSCβ1 mRNA levels increased 1.9- and 2.1-fold when Cytb5R and β-actin were used as the control/normalising gene, respectively (p < 0.05; n = 12;
Figure 3.16 Comparison of VGSCβ subunits mRNA expression, using Cytb5R as normalising/control gene, between Mat-LyLu and AT-2 cells. (A) Bar diagram showing result of real-time PCR experiment which basal mRNA expression of VGSCβ subunits in Mat-LyLu (light grey column) and AT2 (dark grey column) cells, incubated under control conditions for 24 h, were compared. Individual comparison of VGSCβ1 (B), VGSCβ2 (C), VGSCβ3 (D) and VGSCβ4 (E) mRNA between Mat-LyLu and AT2 cells. The data were normalized to Cytb5R using the $2^{-\Delta\Delta Ct}$ method and described as relative to VGSCβ1 mRNA expression of AT2 cells. Un-paired student t-test was used for statistic analysis. Data are presented as means ± SEM (n ≥ 3). Significance: (*) p < 0.05; (**) p < 0.001; (X) p > 0.05.
Figure 3.17 Comparison of VGSCβ subunits mRNA expression, using β-actin as normalising/control gene, between Mat-LyLu and AT2 cells.

(A) Bar diagram showing result of real-time PCR experiment which basal mRNA expression of VGSCβ subunits in Mat-LyLu (light grey column) and AT2 (dark grey column) cells, incubated under control conditions for 24 h, were compared. Individual comparison of VGSCβ1 (B), VGSCβ2 (C), VGSCβ3 (D) and VGSCβ4 (E) mRNA between Mat-LyLu and AT2 cells. The data were normalized to β-actin using the 2^ΔΔCt method and described as relative to VGSCβ1 mRNA expression of AT2 cells. Un-paired student t-test was used for statistic analysis. Data are presented as means ± SEM (n ≥ 3). Significance: (*) p < 0.05; (**) p < 0.001; (X) p > 0.05.
Figure 3.18 Effect of hypoxia (2 % O$_2$) on VGSCβ subunits mRNA expression in Mat-LyLu cells.

(A) Agarose gel electrophoresis pictures showing typical PCR product of VGSCβ1 (258 bp), VGSCβ2 (295 bp), VGSCβ3 (233 bp), VGSCβ4 (215 bp) and normalising/control genes β-actin (362 bp) and Cytb5R (425 bp) mRNA in Mat-LyLu cells that was incubated under normoxic or hypoxic conditions for 24 h. Lanes (N): normoxia; (H): hypoxia; -: no template control. Bar diagram showing result of real-time PCR experiment which effect of hypoxia on mRNA expression of VGSCβ1 (B), VGSCβ2 (C), VGSCβ3 (D), VGSCβ4 (E) subunits was studied in Mat-LyLu cells. The data were normalized to Cytb5R (light grey column) or β-actin (dark grey column) using the $2^{-\Delta\Delta C_{t}}$ method and described as relative to normoxic expression. Un-paired student t-test was used for statistic analysis. Data are presented as means ± SEM (n ≥ 3). Significance: (***) p < 0.05; (X) p > 0.05.
Figure 3.18B). No change in VGSCβ2, VGSCβ3 and VGSCβ4 mRNA expression was detected following the hypoxic treatment (p > 0.05; n = 6; Figures 3.18A,C&D). Agarose gel electrophoresis of the real-time PCR products from AT2 cells, grown in normoxic and hypoxic conditions, confirmed specific single bands at the expected sizes for VGSCβ1, VGSCβ2, VGSCβ3, VGSCβ4, β-actin and Cytb5R (258 nt, 295 nt, 233 nt, 215 nt, 362 nt and 425 nt, respectively; Figure 3.19A). No-template control experiment did not give any signal. Hypoxia significantly increased VGSCβ1 mRNA levels by 199 ± 32 % (normalised to Cytb5R) / 311 ± 32 % (normalised to β-actin) (p < 0.05; n = 3; Figure 3.19B). VGSCβ2 mRNA levels increased by 123 ± 13 % (normalised to Cytb5R) / 195 ± 21 % (normalised to β-actin); the latter was statistically significant (p < 0.05; n = 3; Figure 3.19C). The VGSCβ3 mRNA level was unchanged by the hypoxic treatment (p > 0.05; n = 3; Figure 3.19D). In addition, VGSCβ4 mRNA levels increased significantly by ~4-fold (normalised to Cytb5R) / 6-fold (normalised to β-actin) (p < 0.05; n = 3; Figure 3.19E). Hypoxia did not have any effect on the Cτ values of normalising/control genes, Cytb5R and β-actin, in Mat-LyLu cells (p > 0.05; n = 3; Figure 3.19F).

3.2.2.5 Expression of VGSCα protein

In preliminary Western blot experiments, expression of VGSC protein with a molecular weight of 220 kD was confirmed (Figure 3.20). However, the antibody proved difficult to handle in Western blots, so in the studies of hypoxia (2 % O2) on subcellular distribution of VGSCα protein in Mat-LyLu cells quantitative data were obtained by immunocytochemistry and confocal image analyses, as follows (Figures 3.21-3.25).
Figure 3.19 Effect of hypoxia (2 % O₂) on VGSCβ subunits mRNA expression in AT2 cells.

(A) Agarose gel electrophoresis pictures showing typical PCR product of VGSCβ1 (258 bp), VGSCβ2 (295 bp), VGSCβ3 (233 bp), VGSCβ4 (215 bp) and normalising/control genes β-actin (362 bp) and Cytb5R (425 bp) mRNA in AT2 cells that was incubated under normoxic or hypoxic conditions for 24 h. Lanes (N): normoxia; (H): hypoxia; -: no template control.

Bar diagram showing result of real-time PCR experiment which effect of hypoxia on mRNA expression of VGSCβ1 (B), VGSCβ2 (C), VGSCβ3 (D), VGSCβ4 (E) subunits was studied in AT2. The data were normalized to Cytb5R (light grey column) or β-actin (dark grey column) using the $2^{-\Delta\Delta C_{t}}$ method and described as relative to normoxic expression. Man-Witney rank sum test was used for statistic analysis. (F) Histogram showing that both control/normalising genes Ct values was not affected by hypoxic treatment. Un-paired student t-test was used for statistic analysis. Data are presented as means ± SEM (n ≥ 3). Significance: (*) p < 0.05; (X) p > 0.05.
Figure 3.20 Effect of hypoxia (2 % O₂) on VGSCα protein expression in Mat-LyLu cells.

(A) Western blot of 50 µg of total protein per lane from Mat-LyLu cells. Lanes (N): normoxia; (H): hypoxia; (P): pre-absorbed with immunizing peptide; (-) no primary antibody. Bloats were immunostained with pan-VGSCα and anti-actinin antibodies.

(B) Histogram showing relative VGSCα protein expression in normoxic and hypoxic conditions. The signal from pan-VGSC antibody was normalised to the respective anti-actinin signal. All data were represented as relative to normoxic VGSCα protein level. Un-paired student t-test was used for statistic analysis. Data are presented as means ± SEM (n = 4). Significance: (X) p > 0.05.
3.2.2.5.1 Control experiments
VGSCα protein expression was observed in intracellular and plasma membranes but not in nucleus of Mat-LyLu cells under control conditions (Figures 3.21A and 3.22). A number of control experiments were carried out for the immunocytochemical staining of Mat-LyLu cells with the pan-VGSC antibody (Figure 3.21B-D). No staining of Mat-LyLu cells was seen with the following treatments: i) a non-specific IgG used at the same concentration as the primary pan-VGSC antibody antibody (Figure 3.21B); ii) application of only the secondary antibody (Figure 3.21C); and iii) application of the pan-VGSC antibody pre-absorbed with the immunizing peptide, at x5 the antibody concentration (Figure 3.21D). These controls confirmed the specificity of the pan-VGSC antibody and the procedure used.

3.2.2.5.2 Plasma membrane VGSCα protein level
Quantification of VGSCα immunocytochemical staining in the cell periphery by “free form line profile” analysis of XYZ scans of Mat-LyLu cells revealed a decrease of plasma membrane VGSCα level, by ~15 %, from 208.7 ± 7.1 AU/µm to 176.7 ± 7.1 AU/µm by 24 h hypoxic (2 % O2) treatment (p < 0.05; n = 105; Figure 3.23).

3.2.2.5.3 Intracellular VGSCα protein level
Quantification of VGSCα protein level by “area histogram” analysis of XYZ scans of Mat-LyLu cells revealed a decrease of internal VGSCα level by ~16 % from 22978 ± 587 AU to 19173 ± 389 AU by 24 h hypoxic (2 % O2) treatment (p < 0.001; n ≥ 77; Figure 3.24).
Figure 3.21 Controls for Immunocytochemistry with Mat-LyLu cells.

Typical confocal image of Mat-LyLu cells immunostained (A) pan-VGSC primary antibody, (B) instead of Pan-VGSC primary antibody equal amount of non-specific IgG, (C) instead of primary antibody equal amount of 5% BSA/PBS, (D) pan-VGSC antibody that was pre-absorbed with the immunizing peptide. Alexa-568 conjugated secondary antibody (red) was used in all samples. Slides were co-stained with FITCY conjugated Concanavalin A (Con A) plasma membrane marker (green). Scale bar (40 µm) applicable to all panels.
Figure 3.22 Confocal images from immunochemistry of Mat-LyLu cells incubated in normoxia and hypoxia (2 % O₂) with pan-VGSC antibody.

Typical XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions. Signal from concanavalin A plasma membrane marker (green), pan-VGSC antibody (red) and overlay of both (merged image) are shown in addition to bright field image. Scale bar (40 µm) applicable to all panels.
Figure 3.23 Effect of hypoxia (2 % O₂) on VGSCα protein levels in plasma membrane of Mat-LyLu cells.

(A) Typical XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions. White lines indicate typical freeform line guided by Con A staining to measure cell surface protein level. Scale bar (5µm) applicable to all panels. (B) Representative trace showing signal intensity of Con A plasma membrane marker (green) and VGSCα (red) immunofluorescence along plasma membrane from typical cells incubated (24 h) in normoxic conditions (Figure 3.23A). (C) Representative trace showing signal intensity of Con A plasma membrane marker and VGSCα immunofluorescence along plasma membrane from typical cells incubated (24 h) in hypoxic conditions (Figure 3.23A). Dotted gray lines indicate mean pan-VGSC fluorescence. (D) Bar diagram showing level of VGSCα protein immunoreactivity along plasma membrane as a immunoreactivity (AU) per µm. Un-paired student t-test was used for statistic analysis. Data are presented as means ± SEM (n = 105). Significance: (*) p < 0.05.
Figure 3.24 Effect of hypoxia (2 % O₂) on internal VGSCα protein levels of Mat-LyLu cells.

(A) Typical XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions. White box indicates typical area covering 16 μm² square section of cytoplasm avoiding nucleus to measure internal protein level. Scale bar (5μm) applicable to all panels. (B) Representative histogram showing distribution of pixels (0.0625 μm²) with signal intensity of Con A plasma membrane marker (green) and VGSCα (red) immunofluorescence in cytoplasm from typical cells incubated (24 h) in normoxic conditions (Figure 3.24A). (C) Representative histogram showing distribution of signal intensity of Con A plasma membrane marker (green) and VGSCα (red) immunofluorescence in cytoplasm from typical cell incubated (24 h) in hypoxic conditions (Figure 3.24A). Dotted gray lines indicate mean pan-VGSC fluorescence. (D) Bar diagram showing internal VGSCα protein immunoreactivity (AU). Un-paired student t-test was used for statistic analysis. Data are presented as means ± SEM (n ≥ 77). Significance: (**) p < 0.001.
3.2.2.5.4 Subcellular distribution

The subcellular distribution of the VGSCα protein in Mat-LyLu cells was studied by “straight-line cross-sectional profile” analysis. This analysis revealed that the relative levels of plasma membrane and intracellular VGSCα protein were not affected by 24 h hypoxic (2 % O₂) treatment (10.5 ± 0.5 % and 11.2 ± 0.5 %, respectively; p > 0.05; n = 61; Figure 3.25). This result was consistent with the outcome of the “free form line profile” and “area histogram” analyses.

3.2.2.6 VGSCβ1 protein expression

Confocal immunocytochemistry with VGSCβ1 antibody was used to test possible effect of hypoxia (2 % O₂) on distribution of VGSCβ1 protein in Mat-LyLu cells (Figure 3.26-3.29). VGSCβ1 expression was observed in intracellular and plasma membrane but not in nucleus of Mat-LyLu cells under control conditions (Figure 3.26).

3.2.2.6.1 Plasma membrane VGSCβ1 protein level

Quantification of VGSCβ1 protein level by “free form line profile” analysis of XYZ scans of Mat-LyLu cells revealed no change in plasma membrane VGSCβ1 protein level after 24 h hypoxia (2 % O₂) treatment (245.8 ± 12.5 AU/µm and 245.5 ± 19.4 AU/µm, respectively; p > 0.05; n = 86; Figure 3.27).

3.2.2.6.2 Intracellular VGSCβ1 protein level

Quantification of VGSCβ1 protein level by “area histogram” analysis of XYZ scans of Mat-LyLu cells revealed no change of internal VGSCβ1 level by 24 h hypoxic (2
Figure 3.25 Effect of hypoxia (2 % O₂) on VGSCα protein distribution along typical cellular cross-section in Mat-LyLu cells.

(A) Typical XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions. White line indicates typical cross-section. Scale bar (5µm) applicable to all panels. (B) Representative trace showing signal intensity of Con A plasma membrane marker (green) and VGSCα immunofluorescence (red) along cross-section from typical cells incubated (24 h) in normoxic conditions (Figure 3.22A). (C) Representative trace showing signal intensity of Con A plasma membrane marker and VGSCα immunofluorescence along cross-section from typical cells incubated (24 h) in hypoxic conditions (Figure 3.22A). (D) Bar diagram showing distribution of VGSCα protein immunoreactivity along subcellular cross-sections as a percentage of total (%). For plasma membrane (PM) immunoreactivity, 1.5 µm sections was measured inward from the edge of Con A staining. For internal (INT) immunoreactivity, middle 30 % of the cross-section was measured. Un-paired student t-test was used for statistic analysis. Data are presented as means ± SEM (n = 61). Significance: (X) p > 0.05.
Figure 3.26 Confocal images from immunochemistry of Mat-LyLu cells incubated in normoxia and hypoxia (2 % O₂) with VGSCβ1 antibody.
Typical XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions. Signal from concanavalin A plasma membrane marker (green), VGSCβ1 antibody (red) and overlay of both (merged image) are shown in addition to bright field image. Scale bar (40 µm) applicable to all panels.
Figure 3.27 Effect of hypoxia (2 % O₂) on VGSCβ1 protein levels in plasma membrane of Mat-LyLu cells.

(A) Typical XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions. White line indicates typical freeform line guided by Con A staining to measure cell surface protein level. Scale bar (5µm) applicable to all panels. (B) Representative trace showing signal intensity of Con A plasma membrane marker (green) and VGSCβ1 (red) immunofluorescence along plasma membrane from typical cells incubated (24 h) in normoxic conditions (Figure 3.27A). (C) Representative trace showing signal intensity of Con A plasma membrane marker and VGSCβ1 immunofluorescence along plasma membrane from typical cells incubated (24 h) in hypoxic conditions (Figure 3.27A). Dotted gray lines indicate mean VGSCβ1 fluorescence. (D) Bar diagram showing level of VGSCβ1 protein immunoreactivity along plasma membrane as a immunoreactivity (AU) per µm. Un-paired student t-test was used for statistic analysis. Data are presented as means ± SEM (n = 86). Significance: (x) p > 0.05.
% O$_2$) treatment (15562 ± 645 AU and 14197 ± 1203 AU, respectively; p > 0.05; n = 92; Figure 3.28).

3.2.2.6.3 Subcellular distribution

Quantification of VGSCβ1 protein distribution by ‘straight line profile’ analysis of XYZ scans of Mat-LyLu cells revealed that relative plasma membrane and intracellular VGSCβ1 distribution was not affected by 24 h hypoxic (2 % O$_2$) treatment (13.5 ± 0.5 % and 14.0 ± 0.7 % respectively; p > 0.05; n = 63; Figure 3.29). This result was consistent with the outcome of the “free form line profile” and “area histogram” analyses.

3.2.2.7 Studies on metastatic cell behaviours

3.2.2.7.1 Lateral motility

Effect of hypoxia on lateral motility of Mat-LyLu cells was studied using wound-heal assay. Chronic treatment (24 h) with hypoxia did not change Mat-LyLu motility index (MoI: 0.74 ± 0.11 and 0.75 ± 0.10, respectively; p > 0.05; n = 5; Figures 3.30A&B). In addition, 1 µM TTX treatment did not have effect on motility of Mat-LyLu cells under both normoxic and hypoxic conditions (MoI: 0.74 ± 0.11 and 0.68 ± 0.09, respectively; p > 0.05; n = 5; Figure 3.30A&B). In order to control for consistency of wound size, initial wound width were measured and plotted in Figure 3.30C. All wounds were 0.5 to 0.8 mm wide; there was no significant difference in the initial wound widths in all conditions tested (Figure 3.30C).
Figure 3.28 Effect of hypoxia (2 % O₂) on internal VGSCβ1 protein levels of Mat-LyLu cells.

(A) Typical XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions. White box indicates typical area covering 16 µm² square section of cytoplasm avoiding nucleus to measure internal protein level. Scale bar (5µm) applicable to all panels. (B) Representative histogram showing distribution of pixels (0.0625 µm²) with signal intensity of Con A plasma membrane marker (green) and VGSCβ1 (red) immunofluorescence in cytoplasm from typical cells incubated (24 h) in normoxic conditions (Figure 3.28A). (C) Representative histogram showing distribution of signal intensity of Con A plasma membrane marker (green) and VGSCβ1 (red) immunofluorescence in cytoplasm from typical cells incubated (24 h) in hypoxic conditions (Figure 3.28A). Dotted gray lines indicate mean pan-VGSC fluorescence. (D) Chart showing internal VGSCβ1 protein immunoreactivity (AU). Un-paired student t-test was used for statistic analysis. Data are presented as means ± SEM (n = 92). Significance: (x) p > 0.05.
Figure 3.29 Effect of hypoxia (2 % O₂) on VGSCβ1 protein distribution along typical cellular cross-section in Mat-LyLu cells.

(A) Typical XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions. White line indicates typical cross-section. Scale bar (5µm) applicable to all panels. (B) Representative trace showing signal intensity of Con A plasma membrane marker (green) and VGSCβ1 immunofluorescence (red) along cross-section from typical cells incubated (24 h) in normoxic conditions (Figure 3.26A). (C) Representative trace showing signal intensity of Con A plasma membrane marker and VGSCβ1 immunofluorescence along cross-section from typical cells incubated (24 h) in hypoxic conditions (Figure 3.26A). (D) Bar diagram showing distribution of VGSCβ1 protein immunoreactivity along subcellular cross-sections as a percentage of total (%). For plasma membrane (PM) immunoreactivity, 1.5 µm sections was measured inward from the edge of Con A staining. For internal (INT) immunoreactivity, middle 30 % of the cross-section was measured. Un-paired student t-test was used for statistic analysis. Data are presented as means ± SEM (n = 63). Significance: (X) p > 0.05.
Figure 3.30 Effect of hypoxia (2 % O₂) on lateral motility of Mat-LyLu cells.

(A) Typical phase-contrast light-microscopy images obtained from wound-heal assay of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions ± TTX (1 µM). Scale bar (0.5 mm) applicable to all panels. (B) Bar diagram showing motility index of Mat-LyLu cells, incubated in normoxia and hypoxia ± TTX (1 µM) for 24 h. (C) Bar diagram showing width of the wounds at 0 h of wound-heal assay. Data were analysed by analysis of variance followed by Newman-Keuls post hoc analysis. Data are presented as means ± SEM (n = 5). Significance: (x) p > 0.05.
3.2.2.7.2 Transwell migration

Transwell assays were used to study the effect of hypoxia on Mat-LyLu cell migration. Long-term treatment (24 h) with hypoxia significantly increased migration by 45 % (p < 0.05; n = 9; Figures 3.31). TTX (1 µM) treatment (24 h) did not change number of migrated Mat-LyLu cells under normoxic conditions (p > 0.05; n = 9; Figures 3.31). On the other hand, TTX (1 µM) treatment significantly decreased migrated cell number from 145 ± 17 % to 97 ± 12 % under hypoxic conditions (p < 0.05; n = 9; Figures 3.31). Interestingly, there was no difference between the migrated cell numbers for TTX treatment under hypoxic condition and the control condition in normoxia (p > 0.05; n = 9; Figures 3.31). Under hypoxic conditions TTX reduced migrated cell numbers to normoxic control levels (p > 0.05; n = 9; Figures 3.31).

3.2.2.7.3 Matrigel™ invasion

Matrigel™ invasion assay was used to study effect of hypoxia on invasion of the Mat-LyLu cells. TTX (1 µM) significantly decreased invasion of Mat-LyLu cells under normoxic conditions to 47 ± 13 % of control (p < 0.05; n ≥ 4; Figures 3.32). When Mat-LyLu cells were incubated under hypoxic conditions, the number of invaded cells was not changed (100 % and 104 ± 18 %, respectively; p > 0.05; n = 8; Figures 3.32). However, invasion of Mat-LyLu cells incubated under hypoxic conditions significantly decreased when treated with 1 µM TTX (104 ± 18 % and 38 ± 6 % respectively; p > 0.05; n ≥ 4; Figures 3.32).
Figure 3.31 Effect of hypoxia (2 % O\textsubscript{2}) on migration of Mat-LyLu cells.
(A) Typical phase-contrast light-microscopy images of migrated cells obtained from transwell migration assay of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions ± TTX (1 µM). Migrated cells were fixed and stained with crystal violet (purple). Scale bar (200 µm) applicable to all panels. (B) Histogram showing number of migrated Mat-LyLu cells, incubated in normoxia and hypoxia ± TTX (1 µM) for 24 h. Data were expressed as % relative to the control and presented as means ± SEM (n = 9). Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis. Inset: table of multiple comparisons between treatments for statistical significance.
Figure 3.32 Effect of hypoxia (2 % O₂) on invasion of Mat-LyLu cells.

(A) Typical phase-contrast light-microscopy images of invaded cells obtained from Matrigel™ invasion assays of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions ± TTX (1 µM). Invaded cells were fixed and stained with crystal violet (purple). Scale bar (200 µm) applicable to all panels. (B) Bar diagram showing number of invaded Mat-LyLu cells, incubated in normoxia and hypoxia ± TTX (1 µM) for 24 h. Data were expressed as % relative to the control and presented as means ± SEM (n ≥ 4). Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis. Inset: table of multiple comparisons between treatments for statistical significance.
3.3 Discussion

The main findings of this study are as follows: (1) 24 h hypoxia or blocking VGSC activity with TTX (1 µM) did not affect the relative proportions of morphological subtypes (non-process bearing, monopolar, bipolar and multipolar) of Mat-LyLu cells. (2) Chronic hypoxia increased cell body diameter, whilst TTX had no effect. (3) Hypoxia decreased Mat-LyLu cell number when incubated for 48 - 72 h. (4) No effect of hypoxia was observed on proliferation of AT2 cells up to 72 h. (5) TTX had no effect on proliferation of both Mat-LyLu and AT2 cells. (6) Nav1.7 mRNA expression was increased after 24 h hypoxic treatment. (7) VGSCβ1 was the predominant subunit expressed in both AT2 and Mat-LyLu cells. (8) Hypoxia increased VGSCβ1 mRNA expression in both Mat-LyLu and AT2 cells. (9) Hypoxia decreased both internal and plasma membrane VGSCα protein level. (10) Hypoxia (24 h) had no effect on VGSCβ1 protein level. (11) Both hypoxia and TTX (1 µM) had no effect on lateral motility. (12) TTX (1 µM) had no effect on transverse migration under normoxic conditions. (13) Hypoxia increased Mat-LyLu cell transverse migration and TTX (1 µM) decreased it to normoxic levels. (14) Hypoxia had no effect on Mat-LyLu cell invasion but TTX (1 µM) decreased invasion under both normoxic and hypoxic conditions.

3.3.1 Effect of hypoxia on morphological development

Previously, it was reported that 72 h of hypoxia (3 % O₂) caused ‘loosening’ of cell contact and scattering from cell clusters of human hepatoblastoma, pancreatic cancer, colon cancer and breast cancer cells (Cannito et al., 2008). However, no obvious such change in two dimensional distribution of Mat-LyLu and AT2 cells was
observed when treated with hypoxia (2 % O₂) for 24 h and 48 h. In addition, TTX had no effect on distribution of these cells both in hypoxia and normoxia.

Both Mat-LyLu and AT2 cells have extensive morphological heterogeneity. This heterogeneity was assessed by sub-dividing cells according their process number. No change in percentage of non-process bearing, monopolar, bipolar and multipolar cells was detected up to 48 h hypoxic treatment. In addition, blocking VGSC activity with TTX under hypoxic and normoxic conditions for 24 h had no effect on the morphological heterogeneity. However 48 hypoxia + TTX (1 µM) treatment significantly decreased percentage of monopolar cells. This was probably caused by the decrease in cell number with 48 h hypoxic treatment, which will be discussed in section 3.3.2.

It has been proposed that morphological change from epithelial to a spindle-shaped and fibroblast like morphology can be correlated with aggressiveness of cancer (Thiery, 2002). Furthermore, hypoxic transition to fibroblast like morphology was observed in various cancer cells such as human hepatoblastoma, pancreatic cancer, colon cancer and breast cancer cells (Cannito et al., 2008; Lester et al., 2007). A small, but significant increase in cell body diameter of Mat-LyLu cells treated with 24 h and 48 h hypoxia (2 % O₂) was detected. In addition, 48 h, but not 24 h, hypoxia increased Mat-LyLu cell size. Process length and process thickness were not affected by hypoxia (24 h and 48 h). Therefore, we can speculate that Mat-LyLu rat prostate cancer cell morphology did not change to fibroblast-like morphology with hypoxic treatment as was observed in other cancer cells. TTX (1 µM) had no effect on cell morphology in both hypoxic and normoxic conditions. The only exception was process thickness where 24 h hypoxia + TTX treatment increased process thickness slightly but significantly. On the other hand, a role for VGSC in
morphological development was established for Mat-LyLu cells by Fraser et al. (1999). It was shown that blocking VGSC with 6 μM TTX decreased cell process length and increased cell body diameter and process thickness (Fraser et al., 1999). TTX (6 μM) used in Fraser et al. (1999) experiment was well above the necessary dose required to obtain complete blockage of Nav1.7. Therefore, we can speculate that morphologic effect seen by Fraser et al. (1999) can be caused by the high concentration of TTX used. In the same experiment, the cells were fixed by paraformaldehyde and stained by toluidine blue; on the other hand, in the current study morphological analyses were carried on images taken from live cells.

3.3.2 Effect of hypoxia on proliferation

Weakly metastatic rat prostate cancer AT2 cells were not affected by hypoxia up to 72 h. Incubation of Mat-LyLu cells in hypoxia for 24 h did not change the cell number. However, 48 h and 72 h hypoxia decreased Mat-LyLu cell number significantly compared to normoxia. Consistently, Alqawi et al. (2007) showed that only 5 % of Mat-LyLu cells survive after 3 weeks of hypoxia (1 % O₂). In addition, a decrease in human prostate cancer cell number after 72 h hypoxia (1 % O₂) was reported by Ackerstaff et al. (2007). Similarly, no change in tongue squamous carcinoma cell proliferation was observed at 24 h hypoxia but a decrease of proliferation was reported after 48 h and 72 h (Song et al., 2009). On the other hand, no significant change in human hepatoblastoma, pancreatic cancer, colon cancer and breast cancer cell number was reported when treated with 72 h hypoxia (3 % O₂) (Cannito et al., 2008). In the case of human prostate cancer, PC3 cells, Ackerstaff et al. (2007) proposed that hypoxia mediated down regulation of genes responsible for formation of the “pre-replicative complex”.

- 165 -
We then investigated the possible involvement of VGSC activity in control of cell number. No change in AT2 and Mat-LyLu cell numbers was measured when VGSC was blocked by TTX (1 µM) under both hypoxic and normoxic conditions. Similarly, Fraser et al. (2000) documented that VGSC had no effect on the proliferation of either cell line. In other cancers also, VGSC activity was found not to affect cellular proliferation, e.g. breast cancer (Fraser et al., 2005). Therefore, we can conclude that decrease in cell number by prolonged hypoxia was not controlled by VGSC activity.

Since hypoxia treatments longer than 24 h reduced cell number, subsequent experiments were restricted to 24h hypoxia, in order not to ‘contaminate’ any effect e.g. on cell motility. However, we should note that 24 h is still a nominal duration employed under ‘model’ experimental conditions. In reality, the clinical course of hypoxic (metastatic) tumours would run over months.

3.3.3 Regulation of VGSCα subunit expression by hypoxia

3.3.3.1 Nav1.7 mRNA expression

Nav1.7, the predominant VGSC functionally expressed in rat and human prostate cancer (Mat-LyLu and PC3) cells, was shown to enhance the cells’ metastatic potential (Diss et al., 2001; Grimes et al., 1995; Nakajima et al., 2009). The present study confirmed the previous work that strongly metastatic Mat-LyLu, but not the weakly metastatic AT2 cells, express Nav1.7 mRNA (Diss et al., 2001). In Mat-LyLu cells, chronic hypoxia (24 h, 2 % O₂) significantly increased Nav1.7 mRNA levels. Consistently, prolonged hypoxia induced increase in VGSCα mRNA level in developing rat cortex tissue (Zhang et al., 2001). In addition, hypoxic regulation of
various ion channel mRNA expression was reported such as: voltage-gated potassium channel α-subunits (Kv1.1, Kv1.2, Kv1.5, Kv2.1, Kv4.3 and Kv9.3) and α_{1H} voltage-gated T type calcium channel (Platoshyn et al., 2001; Conforti and Millhorn, 1997; Del Toro et al., 2003). The mechanism of hypoxic upregulation of Nav1.7 mRNA expression is not known. However, there are several candidate pathways that can regulate gene expression by hypoxia, including: 3′-5′ adenosine monophosphate (cAMP) / protein kinase A (PKA), Ca^{2+}-calmodulin, mitogen-activated protein kinase (MAPK) and hypoxia-inducible factors (HIF) pathway. There is evidence to suggest that the cAMP-PKA pathway could be involved in hypoxia mediated increase in Nav1.7 mRNA expression. Accordingly, hypoxia induced increase in PKA activity was reported in bone cells and endothelial cells (Zhang et al., 2010). Offord and Catterall (1989) reported that 8-Br-cAMP, a membrane-permeant analogue of cAMP which activates PKA, increased the VGSC α-subunit mRNA expression in developing rat muscle cells. Conversely, treatment of Mat-LyLu cells with KT5720, a PKA inhibitor, for 48 h decreased Nav1.7 mRNA level (Brackenbury and Djamgoz, 2006). On the other hand, hypoxia induced HIF1α independent changes in genome-wide DNA methylation and histone acetylation, also known to regulate gene expression, was documented in human prostate cells (Watson et al., 2009). Such genome-wide change in DNA methylation and histone acetylation may affect expression of a large number of genes, including those for ion channels.

3.3.3.2 VGSCα protein expression

Interestingly, increase in Nav1.7 mRNA expression by hypoxia was not reflected in VGSCα protein level. In fact, hypoxia decreased both internal and plasma membrane
VGSC α-subunit levels by ~ 15%. There is evidence to suggest that mRNA regulation and protein levels can be controlled separately and independently (Orphanides and Reinberg, 2002). Discrepancy between VGSCα mRNA and protein expression in Mat-LyLu cells was also documented previously where TTX-induced decrease in Nav1.7 mRNA expression was not observed in total protein level (Brackenbury and Djamgoz, 2006). Similarly, difference in mRNA and protein expression was reported in a range of other pathophysiological conditions such as rheumatoid arthritis, psoriasis, B-chronic lymphoproliferative disorders (Sola et al., 1999; Schedel et al., 2004; Sano et al., 2005 Gu et al., 2006). It was speculated that this difference in mRNA and protein expression may be because of post-transcriptional disregulation or alterations in protein conformation (Sola et al., 1999; Schedel et al, 2004).

Cellular mechanism underlying the decrease in VGSCα protein level is not known. This decrease in VGSCα protein level indicates change in protein turnover which can be because of decrease in protein synthesis and/or increase in protein degradation. Hypoxic reduction of VGSCα level is also reported in turtle brain (Pérez-Pinzón et al., 1992). O’Reilly et al., (1997) proposed that decreased VGSCα activity in hypoxic neuron cells is an adaptive mechanism to increase neuronal tolerance to hypoxia because it would reduce Na⁺ influx and this would result in reduction in energy demand when energy supply is diminished during hypoxia.

3.3.3.3 Relative subcellular distribution of VGSC protein

In immunocytochemistry experiments, the relative percentages of intracellular and plasma membrane VGSCα protein levels did not change after 24 h of hypoxic treatment. This is consistent with the results obtained from the absolute
quantifications of intracellular and plasma membrane proteins, i.e. intracellular and plasma membrane VGSCα protein levels decreased similarly by ~15 %. These results suggest that the VGSCα protein cytoplasm-plasma membrane recycling, which has a turnover period of some 24 h, was not affected by hypoxia (2 % O₂).

3.3.4 VGSCβ subunit expression in Mat-LyLu and AT2 cells

All of the four known VGSC β-subunits mRNA expression was detected in the weakly metastatic rat prostate cancer cell line, AT2 where VGSCβ1 was the highest expressed subunit followed by VGSCβ3, VGSCβ2 and VGSCβ4. On the other hand, all but VGSCβ3 subunits mRNA expression was detected in strongly metastatic rat prostate cancer cell line, Mat-LyLu; VGSCβ1 was the highest expressed subunit followed by VGSCβ4 and VGSCβ2. High levels of VGSCβ1 mRNA expression in both AT2 and Mat-LyLu cell lines was consistent with previous finding on human prostate cancer cells, human breast cancer cells and human prostate tissue (Diss et al., 2008; Chioni et al., 2009; Candenas et al., 2006). Similar to human prostate tissue, human prostate cancer cells and human breast cancer cells VGSCβ2 expression was low (Diss et al., 2008; Chioni et al., 2009; Candenas et al., 2006). Interestingly, human breast cancer cells frequently express very low levels or no VGSCβ3 mRNA (Chioni et al., 2009; Candenas et al., 2006). VGSCβ4 mRNA expression in both AT2 and Mat-LyLu cell lines was consistent with previous finding on human prostate cancer cells, human breast cancer cells and human prostate tissue (Diss et al., 2008; Chioni et al., 2009; Candenas et al., 2006).

AT2 cells expressed higher VGSCβ subunit mRNA than Mat-LyLu mainly due to higher VGSCβ1 expression. Similar result was documented in human breast cancer cells where weakly metastatic cells have higher VGSCβ expression (Chioni et
al., 2009). However, strongly metastatic human prostate cancer cells have higher VGSCβ expression than weakly metastatic cells (Diss et al., 2008). On the other hand, no significance difference was observed between prostate cancer and non-cancerous human prostate tissues (Diss et al., 2008). It is well documented that VGSCβ1 can interact with extracellular matrix proteins, cell adhesion molecules (CAM), cytoskeleton, and functions as CAMs (Isom and Catterall, 1996; Isom, 2002; Undrovinas et al., 1995; Faissner 1997; Srinivasan et al., 1998; Xiao et al., 1999; Peles et al., 1995; Malhotra et al., 2000; Ratcliffe et al., 2000; Isom, 2001; McEwen and Isom, 2004). Reduced adhesiveness in rat prostate cancer, in addition to human prostate and breast cancer cells was associated with higher metastatic potential, i.e. single-cell adhesion of weakly metastatic AT2 cells was lower than adhesion of strongly metastatic Mat-LyLu cells (Palmer et al., 2008). Down regulation of VGSCβ1 with siRNA in weakly metastatic MCF-7 breast cancer cells decreased single-cell adhesion and increased Transwell migration (Chioni et al., 2009). Over expression of VGSCβ1 in strongly metastatic MDA-MB-231 cells increased cell-cell adhesion and decreased lateral motility (Chioni et al., 2009). Therefore, we can speculate, similar to human breast cells, that higher VGSCβ1 expression might be responsible for the higher adhesiveness of AT2 cells. On the other hand, it was shown that down regulation of VGSCβ1 cause increase in VGSCα mRNA expression (Chioni et al., 2009). So, the lower VGSCβ1 expression in Mat-LyLu cells might take part in increased Nav1.7 mRNA expression. In fact, the cytoplasmic domain of VGSCβ1, when cleaved, can regulate gene expression (Brackenbury and Isom, 2008)

Low levels of VGSCβ2 expression were detected in both AT2 and Mat-LyLu cells. Expression of this subunit was not different between these strongly and weakly
metastatic cell lines. This result is consistent with previous finding on human prostate cell lines, where there was no difference in VGSCβ2 mRNA expression between strongly and weakly metastatic human prostate cancer cells, PNT2-C2, LnCaP, PC3 and PC3M (Diss et al., 2008). Furthermore, a similar result was obtained in in vivo experiments on human tissues by Diss et al., (2008). However, strongly metastatic MDA-MB-231 breast cancer cells have higher VGSCβ2 mRNA than weakly metastatic MCF-7 breast cancer cell line (Chioni et al., 2009). VGSCβ2 was reported to regulate functional expression of VGSC α-subunit, channel gating, channel conductance and translocation of the channel (Isom et al., 1995; Cruz et al., 1999; Chen et al., 2002; Pertin et al., 2005). Therefore, VGSCβ2 expression in Mat-LyLu cells might be involved in regulation of VGSC expression / functioning.

VGSCβ3 mRNA expression was detected in AT2 cells but not in Mat-LyLu cells. A low level mRNA expression of this subunit was reported in human prostate cell lines, PNT2-C2, LnCaP, PC3 and PC-3M where no difference in expression between strongly and weakly metastatic cells was observed (Diss et al., 2008). In the same study, no difference in VGSCβ3 mRNA expression was detected between prostate cancer and non-cancerous prostate tissue. However, Candenas et al., (2006) did not find VGSCβ3 mRNA expression in human prostate tissue. In addition, similar to Mat-LyLu cells, no expression of VGSCβ3 was detected in human breast cancer cells. Interestingly, VGSCβ3 expression was correlated with p53 oncogene expression (Adachi et al., 2004). VGSCβ3 gene contains two p53-response elements and was upregulated by overexpression of p53 (Adachi et al., 2004). Thus, VGSCβ3 is a target gene for p53 and its minimised expression may give metastatic cancer cells an advantage against apoptosis, i.e. it is possible that diminishing VGSCβ3 expression may contribute to metastatic transformation.

- 171 -
A low level of VGSCβ4 mRNA expression was detected in both AT2 and Mat-LyLu cells, latter having higher expression. Studies on human prostate and breast cancer cell lines showed higher VGSCβ4 mRNA expression in weakly metastatic cell lines compared to strongly metastatic cell lines (Chioni et al., 2009; Diss et al., 2008). On the other hand, no difference in VGSCβ4 mRNA expression was detected between human prostate cancer and non-cancerous tissues (Diss et al., 2008). VGSCβ4 was associated with changing activation voltage of Nav1.2 and Nav1.4 and was predicted to associate with extracellular matrix and CAMs (Yu et al., 2003).

Further functional studies are required to determine the possible pathophysiological role of VGSCβ expression in cancer and metastatic disease.

3.3.5 Regulation of VGSCβ expression by hypoxia

3.3.5.1 VGSCβ mRNA expression

Long-term hypoxia (24 h, 2 % O2) increased VGSCβ1 mRNA expression of both weakly and strongly metastatic rat prostate cancer cell lines, AT2 and Mat-LyLu, respectively. The mechanism(s) underlying VGSCβ1 mRNA regulation in rat prostate cancer is not known. As discussed earlier, hypoxia may affect a number of signalling pathways in addition to genome-wide changes in methylation and acetylation (Seta et al., 2002; Watson et al., 2009). In addition, increase in VGSCβ1 mRNA expression in both strongly and weakly metastatic cell lines indicate that hypoxia influences similar mechanisms in these cell lines.

VGSCβ2 expression of Mat-LyLu cells was not affected by 24 h hypoxic treatment. On the other hand, VGSCβ2 mRNA level was elevated by 24 h hypoxic
treatment in AT2 cells. Hypoxia had no effect on VGSCβ3 mRNA expression of AT2 cells. No change in VGSCβ3 expression was observed in Mat-LyLu cells. VGSCβ4 subunit mRNA level of Mat-LyLu cells was not affected by chronic hypoxia. However, increase in VGSCβ4 was documented in AT2 cells in this study. It is evident from this result that VGSC β2, β3 and β4 subunit mRNA expressions were controlled differentially in weakly and strongly metastatic rat prostate cells and could result in different functional components, assuming that the mRNA changes were reflected at protein level.

3.3.5.2 VGSCβ1 protein expression

In this study, VGSCβ1 subunit protein expression was studied since this was found to be the predominant VGSCβ subunit expressed in rat prostate cancer, human prostate cancer and human breast cancer cell lines was VGSCβ1 (Chioni et al., 2009; Diss et al., 2008). Unfortunately, antibodies for VGSCβ2, VGSCβ3 and VGSCβ4 were not readily available. Interestingly, increase in VGSCβ1 mRNA expression by hypoxia was not reflected in VGSCβ1 protein level in Mat-LyLu cells. Hypoxia had no effect on both intracellular and plasma membrane levels of VGSCβ1 protein. As discussed previously, mRNA and protein levels can be controlled separately and independently (e.g. Orphanides and Reinberg, 2002).

3.3.5.3 Relative subcellular distribution of VGSCβ1 protein

The relative percentages of intracellular and plasma membrane VGSCβ1 protein levels did not change after 24 h hypoxic treatment. This is consistent with results obtained from ‘absolute’ quantification of intracellular and plasma membrane protein
levels, which also did not show any change. These results suggested that VGSCβ1 cytoplasm-plasma membrane protein cycling was not affected by hypoxia (2 % O₂).

3.3.6 Hypoxic regulation of metastatic activity of Mat-LyLu cells and possible involvement of VGSC activity

3.3.6.1 Lateral motility

It was reported that hypoxia (48 h) changed expression of various genes related to cellular motility in human prostate cancer PC3 cells (Ackerstaff et al., 2007). In that study, upregulation of 8 genes and down regulation of 10 genes related to motility were detected. However, we found that lateral motility of Mat-LyLu cells was unchanged with 24 h hypoxia. In addition, no report on effect of hypoxia on lateral motility was found. Blocking VGSC for 24 h had no effect on lateral motility of Mat-LyLu cells in both hypoxic and normoxic conditions. On the other hand, previously, Fraser et al. (2003) suggested that functional VGSC expression enhances lateral motility. However, their results were based on assays lasting 48 h and no data was reported for 24 h TTX treatment. Taken together, these results would suggest that regulation of lateral motility by VGSC activity and the effect of hypoxia are time-dependent process.

3.3.6.2 Transverse migration

Increase in migration by hypoxia was reported previously for MDA-MB-231, MDA-MB-468, MCF7 and 4T1 breast cancer model cells (Cronin et al., 2010, Lester et al., 2007). In the present study, we also found that 24 h hypoxic treatment of Mat-LyLu
cells enhanced migration. This increase in migration was reduced to normoxic control levels when VGSC activity was blocked by TTX. However, blocking VGSC activity had no effect on migration in normoxic conditions. In contrast, Brackenbury and Djamgoz (2006) reported decrease of migration with TTX treatment in normoxic conditions. These contradicting results were probably caused by experimental conditions. Brackenbury and Djamgoz (2006) used 12 µm-pore Transwell filters in migration assay but 8 µm-pores Transwell filters were used in this study since former was no longer commercially available. It was also shown that serum factors may be required for VGSC dependent potentiation of migration where in presence of 0 % FBS TTX had no effect on Mat-LyLu cell migration (Brackenbury and Djamgoz 2007). Clearly, the increase in migration by hypoxia depended on VGSC activity. Accordingly, Onkal (2010) showed that hypoxia (2 % O\textsubscript{2}, 24 h) significantly increased Na+ peak current density in Mat-LyLu cells, so a follow-on increase in I\textsubscript{NaT} may be expected (Appendix 1). In addition, it was previously reported that hypoxia increased I\textsubscript{NaP} amplitude in neurons and cardiac cells (Hammarström and Gage 1998; Ju et al., 1996). Although a small decrease in VGSC protein level was detected, hypoxic increase in I\textsubscript{NaP} or I\textsubscript{NAT} could be the reason for the VGSC-dependent increase in migration.

3.3.6.3 Matrigel™ invasion

Hypoxic treatment for 24 h did not have any affect on the invasion of Mat-LyLu cells. Consistently, Alqawi et al. (2007) reported that 5 h hypoxia (1 % O\textsubscript{2}) did not effect invasion of Mat-LyLu cells. However in that study, increased invasion was reported for a hypoxia-resistant sub-clone of Mat-LyLu, surviving 8 weeks of hypoxia (1 % O\textsubscript{2}). Watson et al. (2009) also reported increased invasiveness of a
hypoxia-resistant sub-clone of PwR-1E benign prostate epithelial cells maintained for 14 weeks in hypoxia. In contrast, Ackerstaff et al. (2007) reported decreased invasiveness of PC3 human prostate cancer cells after 72 h of hypoxia (1 % O₂). However, in the same study the cell number was found to decrease with hypoxia, which could explain the decrease in invasion capability. In addition to prostate cancer, many other studies on various type of cancer cell showed change in invasion by hypoxia. However, there is no general consensus on the direction of this effect. Increase of invasion with hypoxia was reported for MDA-MB-231, MDA-MB-468, MCF7 and 4T1 breast cancer cells, HCT116 and HT-29 human colon carcinoma, HepG2 human hepatoblastoma and PANC-1 pancreatic carcinoma cells (Cronin et al., 2010; Lester et al., 2007; Graham et al., 1999, Krishnamachary et al., 2003). On the other hand, no affect of hypoxia on invasion was reported for SiHa human cervical cancer, U2-OS human osteosarcoma cells, OW-1, SAU and SKA ovarian cancer cells (Pennacchietti et al., 2003; Krtolica and Ludlow 1996). Decrease of invasion with hypoxic treatment was documented for choriocarcinoma cells (Sato et al., 2002). Taking into account all these results, we can conclude that hypoxic regulation of invasion can change from one cancer type to another and may be time dependent.

Blocking VGSC with TTX decreased invasion of MatLyLu cells both in normoxic and hypoxic conditions. Similarly, role of VGSC on invasion of prostate cancer was extensively studied previously under normoxic conditions (Grimes et al., 1995; Laniado et al., 1997; Smith et al., 1998; Bennett et al., 2004; Nakajima et al., 2009). Bennett and colleagues (2004) proposed that functional expression of VGSC is “necessary and sufficient” for prostate cancer cell invasion. In the case of human strongly metastatic breast cancer cells, VGSC activity dependent increase in
invasiveness was proposed to be due to control of pH-dependent activation of
cysteine cathepsins (Gillet et al., 2009). Such an effect could explain why a role of
VGSC activity in lateral motility and transverse migration was not always seen.

3.4 Concluding remarks
In the present study, we found differential regulation of mRNA and protein
expression of VGSC α- and β1- subunit of Mat-LyLu cells when incubated in
hypoxic conditions (24 h; 2 % O₂). Hypoxia increased both VGSC α- and β1- subunit
mRNA expression but decreased or not effected the protein expression, respectively.
No major effect of hypoxia on cell morphology was observed. In addition, hypoxia
did not affect lateral motility and matrigel invasion of Mat-LyLu cells. On the other
hand, VGSC activity-dependent enhancement of transverse migration was
documented by chronic hypoxia (24 h; 2 % O₂). In overall conclusion, therefore,
hypoxia mediated increase in transverse migration of Mat-LyLu cells was caused, at
least in part, by increased VGSC activity which was probably regulated at a post-
transcriptional level.
Chapter 4

EFFECTS OF PHARMACOLOGICAL BLOCKERS ON VOLTAGE-GATED Na^+ CHANNEL EXPRESSION AND METASTATIC CELL BEHAVIOURS OF DUNNING PROSTATE CANCER
4.1 Introduction

Functional expression of VGSCs has been associated with metastatic carcinomas as reviewed in Chapter 1 - General Introduction (also, Grimes et al., 1995; Blandino et al., 1995; Laniado et al., 1997; Allen et al., 1997; Grimes and Djamgoz, 1998; Abdul and Hoosein, 2002; Roger et al., 2003; Fraser et al., 2004; Ou et al., 2005; Fraser et al., 2005; Onganer and Djamgoz, 2005; Onganer et al., 2005; Brackenbury and Djamgoz, 2006; Fulgenzi et al., 2006; Roger et al., 2007; Diaz et al., 2007; Nakajima et al., 2009; Gao et al., 2009; Gao et al., 2010; House et al., 2010). It was reported that VGSC activity in rat strongly metastatic prostate cancer (PCa) Mat-LyLu cells can auto-regulate mRNA expression and protein trafficking via a positive feedback mechanism (Brackenbury and Djamgoz, 2006). In addition, VGSC activity was reported to contribute positively metastatic cell behaviours (MCBs), such as galvanotaxis, lateral motility, endocytotic membrane activity, transverse migration and invasion (Brackenbury and Djamgoz, 2006; Gillet et al., 2009; Nakajima et al., 2009; Fraser et al., 2003; Mycielska et al., 2003; Djamgoz et al., 2001; Krasowska et al., 2004; Grimes et al., 1995; Laniado et al., 1997; Smith et al., 1998; Bennett et al., 2004). Indeed, it was proposed that functional expression of VGSC is “necessary and sufficient” for cellular invasiveness in PCa (Bennett et al., 2004). Finally, House et al. (2010) recently showed that functional VGSCs (Nav1.5) are a key regulator of invasiveness in colon cancer.

Because of their VGSC blocking activity, various pharmacological agents, including ranolazine, riluzole, procaine and lidocaine, have been used to treat a variety of pathological conditions, such as chronic angina, amyotropic lateral sclerosis, painful diabetic polyneuropathies, neuralgic pain and traumatic peripheral nerve injuries (Maier, 2009; Bensimon et al., 1994; Lacomblez et al., 2996). The
antianginal effect of ranolazine is thought to be through blockage of I_{NaP} (Antzelevitch et al., 2004; Fredj et al., 2006). Similarly, the neuroprotective property of riluzole was attributed to its ability to block I_{NaP} (Urbani and Belluzzi, 2000; Zona et al., 1998). It was also proposed that I_{NaP} is more sensitive to VGSC blockers lidocaine and TTX than I_{NaT} in neurons (Hammarström and Gage, 1998). There is also some evidence that lidocaine and procaine may block embryonic VGSCs more than adult (Ribeiro and Costa, 2003). Ranolazine was proposed as a therapeutical agent in treatment of haematological malignancies and riluzole was suggested as a drug for advanced melanoma treatment (Samudio et al., 2010; Le et al., 2010). In addition, procaine was suggested as potential candidate for breast cancer therapy because of its reported anti-proliferative effects (Villar-Garea et al., 2003). Procaine was also shown to enhance anti-tumoral activities of drugs used in cancer therapy (Chlebowski et al., 1982; Esposito et al., 1990; Viale et al., 1998; Mizuno and Ishida, 1982). Furthermore, procaine and lidocaine were reported to radiosensitize hypoxic murine L5178Y cells (Yau and Kim, 1980). These findings would further suggest that clinical VGSC blockers could ultimately be useful as anti-cancer drugs.

Hypoxia occurs in many human solid cancers, including PCa, as tumours grow (Vaupel et al., 2007; Harrison and Blackwell, 2004). Significant correlation with tissue hypoxia and clinical stage was reported in PCa (Movsas et al., 2000). Development of hypoxia in growing tumours is crucial for inducing ‘global’ changes in gene expression, metabolic phenotype, ion haemostasis and, finally, angiogenesis (Higgins et al., 2009; Ackerstaff et al., 2007; Watson et al., 2009, Haigney et al., 1994; Xiao and Allen, 1999).

Interestingly, hypoxia can modulate VGSC activity by affecting channel gating by conformational changes caused by formation or disruption of
intermolecular disulfides (Hammarström and Gage, 2002). Accordingly, hypoxia induced increase in “persistent Na⁺ current” (I_{NaP}) was reported in neurons and cardiac cells (Ju et al., 1996; Hammarström and Gage, 2002; Wang et al., 2007). On the other hand, hypoxia reduced “transient Na⁺ current” (I_{NaT}) in neurons and myocytes (Hammarström and Gage, 2002; Wang et al., 2007). It was also reported that intracellular Na⁺ concentration increased by hypoxia (Haigney et al., 1994; Xiao and Allen, 1999).

In the light of these findings, it was hypothesised that targeting VGSC could be a novel and effective strategy to reduce metastatic potential of PCa. Therefore, in this chapter we proposed that pharmacological VGSC blockers, that are currently being used as ‘safe’ clinical drugs, could be used to decrease MCBs of PCa. In addition, tissue O₂ level could modify the effect of these drugs, since tissue O₂ level would affect VGSC activity.

4.1.1 Aims and scope of the present study

The main aim of this study was to evaluate possible effects of key pharmacological blockers on VGSCα expression and involvement in MCBs in the strongly metastatic rat PCa model, Mat-LyLu cells. The specific aims were as follows:

1. To test if ranolazine, riluzole (blockers of I_{NaP}), procaine and lidocaine (general VGSC blockers) could regulate VGSCα mRNA and protein levels in normoxic and hypoxic conditions; and

2. To determine the possible effects of these pharmacological blockers on Matrigel™ invasion in normoxic and hypoxic conditions.
4.2 Results

Hypoxia treatments longer than 24 h reduced cell number, therefore all experiments were restricted to 24 h treatment, in order not to ‘contaminate’ any effect on Matrigel invasion. In addition, many previous experiments have been carried out using 24 h hypoxia (Ghafer et al., 2003; Franovic et al., 2007; Chen et al., 2010; Dai et al., 2011).

4.2.1 Effects of ranolazine

Ranolazine has been used extensively as an inhibitor of VGSC persistent currents, although it has a range of actions, depending on concentration (Chen et al., 2009; Samudio et al., 2010; Rajamani et al., 2008; Antzelevitch et al., 2004; Clarke et al., 1996). In the present study, it was used in the concentration range 20 to 300 µM, since in this concentration range, ranolazine was shown to block I_{NaP} more effectively than I_{NaT} (Antzelevitch et al., 2004).

4.2.1.1 Some initial observations: Cell morphology

No change in the basic appearance or distribution of Mat-LyLu cells in culture was observed when cultures were treated (24 h) with 20 µM and 50 µM ranolazine under both normoxic and hypoxic (2 % O$_2$) conditions (Figures 4.1A-C). On the other hand, after 300 µM ranolazine treatment, Mat-LyLu cells, maintained in either condition, appeared generally ‘loose’ and scattered (Figure 4.1D). Studying the cells under high magnification revealed that following 300 µM ranolazine treatment, cells lost their spindle-shaped / fibroblast-like morphology in both normoxic and hypoxic conditions (Figure 4.2D).
Figure 4.1 Phase-contrast light-photomicrography of Mat-LyLu cells treated with ranolazine. Mat-LyLu cells were grown for 24 h under (A) control conditions, and in (B) 20µM ranolazine, (C) 50µM ranolazine, and (D) 300µM ranolazine treatment in normoxia (left hand pictures) and hypoxia (2 % O₂; right hand pictures). Micrographs are typical of 3 experiments.
Figure 4.2 Phase-contrast light-photomicrography of Mat-LyLu cells, treated with ranolazine in high magnification.

Mat-LyLu cells were grown for 24 h under (A) control conditions, and in (B) 20µM ranolazine, (C) 50µM ranolazine, (D) 300µM ranolazine treatment in normoxia (left hand pictures) and hypoxia (2 % O₂; right hand pictures). Micrographs are typical of 3 experiments.
4.2.1.2 Cell viability

Treatment with concentrations of ranolazine up to 300 µM for 24 h had no effect on the viability of Mat-LyLu cells maintained in normoxic or hypoxic conditions (Figure 4.3).

4.2.1.3 Cellular proliferation

There was no change in Mat-LyLu cell number after treatment with ranolazine (20, 50 and 300 µM) over 24 h in normoxic conditions (Figure 4.4). Similarly, the cell number was not affected by 20 and 50 µM ranolazine treatment (24 h) in hypoxia (Figure 4.4). There was no effect when cell numbers were compared to the respective control. However, comparison of the cell number for 300 µM ranolazine in hypoxia with the normoxic control (~21 % O₂) suggested a statistically significant effect (p < 0.05; n = 3 each; Figure 4.4). Hypoxia by itself had no effect on cell number.

4.2.1.4 Nav1.7 mRNA expression

Expression of Nav1.7 mRNA was studied by real-time PCR. cDNAs were prepared from Mat-LyLu cells treated with 20 - 300 µM ranolazine for 24 h under normoxic or hypoxic conditions. Agarose gel electrophoresis confirmed specific single bands at the expected sizes for Nav1.7 and Cytb5R (414 nt and 425 nt, respectively; n = 3; Figure 4.5A). The “no-template control” did not give any signal (n = 3; Figure 4.5A). Significant decreases of Nav1.7 mRNA expression by 17 %, 20 % and 17 % were found to result from the treatment of the cells with 20, 50 and 300 µM ranolazine, respectively, under normoxic conditions (p < 0.05; n = 3 each; Figure 4.5B). Hypoxia (24 h) alone significantly increased Nav1.7 mRNA expression by 407 % (p < 0.05; n = 3; Figure 4.5B). Treatment of Mat-LyLu cells (24 h) with 20, 50 and 300
Figure 4.3 Bar diagram showing ranolazine treatments had no toxic effect.

A possible effect of 20, 50 and 300 µM ranolazine on Mat-LyLu cell viability under normoxia (light grey columns) or hypoxia (2 % O₂; dark grey columns). Data are represented as means ± SEM (n = 3).
Figure 4.4 Dose dependent effect of ranolazine on Mat-LyLu cell number.

Bar diagram showing the effect of 20, 50 and 300 µM ranolazine on cell number of normoxic (light grey columns) or hypoxic (dark grey columns) Mat-LyLu cells. Data are presented as means ± SEM (n ≥ 3). Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis. Table of multiple comparisons between different treatments for statistical significance are shown underneath the bar diagram.
Figure 4.5 Effect of ranolazine on Mat-LyLu Nav1.7 mRNA expression.

(A) Typical PCR products of Nav1.7 (414 bp) and normalising/control gene Cytb5R (425 bp) mRNA in Mat-LyLu cells that was incubated with 20, 50 and 300 µM ranolazine under normoxic or hypoxic (2 % O₂) conditions for 24 h. (B) Bar diagram showing the result of real-time PCR experiment in which the effect of ranolazine on Nav1.7 mRNA expression was studied under normoxic (light grey column) or hypoxic (dark grey column) conditions. The data were normalized to Cytb5R using the 2^ΔΔCt method and expressed relative to normoxic control Nav1.7 level. The table of multiple comparisons between different treatments for statistical significance are shown underneath the bar diagram. Kruskal-Wallis method was used for statistic analysis. Data are presented as means ± SEM (n = 3). (-): no template control
μM ranolazine reduced Nav1.7 mRNA expression levels significantly by 30 %, 43 % and 44 %, respectively, under hypoxic conditions (p < 0.05; n = 3; Figure 4.5B).

4.2.1.5 Subcellular VGSCα protein expression

4.2.1.5.1 Relative distribution
Confocal immunocytochemistry with a pan-VGSC antibody was used to test the possible effect of ranolazine (50 μM) on subcellular distribution of VGSCα protein in Mat-LyLu cells under normoxic or hypoxic (2 % O₂/ 24 h) conditions (Figure 4.6). VGSCα protein expression was detected in cytoplasm and plasma membrane but not in nucleus of Mat-LyLu cells (Figure 4.6). The subcellular distribution of the VGSCα protein was studied by ‘straight line cross-sectional profile’ analysis (Figure 4.7). In normoxia, relative to the total immunoreactivity (across the cell), plasma membrane VGSCα protein levels were 9.7 ± 0.4 % (control) and, 9.1 ± 0.3 % (ranolazine). In hypoxia, the corresponding values were 9.5 ± 0.5 % (hypoxia control) and 10.0 ± 0.5 % (ranolazine). Similar data were obtained for the internal VGSCα protein level: 35.2 ± 0.5 % (normoxia control), 35.6 ± 0.5 % (normoxia ranolazine), 35.6 ± 0.5 % (hypoxia control) and 34.7 ± 0.5 % (hypoxia ranolazine). There was no difference in the data for ranolazine vs corresponding control (for both: p > 0.05; n ≥ 63; Figure 4.8A&B). It was concluded that ranolazine did not affect the relative subcellular distribution of VGSCα protein in normoxia or hypoxia.

4.2.1.5.2 Plasma membrane VGSCα protein level
Digital quantification of the peripheral VGSCα immunoreactivity (IR₉₅) by ‘free-form line profile’ analysis of XYZ scans of Mat-LyLu cells treated (24 h) with
Figure 4.6 Confocal immunocytochemistry study of Mat-LyLu cells incubated with ranolazine.

Typical XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic (2 % O₂) conditions with or without ranolazine (50 µM). Signal from concanavalin A plasma membrane marker (green), pan-VGSC antibody (red) and overlay of both (merged image) are shown in addition to bright field image. Scale bar (40 µm) applicable to all panels.
Figure 4.7 Typical image showing effect of ranolazine on VGSCα protein distribution along typical cellular cross-section in Mat-LyLu cells.
Representative XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions with or without ranolazine (50 µM). White lines indicate typical cross-sections. Scale bar (5µm) applicable to all panels.
Figure 4.8 Effect of ranolazine on VGSCα protein distribution along typical cellular cross-section in Mat-LyLu cells.

(A) Representative traces showing signal intensity of Con A plasma membrane marker (green) and VGSCα immunofluorescence (red) along cross-section from typical cells (Figure 4.7) incubated (24 h) in normoxic or hypoxic conditions with or without ranolazine (50 µM). (B) Bar diagram showing distribution of VGSCα protein immunoreactivity along subcellular cross-sections as a percentage of total (%). For plasma membrane (PM) immunoreactivity, 1.5 µm sections was measured inward from the edge of Con A staining. For internal (INT) immunoreactivity, middle 30 % of the cross-section was measured. Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis. Data are presented as means±SEM (n =63). Significance: (X) p > 0.05.
ranolazine (50 µM) revealed no change in plasma membrane VGSCα protein level under normoxic conditions (IR\textsubscript{pm} = 155 ± 5 AU/µm and 144 ± 3 AU/µm, respectively; p > 0.05; n ≥ 63; Figures 4.9 and 4.10A&B). Similarly, in Mat-LyLu cells treated with ranolazine and maintained in hypoxia, plasma membrane level of VGSCα protein did not change compared to hypoxia control (IR\textsubscript{pm} = 121 ± 3 AU/µm and 131 ± 4 AU/µm, respectively; p > 0.05; n ≥ 63; Figures 4.9 and 4.10A&B). On the other hand, hypoxia by itself caused a significant 22 % decrease in plasma membrane VGSCα protein level (p < 0.05; n ≥ 63; Figures 4.9 and 4.10A&B) with no further effect of the ranolazine treatment.

4.2.1.5.3 Internal VGSCα protein level

Digital quantification of the ‘internal’ VGSCα immunoreactivity (IR\textsubscript{int}) by the ‘area histogram’ analysis of XYZ scans of Mat-LyLu cells treated (24 h) with ranolazine (50 µM) under normoxic conditions revealed a significant (~ 9 %) decrease of internal VGSCα protein level, from 22978 ± 587 AU to 20934 ± 704 AU (p < 0.05; n ≥ 77; Figures 4.11 and 4.12A&B). Hypoxia by itself caused a significant 16.5 % decrease in VGSCα immunoreactivity to 10173 ± 389 AU (p < 0.05; n ≥ 77; Figures 4.11 and 4.12A&B). There was no further effect of the treatment with ranolazine under hypoxia (IR\textsubscript{int} =18501 ± 682; p < 0.05; n ≥ 77; Figures 4.11 and 4.12A&B).

4.2.1.6 Matrigel™ invasion

Matrigel™ invasion assays were used to assess the possible effect of ranolazine treatment on the invasiveness of Mat-LyLu cells maintained in normoxic and hypoxic conditions. Treatment with 20, 50 and 300 µM ranolazine significantly
Figure 4.9 Typical image showing effect of ranolazine on VGSCα protein levels in plasma membrane of Mat-LyLu cells.

Representative XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions with or without ranolazine (50 µM). White lines indicate typical freeform line guided by Con A staining to measure cell surface protein level. Scale bar (5µm) applicable to all panels.
Figure 4.10 Effect of ranolazine on VGSCα protein levels in plasma membrane of Mat-LyLu cells.

(A) Representative trace showing signal intensity of Con A plasma membrane marker (green) and VGSCα (red) immunofluorescence along plasma membrane from a typical cell (Figure 4.9) incubated (24 h) in normoxic or hypoxic conditions with or without ranolazine (50 µM). Dotted gray lines indicate mean pan-VGSC fluorescence. (B) Bar diagram showing level of VGSCα protein immunoreactivity along plasma membrane as immunoreactivity (AU) per µm. Inset: table of multiple comparisons between treatments for statistical significance. Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis. Data are presented as means ± SEM (n = 71).
Figure 4.11 Typical image showing effect of ranolazine on internal VGSCα protein levels of Mat-LyLu cells.
Representative XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions with or without ranolazine (50 µM). White box indicates typical area covering 16 µm² square section of cytoplasm avoiding nucleus to measure internal protein level. Scale bar (5µm) applicable to all panels.
Figure 4.12 Effect of ranolazine on internal VGSCα protein levels of Mat-LyLu cells.

(A) Representative histograms showing distribution of pixels (0.0625 µm²) with signal intensity of Con A plasma membrane marker (green) and VGSCα (red) immunofluorescence in cytoplasm from typical cells (Figure 4.11) incubated (24 h) in normoxic or hypoxic conditions with or without ranolazine (50 µM). Dotted gray lines indicate mean pan-VGSC fluorescence. (B) Bar diagram showing internal VGSCα protein immunoreactivity (AU). Inset: table of multiple comparisons between treatments for statistical significance. Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis. Data are presented as means ± SEM (n = 77).
decreased invaded cell number by 59 %, 55 %, 74 %, respectively (p < 0.05; n ≥ 4 each; Figures 4.13 and 4.14) under normoxic conditions. Similarly, 24 h treatment of cells in hypoxic conditions with 20, 50 and 300 µM ranolazine significantly decreased invaded cell number by 63 %, 73 %, 87 %, respectively (p < 0.05; n ≥ 4 each; Figures 4.13 and 4.14). Hypoxia alone had no effect on cellular invasion (p > 0.05; n = 8; Figures 4.13 and 4.14).

4.2.1.7 Summary of the effects of ranolazine

Hypoxia increased Nav1.7 mRNA expression whilst decreasing plasma membrane and intracellular VGSCα protein levels. The effects of ranolazine on Mat-LyLu cells were as follows: i) decreased Nav1.7 mRNA expression (both conditions); (ii) decreased intracellular VGSCα protein; and (iii) decreased invasion (both conditions). Some of these effects were concentration dependent. There was no effect on any of the other characteristics measured, including cell viability and number (proliferation) (Table 4.1).

4.2.2 Effects of riluzole

Riluzole has also been used as an inhibitor of VGSC persistent currents, although it too can have a range of actions, depending on concentration (Weiss et al., 2010; Le et al., 2010; Parihar et al., 2003; Doble, 1996; Zona et al., 1998; Frizzo et al., 2004; Xu et al., 2001). In the present study, riluzole (dissolved in DMSO) was used in the concentration range 1 to 100 µM. This concentration range was shown previously to block I_{NaP} more effectively than I_{NaT} (Weiss et al., 2010; Urbani and Belluzi, 2000).
Figure 4.13 Typical images of invaded cells showing the effect of ranolazine on invasion of Mat-LyLu invesiveness.
Typical phase-contrast light-microscopy images of invaded cells obtained from Matrigel™ invasion assays of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions with or without ranolazine (20, 50 and 300 µM). Invaded cells were fixed and stained with crystal violet (purple). Scale bar (200 µm) applicable to all panels.
Figure 4.14 Effect of ranolazine on invasion of Mat-LyLu cells.

Bar diagram showing number of invaded Mat-LyLu cells, incubated 24 h under normoxic and hypoxic conditions with or without ranolazine (20, 50 and 300 µM). Data were expressed relative to the control (%) and presented as means ± SEM (n ≥ 4). Data were analysed by Kruskal-Wallis analysis of variance. Inset: table of multiple comparisons between treatments for statistical significance.
Table 4.1 Summary of results

(Nor) normoxia; (Hyp) hypoxia; (PM) plasma membrane; (/) concentration dependent; (+) increase; (-) decrease; (0) no change

<table>
<thead>
<tr>
<th>STUDIES</th>
<th>HYPOXIA</th>
<th>RANOLAZINE</th>
<th>RILUZOLE</th>
<th>PROCAINE</th>
<th>LIDOCAINE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nor</td>
<td>Hyp</td>
<td>Nor</td>
<td>Hyp</td>
<td>Nor</td>
</tr>
<tr>
<td>MORPHOLOGY</td>
<td>0</td>
<td>0 / +</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VIABILITY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PROLIFERATION</td>
<td>0</td>
<td>0</td>
<td>0 / -</td>
<td>0 / -</td>
<td>0</td>
</tr>
<tr>
<td>Nav1.7 mRNA</td>
<td>+</td>
<td>-</td>
<td>0 / -</td>
<td>0 / -</td>
<td>0 / -</td>
</tr>
<tr>
<td>VGSCα PROTEIN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) Subcellular</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(ii) PM</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>(iii) Internal</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>INVASION</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
4.2.2.1 Some initial observations: Cell morphology

Treatment of Mat-LyLu cells in culture with 0.015 % DMSO, 10 µM and 30 µM riluzole for 24 h revealed no obvious change in the basic appearance or distribution of the cells under both normoxic and hypoxic (2 % O\(_2\)) conditions (Figures 4.15 A-D). A similar conclusion was reached after studying the cells under high magnification (Figures 4.16A-D).

4.2.2.2 Cell viability

Treatment with riluzole (up to 100 µM) or 0.05 % DMSO (corresponding concentration of solvent) for 24 h was not toxic to Mat-LyLu cells that were maintained in normoxic or hypoxic conditions (Figure 4.17).

4.2.2.3 Cellular proliferation

No significant change was recorded in Mat-LyLu cell number after treatments (24 h) with 0.015 % DMSO, 3 µM and 5 µM riluzole in normoxic and hypoxic conditions \((n \geq 3\) each; Figure 4.18). Also, DMSO by itself had no effect on cell number in either condition. However, some statistical variations were noted. For example, 10 µM and 30 µM riluzole treatments had no effect on cell number when compared to the respective DMSO control but cell numbers were significantly lower by 29 % and 48 %, respectively, when compared to the non-treated controls under normoxic conditions \((n \geq 3\) each; Figure 4.18). Under hypoxia, 10 µM riluzole treatment (24 h) decreased cell number by 26 % and 24 % when compared to non-treated and DMSO controls, respectively, the former change being significant \((p < 0.05; n \geq 3\) each; Figure 4.18). The highest concentration of riluzole tested (30 µM) significantly decreased cell number by 44 % and 41 % when compared to both non-treated and DMSO controls, respectively \((p < 0.05; n \geq 3\) each; Figure 4.18).
Figure 4.15 Phase-contrast light-photomicrography of Mat-LyLu cells, treated with riluzole.
Mat-LyLu cells were grown for 24 h under (A) control conditions, and in (B) 0.015 % DMSO, (C) 10 µM riluzole, and (D) 30 µM riluzole treatment in normoxia (left hand pictures) and hypoxia (2 % O₂; right hand pictures). Micrographs are typical of 3 experiments.
Figure 4.16 Phase-contrast light-photomicrography of Mat-LyLu cells, treated with riluzole, in high magnification.

Mat-LyLu cells were grown for 24 h under (A) control conditions, and in (B) 0.015 % DMSO, (C) 10 µM riluzole, and (D) 30 µM riluzole treatment in normoxia (left hand pictures) and hypoxia (2 % O₂; right hand pictures). Micrographs are typical of 3 experiments.
Figure 4.17 Bar diagram showing riluzole treatments had no toxic effect.
A possible effect of 0.05 % DMSO and 10, 30 and 100 μM ranolazine on Mat-
LyLu cell viability under normoxia (light grey columns) or hypoxia (2 % O₂; dark
grey columns). Data are represented as means ± SEM (n = 3).
Figure 4.18 Dose dependent effect of riluzole on Mat-LyLu cell number.
Bar diagram showing the effect of 3, 5, 10 and 30 µM riluzole on cell number of normoxic (light grey columns) or hypoxic (dark grey columns) Mat-LyLu cells.
Data are presented as means ± SEM (n ≥ 3). Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis. Table of multiple comparisons between different treatments for statistical significance are shown underneath the bar diagram. (D) 0.015 % DMSO.
Because 24 h treatments with 10 µM riluzole consistently reduced cell number, subsequent experiments were restricted to 1 to 5 µM range, in order not to ‘contaminate’ any effect on Matrigel invasion.

4.2.2.4 Nav1.7 mRNA expression

Mat-LyLu cells were treated for 24 h with 1, 2.5 and 5 µM riluzole or 0.0025 % DMSO (highest concentration involved) under normoxic or hypoxic conditions and cDNAs were prepared for real-time PCRs. Agarose gel electrophoresis confirmed specific single bands at the expected sizes for Nav1.7 and Cytb5R (414 nt and 425 nt, respectively; n = 3 each; Figure 4.19A). The “no-template control” did not give any signal (n = 3; Figure 4.19A). No significant change in Nav1.7 mRNA expression was recorded when Mat-LyLu cells were treated (24 h) with 1 µM and 5 µM riluzole and 0.015 % DMSO (p > 0.05; n = 3 each; Figure 4.19B). On the other hand, 24 h treatment of Mat-LyLu cells, incubated with 2.5 µM riluzole under normoxic conditions, decreased Nav1.7 mRNA expression by 32 % and 22 % when compared to no treatment control (NTC) and DMSO controls, respectively, the former being statistically significant (n = 3 each; Figure 4.19B). Hypoxia itself readily increased Nav1.7 mRNA expression. Treatment with 1 µM riluzole for 24 h under hypoxic conditions had no significant effect on Nav1.7 mRNA level (p > 0.05; n = 3; Figure 4.19B). In contrast, under hypoxic conditions, 2.5 µM riluzole treatment (24 h) significantly decreased Nav1.7 mRNA level by 40 % and 43 % when compared to the NTC and DMSO controls, respectively (p < 0.05; n = 3 each; Figure 4.19B). Similarly, 5 µM riluzole treatment (24 h) in hypoxia significantly decreased Nav1.7 mRNA level by 41 % and 43 % when compared to the NTC and DMSO controls.
Figure 4.19 Effect of riluzole on Mat-LyLu Nav1.7 mRNA expression.
(A) Typical PCR products of Nav1.7 (414 bp) and normalising/control gene Cythb5R (425 bp) mRNA in Mat-LyLu cells that was incubated with 1, 2.5 and 5 µM riluzole under normoxic or hypoxic (2 % O₂) conditions for 24 h. (B) Bar diagram showing the result of real-time PCR experiment in which the effect of riluzole on Nav1.7 mRNA expression was studied under normoxic (light grey column) or hypoxic (dark grey column) conditions. The data were normalized to Cythb5R using the 2⁻ΔΔCт method and expressed relative to normoxic control Nav1.7 level. The table of multiple comparisons between different treatments for statistical significance are shown underneath the bar diagram. Kruskal-Wallis method was used for statistic analysis. Data are presented as means ± SEM (n = 3). (D) 0.0025 % DMSO.
4.2.2.5 Subcellular VGSCα protein expression

4.2.2.5.1 Relative distribution

Confocal immunocytochemistry with the pan-VGSC antibody was used to test the possible effect of riluzole (2.5 µM) on subcellular distribution of VGSCα protein in Mat-LyLu cells under normoxic or hypoxic (2 % O₂) conditions (Figure 4.20). The relative subcellular distribution of the VGSCα protein was studied by ‘straight line cross-sectional profile’ analysis of Mat-LyLu cells (Figure 4.21). This analysis revealed that the relative level of plasma membrane and intracellular VGSCα protein was not affected by 24 h treatment with riluzole (2.5 µM) under both normoxic and hypoxic conditions (p > 0.05; n ≥ 63; Figure 4.22). The relative plasma membrane VGSCα protein levels were as follows: 9.7 ± 0.4 % (normoxia control), 10.4 ± 0.4 % (normoxia + riluzole), 9.5 ± 0.5 % (hypoxia control), 10.6 ± 0.5 % (hypoxia + riluzole). Similarly, the relative intracellular VGSCα protein levels were as follows: 35.2 ± 0.5 % (normoxia control), 36.6 ± 0.4 % (normoxia + riluzole), 35.6 ± 0.5 % (hypoxic control) and 35.8 ± 0.5 % (hypoxia + riluzole). Thus, riluzole had no effect on relative levels of VGSCα protein in either cellular compartment.

4.2.2.5.2 Plasma membrane VGSCα protein level

Digital quantification of peripheral VGSCα immunoreactivity by ‘free-form line profile’ analysis of XYZ scans of Mat-LyLu cells, treated (24 h) with riluzole (2.5 µM), revealed no change in plasma membrane VGSCα level under normoxic conditions (IR_{pm} = 155 ± 5 AU/µm and 148 ± 3 AU/µm, respectively; p > 0.05; n ≥ 63 each; Figures 4.23 and 4.24A&B). However, when Mat-LyLu cells were treated
Figure 4.20 Confocal immunocytochemistry study of Mat-LyLu cells incubated with riluzole.
Typical XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic (2 % O_2) conditions with or without riluzole (2.5 µM). Signal from concanavalin A plasma membrane marker (green), pan-VGSC antibody (red) and overlay of both (merged image) are shown in addition to bright field image. Scale bar (40 µm) applicable to all panels.
Figure 4.21 Typical image showing effect of riluzole on VGSCα protein distribution along typical cellular cross-section in Mat-LyLu cells. Representative XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions with or without riluzole (2.5 µM). White lines indicate typical cross-section. Scale bar (5µm) applicable to all panels.
Figure 4.22 Effect of riluzole on VGSCα protein distribution along typical cellular cross-section in Mat-LyLu cells.

(A) Representative traces showing signal intensity of Con A plasma membrane marker (green) and VGSCα immunofluorescence (red) along cross-section from typical cells (Figure 4.21) incubated (24 h) in normoxic or hypoxic conditions with or without riluzole (2.5 µM). (B) Bar diagram showing distribution of VGSCα protein immunoreactivity along subcellular cross-sections as a percentage of total (%). For plasma membrane (PM) immunoreactivity, 1.5 µm sections was measured inward from the edge of Con A staining. For internal (INT) immunoreactivity, middle 30% of the cross-section was measured. Data were analysed by ANOVA followed by Newman–Keuls post hoc analysis. Data are presented as means ± SEM (n = 63). Significance: (X) p > 0.05.
Figure 4.23 Typical image showing effect of riluzole on VGSCα protein levels in plasma membrane of Mat-LyLu cells.
Representative XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions with or without riluzole (2.5 µM). White lines indicate typical freeform line guided by Con A staining to measure cell surface protein level. Scale bar (5µm) applicable to all panels.
Figure 4.24 Effect of riluzole on VGSCα protein levels in plasma membrane of Mat-LyLu cells.

(A) Representative trace showing signal intensity of Con A plasma membrane marker (green) and VGSCα (red) immunofluorescence along plasma membrane from typical cells (Figure 4.23) incubated (24 h) in normoxic or hypoxic conditions with or without riluzole (2.5 µM). Dotted gray lines indicate mean pan-VGSC fluorescence. (B) Bar diagram showing level of VGSCα protein immunoreactivity along plasma membrane as an immunoreactivity (AU) per µm. Inset: table of multiple comparisons between treatments for statistical significance. Data were ANOVA of variance followed by Newman-Keuls post hoc analysis. Data are presented as means ± SEM (n = 74).
with riluzole (2.5 µM) under hypoxic conditions, plasma membrane level of VGSCα protein increased significantly: \(IR_{pm} = 121 \pm 3 \text{ AU}/\mu\text{m} \) (hypoxia control) vs 143 ± 4 AU/µm (hypoxia + riluzole) \((p < 0.05; n \geq 63; \text{Figures 4.23 and 4.24A&B})\). Hypoxia itself, again, reduced VGSCα protein level in plasma membrane: \(IR_{pm} = 121 \pm 3 \text{ AU}/\mu\text{m} \) (normoxia) vs 155 ± 5 AU/µm (hypoxia) \((p < 0.05; n \geq 63 \text{ each}; \text{Figures 4.23 and 4.24A&B})\).

4.2.2.5.3 Internal VGSCα protein level

Quantification of ‘internal’ VGSCα immunoreactivity by ‘area histogram’ analysis of XYZ scans of Mat-LyLu cells revealed a significant decrease of internal VGSCα level (relative to normoxic control) by 9 %, 16 % and 17 % when incubated in (i) normoxic condition with riluzole (2.5 µM), (ii) hypoxic control condition and (iii) hypoxic condition with riluzole (2.5 µM), respectively \((p < 0.05; n \geq 77 \text{ each}; \text{Figures 4.25 and 4.26A&B})\). On the other hand, internal VGSCα protein levels of cells maintained in hypoxia with or without riluzole (2.5 µM) for 24 h were not different \((p > 0.05; n \geq 77 \text{ each}; \text{Figures 4.25 and 4.26A&B})\).

4.2.2.6 Matrigel™ invasion

Matrigel™ invasion assays were used to study the possible effects of riluzole treatment on invasiveness of Mat-LyLu cells maintained in normoxic and hypoxic conditions. Under normoxic conditions, 0.0025 % DMSO (control) and 1 µM and 2.5 µM riluzole treatments had no significant effect on invaded Mat-LyLu cell number \((p > 0.05; n \geq 4 \text{ each}; \text{Figures 4.27 and 4.28})\). On the other hand, 5 µM riluzole treatment significantly reduced invaded cell number by 50 % when compared to the ‘non-treated control’ under normoxia \((p < 0.05; n \geq 4; \text{Figures 4.27 and 4.28})\).
Figure 4.25 Typical image showing effect of riluzole on internal VGSCα protein levels of Mat-LyLu cells.
Representative XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions with or without riluzole (2.5 µM). White box indicates typical area covering 16 µm² square section of cytoplasm avoiding nucleus to measure internal protein level. Scale bar (5µm) applicable to all panels.
Figure 4.26 Effect of riluzole on internal VGSCα protein levels of Mat-LyLu cells.

(A) Representative histograms showing distribution of pixels (0.0625 µm²) with signal intensity of Con A plasma membrane marker (green) and VGSCα (red) immunofluorescence in cytoplasm from typical cells (Figure 4.25) incubated (24 h) in normoxic or hypoxic conditions with or without riluzole (2.5 µM). Dotted gray lines indicate mean pan-VGSC fluorescence. (B) Bar diagram showing internal VGSCα protein immunoreactivity (AU). Inset: table of multiple comparisons between treatments for statistical significance. Data were analysed by ANOVA followed by Newman-Keuls *post hoc* analysis. Data are presented as means ± SEM (n = 77).
Figure 4.27 Typical images of invaded cells showing the effect of riluzole on invasion of Mat-LyLu invasiveness.

Typical phase-contrast light-microscopy images of invaded cells obtained from Matrigel™ invasion assays of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions with or without riluzole (1, 2.5 and 5 µM). Invaded cells were fixed and stained with crystal violet (purple). Scale bar (200 µm) applicable to all panels. DMSO (0.0025 %).
Figure 4.28 Effect of riluzole on invasion of Mat-LyLu cells.
Histogram showing number of invaded Mat-LyLu cells, incubated 24 h under normoxic and hypoxic conditions with or without riluzole (1, 2.5 and 5 µM). Data were expressed relative to the control (%) and presented as means ± SEM (n ≥ 4). Data were analysed by Kruskal-Wallis analysis of variance. The table of multiple comparisons between treatments for statistical significance shown underneath. D: DMSO (0.0025 %).
and 4.28). However, riluzole (1, 2.5 and 5 µM) had no significant effect on invasion when compared to DMSO controls under normoxic conditions (p > 0.05; n ≥ 4; Figures 4.27 and 4.28). Treatment of Mat-LyLu cells for 24 h in hypoxic conditions with 1, 2.5 and 5 µM riluzole significantly decreased invaded cell number by 66 %, 63 % and 66 %, respectively (p < 0.05; n ≥ 4; Figures 4.27 and 4.28). Invaded cell number under hypoxia decreased by 41 % by 0.0025 % DMSO treatment; this change was not significant (p > 0.05; n ≥ 4 each; Figures 4.27 and 4.28). Riluzole (1, 2.5 and 5 µM) had no significant effect on invasion when compared to the respective DMSO controls under hypoxic conditions (p > 0.05; n ≥ 4 each; Figures 4.27 and 4.28). Again, hypoxia by itself had no effect on invasiveness.

4.2.2.7 Summary of effects of riluzole

Under normoxic conditions, riluzole had some inhibitory effect on cell proliferation and decreased intracellular VGSCα level and invasiveness. Hypoxia had no effect on invasion. DMSO introduced considerable variability in the invasion assays and under hypoxia, again, riluzole, had no effect on invasiveness (Table 4.1).

4.2.3 Effects of procaine

Procaine is a local anaesthetic that has been used as a non-selectively blocker of VGSCs. In the present study, it was used in the concentration range 1 to 1000 µM, since this concentration range was shown previously to block VGSC (Bräu et al., 1998; Vlachová et al., 1999).

4.2.3.1 Some initial observations: Cell morphology

No change in the basic appearance or distribution of Mat-LyLu cells in culture was observed when cultures were treated (24 h) with 100 µM and 500 µM procaine under
both normoxic and hypoxic (2% O$_2$) conditions (Figures 4.29A-C). At the higher concentration of 1000 µM, also, procaine treatment in normoxia did not change the basic appearance or distribution of the cells. On the other hand, Mat-LyLu cells maintained in hypoxic conditions and treated similarly acquired generally to lose inter-cellular contacts and appear scattered (Figure 4.29D). Studying the effect of procaine treatment on Mat-LyLu cells under high magnification revealed that 1000 µM treatment caused loss of spindle-shaped fibroblast like morphology in hypoxic but not in normoxic conditions (Figure 4.30D). Thus, procaine treatment (24 h) of up to 500 µM had no obvious effect on cell morphology in normoxia or hypoxia (Figure 4.30A-C).

4.2.3.2 Cell viability

Procaine treatment (24 h) up to 1000 µM was not toxic to Mat-LyLu cells maintained in normoxic or hypoxic conditions (Figure 4.31).

4.2.3.3 Cellular proliferation

No significant change was recorded in Mat-LyLu cell number after 24 h procaine treatment (10, 100, 500, 700 and 1000 µM) in normoxic conditions (p > 0.05; n ≥ 3 each; Figure 4.32). Hypoxia by itself had no effect, as before, and all concentrations of procaine used did not affect Mat-LyLu cell number (24 h) (p > 0.05; n ≥ 3 each; Figure 4.32). However, when compared to the normoxic control, 700 and 1000 µM procaine in hypoxia appeared to reduce cell numbers by 32% and 31%, respectively (p < 0.05; n ≥ 3 each; Figure 4.32).

Because 24 h treatments with 700 µM procaine under hypoxia reduced cell number, subsequent experiments were restricted to 1 to 500 µM range, in order not to ‘contaminate’ any effect on Matrigel invasion.
Figure 4.29 Phase-contrast light-photomicrography of Mat-LyLu cells, treated with procaine.

Mat-LyLu cells were grown for 24 h under (A) control conditions, and in (B) 100 µM procaine, (C) 500 µM procaine, (D) 1000 µM procaine treatment in normoxia (left hand pictures) and hypoxia (2 % O₂; right hand pictures). Micrographs are typical of 3 experiments.
Figure 4.30 Phase-contrast light-photomicrography of Mat-LyLu cells, treated with procaine, in high magnification.

Mat-LyLu cells were grown for 24 h under (A) control conditions, and in (B) 100 µM procaine, (C) 500 µM procaine, (D) 1000 µM procaine treatment in normoxia (left hand pictures) and hypoxia (2 % O₂; right hand pictures). Micrographs are typical of 3 experiments.
Figure 4.31 Bar diagram showing procaine treatments had no toxic effect.

A possible effect of 100, 500 and 1000 µM procaine on Mat-LyLu cell viability under normoxia (light grey columns) or hypoxia (2 % O₂; dark grey columns). Data are represented as means ± SEM (n = 3).
Figure 4.32 Dose dependent effect of procaine on Mat-LyLu cell number.
Bar diagram showing the effect of 10, 100, 500 and 700 µM procaine on cell number of normoxic (light grey columns) or hypoxic (dark grey columns) Mat-LyLu cells. Data are presented as means ± SEM (n ≥ 3). Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis. Table of multiple comparisons between different treatments for statistical significance are shown underneath the bar diagram.
4.2.3.4 Nav1.7 mRNA expression

Mat-LyLu cells were treated for 24 h with 1, 10, 100 and 500 µM procaine under normoxic or hypoxic conditions, and cDNAs were prepared for real-time PCR analyses. Agarose gel electrophoresis confirmed specific single bands at the expected sizes for Nav1.7 and Cyth5R (414 nt and 425 nt, respectively; \(n = 3 \) each; Figure 4.33A). The “no-template control” did not give any signal (\(n = 3 \) each; Figure 4.33A). There was a dose dependent effect of procaine on Nav1.7 mRNA expression in normoxia. For 1, 100 or 500 µM procaine, there was no change in Nav1.7 mRNA expression in Mat-LyLu cells treated in normoxia for 24 h (\(p > 0.05; n = 3 \) each; Figure 4.33B). On the other hand, 10 µM procaine significantly decreased Nav1.7 mRNA by 35 % under normoxic conditions (\(p < 0.05; n \geq 3 \); Figure 4.33B). Hypoxia itself significantly increased Nav1.7 mRNA expression. On the other hand, in hypoxia, 24 h treatment with procaine (up to 500 µM) had no effect on the Nav1.7 mRNA level (\(p > 0.05; n \geq 3 \) each; Figure 4.33B).

4.2.3.5 Subcellular VGSCα protein expression

4.2.3.5.1 Relative distribution

Confocal immunocytochemistry and digital imaging of Mat-LyLu cells stained with the pan-VGSC antibody was used to test the possible effect of procaine (100 µM) on subcellular distribution of VGSCα protein under normoxic or hypoxic (2 % O\(_2\)) conditions (Figure 4.34). The subcellular distribution of the VGSCα protein was studied by ‘straight line cross-sectional profile’ analysis (Figure 4.35). The relative plasma membrane VGSCα protein levels were as follows: 9.7 ± 0.4 % (normoxia control), 10.6 ± 0.4 % (normoxia + procaine), 9.5 ± 0.5 % (hypoxia control), 9.0 ± 0.5 % (hypoxia + procaine). The corresponding internal VGSCα protein levels were
Figure 4.33 Effect of procaine on Mat-LyLu Nav1.7 mRNA expression.

(A) Typical PCR products of Nav1.7 (414 bp) and normalising/control gene Cytb5R (425 bp) mRNA in Mat-LyLu cells that was incubated with 1, 10, 100 and 500 µM procaine under normoxic or hypoxic (2 % O₂) conditions for 24 h. (B) Bar diagram showing the result of real-time PCR experiment in which the effect of procaine on Nav1.7 mRNA expression was studied under normoxic (light grey column) or hypoxic (dark grey column) conditions. The data were normalized to Cytb5R using the 2^ΔΔCt method and expressed relative to normoxic control Nav1.7 level. The table of multiple comparisons between different treatments for statistical significance are shown underneath the bar diagram. Kruskal-Wallis method was used for statistic analysis. Data are presented as means ± SEM (n = 3). (-): no template control.
Figure 4.34 Confocal immunocytochemistry study of Mat-LyLu cells incubated with procaine.
Typical XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic (2 % O₂) conditions with or without procaine (100 µM). Signal from concanavalin A plasma membrane marker (green), pan-VGSC antibody (red) and overlay of both (merged image) are shown in addition to bright field image. Scale bar (40 µm) applicable to all panels.
Figure 4.35 Typical image showing effect of procaine on VGSCα protein distribution along typical cellular cross-section in Mat-LyLu cells. Representative XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions with or without procaine (100 µM). White lines indicate typical cross-section. Scale bar (5µm) applicable to all panels.
as follows: 35.2 ± 0.5 % (normoxia control), 35.0 ± 0.4 % (normoxia + procaine), 35.6 ± 0.5 % (hypoxia) and 35.7 ± 0.5 % (hypoxia + procaine). This analysis revealed that the relative levels of plasma membrane and intracellular VGSCα protein were not affected by 24 h procaine (100 µM) treatment in both normoxic and hypoxic conditions (for both: p > 0.05; n ≥ 63; Figure 4.36A&B).

4.2.3.5.2 Plasma membrane VGSCα protein level

Digital quantification of VGSCα peripheral immunostaining by ‘free-form line profile’ analysis of XYZ scans of Mat-LyLu cells, treated (24 h) with procaine (100 µM), revealed a significantly lower level of plasma membrane VGSCα level under normoxic conditions: IR$_{pm}$ = 155 ± 5 AU/µm vs 129 ± 4 AU/µm (p < 0.05; n ≥ 74 each; Figures 4.37 and 4.38A&B). Hypoxia by itself significantly reduced the plasma membrane VGSCα level. On the other hand, 100 µM procaine treatment for 24 h in hypoxia had no effect (p > 0.05; n ≥ 74 each; Figures 4.37 and 4.38A&B).

4.2.3.5.3 Internal VGSCα protein level

Digital quantification of intracellular VGSCα immunoreactivity by ‘area histogram’ analysis of XYZ scans of Mat-LyLu cells revealed a significant decreases in IR$_{int}$ by 19 %, 16 % and 24 % when the cells were incubated in (i) normoxic condition with procaine (100 µM), (ii) hypoxic control condition and (iii) hypoxia with procaine (100 µM), respectively (p < 0.05; n ≥ 77 each; Figures 4.39 and 4.40A&B). On the other hand, the internal VGSCα protein level of Mat-LyLu cells maintained in hypoxia with or without procaine (100 µM) treatment (24 h) remained unchanged (p > 0.05; n ≥ 77 each; Figures 4.39 and 4.40A&B).
Figure 4.36 Effect of procaine on VGSCα protein distribution along typical cellular cross-section in Mat-LyLu cells.
(A) Representative traces showing signal intensity of Con A plasma membrane marker (green) and VGSCα immunofluorescence (red) along cross-section from typical cells (Figure 4.35) incubated (24 h) in normoxic or hypoxic conditions with or without procaine (100 µM). (B) Bar diagram showing distribution of VGSCα protein immunoreactivity along subcellular cross-sections as a percentage of total (%). For plasma membrane (PM) immunoreactivity, 1.5 µm sections was measured inward from the edge of Con A staining. For internal (INT) immunoreactivity, middle 30 % of the cross-section was measured. Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis. Data are presented as means ± SEM (n = 63). Significance: (X) p > 0.05.
Figure 4.37 Typical image showing effect of procaine on VGSCα protein levels in plasma membrane of Mat-LyLu cells.

Representative XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions with or without procaine (100 µM). White lines indicate typical freeform line guided by Con A staining to measure cell surface protein level. Scale bar (5µm) applicable to all panels.
Figure 4.38 Effect of procaine on VGSCα protein levels in plasma membrane of Mat-LyLu cells.

(A) Representative trace showing signal intensity of Con A plasma membrane marker (green) and VGSCα (red) immunofluorescence along plasma membrane from typical cells (Figure 4.37) incubated (24 h) in normoxic or hypoxic conditions with or without procaine (100 μM). Dotted gray lines indicate mean pan-VGSC fluorescence. (B) Bar diagram showing level of VGSCα protein immunoreactivity along plasma membrane as immunoreactivity (AU) per µm. Inset: table of multiple comparisons between treatments for statistical significance. Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis. Data are presented as means ± SEM (n = 74).
Figure 4.39 Typical image showing effect of procaine on internal VGSCα protein levels of Mat-LyLu cells.
Representative XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions with or without procaine (100 µM). White box indicates typical area covering 16 µm² square section of cytoplasm avoiding nucleus to measure internal protein level. Scale bar (5µm) applicable to all panels.
Figure 4.40 Effect of procaine on internal VGSCα protein levels of Mat-LyLu cells.

(A) Representative histograms showing distribution of pixels (0.0625 µm²) with signal intensity of Con A plasma membrane marker (green) and VGSCα (red) immunofluorescence in cytoplasm from typical cells (Figure 4.39) incubated (24 h) in normoxic or hypoxic conditions with or without procaine (100 µM). Dotted gray lines indicate mean pan-VGSC fluorescence. (B) Bar diagram showing internal VGSCα protein immunoreactivity (AU). Inset: table of multiple comparisons between treatments for statistical significance. Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis. Data are presented as means ± SEM (n = 77).
4.2.3.6 Matrigel™ invasion

Matrigel™ invasion assay was used to study effect of procaine treatment on the invasiveness of Mat-LyLu cells maintained in normoxic and hypoxic conditions. Treatment of 1, 10 and 100 µM procaine under normoxic conditions significantly decreased invaded cell number by 50 %, 57 %, 61 %, respectively (p < 0.05; n ≥ 4 each; Figures 4.41 and 4.42). Hypoxia by itself had no effect. However, similar to normoxia, 24 h treatment of Mat-LyLu cells under hypoxia with 1, 10 and 100 µM procaine significantly decreased invaded cell number by 64 %, 69 %, 81 %, respectively (p < 0.05 each; n ≥ 4; Figures 4.41 and 4.42). There was no difference in the effects of given concentrations of procaine in normoxia vs hypoxia (Figure 4.42 inset).

4.2.3.7 Summary of effects of procaine

Under normoxic (but not hypoxic) conditions, procaine inhibited Nav1.7 mRNA and protein expression in plasma membrane and cytoplasm. Invasion was inhibited by procaine under both normoxic and hypoxic conditions. Hypoxia itself had no effect on invasiveness (Table 4.1).

4.2.4 Effects of lidocaine

Lidocaine is another local anaesthetic that has been used extensively as a non-selectively blocker of VGSCs. In the present study, it was used in the concentration range 1 to 1000 µM, since this concentration range was shown to block I_{NaP} more effectively than I_{NaT} (Bräu et al., 1998; Rajamani et al., 2008; Fraser et al., 2005; Hammarström and Gage, 1998).
Figure 4.41 Typical images of invaded cells showing the effect of procaine on invasion of Mat-LyLu invasiveness.

Typical phase-contrast light-microscopy images of invaded cells obtained from Matrigel™ invasion assays of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions with or without procaine (1, 10 and 100 µM). Invaded cells were fixed and stained with crystal violet (purple). Scale bar (200 µm) applicable to all panels.
The graph shows the effect of procaine on the invasion of Mat-LyLu cells under both normoxic and hypoxic conditions. Bars represent the number of invaded Mat-LyLu cells incubated for 24 hours under different conditions with or without procaine (1, 10, and 100 µM). Data are expressed as means ± SEM (n ≥ 4) and were analysed by Kruskal-Wallis analysis of variance. The table of multiple comparisons for statistical significance is shown underneath the bar diagram.

Figure 4.42 Effect of procaine on invasion of Mat-LyLu cells. Bar diagram showing number of invaded Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions with or without procaine (1, 10 and 100 µM). Data were expressed relative to the control (%) and presented as means ± SEM (n ≥ 4). Data were analysed by Kruskal-Wallis analysis of variance. The table of multiple comparisons between treatments for statistical significance are shown underneath the bar diagram.
4.2.4.1 Some initial observations: Cell morphology

No change in the basic appearance or distribution of Mat-LyLu cells was observed when the cultures were treated (24 h) with up to 500 µM lidocaine under both normoxic and hypoxic (2 % O₂) conditions (Figures 4.43A-C). On the other hand, after 1000 µM lidocaine treatment, Mat-LyLu cells, maintained in normoxic or hypoxic conditions, appeared generally to ‘lose’ cell contacts and become scattered (Figure 4.43D). Studying effect of lidocaine treatment on Mat-LyLu cells in high magnification revealed that 1000 µM treatment caused loss of spindle-shaped fibroblast like morphology in both normoxic and hypoxic conditions (Figure 4.44D). Examination under higher magnification still revealed no obvious effect on cell morphology by the lower doses of lidocaine (100 and 500 µM) (Figures 4.44A-C).

4.2.4.2 Cell viability

Treatment (24 h) with lidocaine at concentrations up to 1000 µM was not toxic to Mat-LyLu cells maintained in normoxic or hypoxic conditions (Figure 4.45).

4.2.4.3 Cellular proliferation

No significant change was recorded in Mat-LyLu cell number after 24 h lidocaine treatment (10, 100, 500, 700 and 1000 µM) in normoxic conditions (p > 0.05; n ≥ 3 each; Figure 4.46). Similarly, Mat-LyLu cell number was not affected by 10, 100 and 500 µM lidocaine treatment (24 h) in hypoxia (p > 0.05; n ≥ 3 each; Figure 4.46). On the other hand, under hypoxia, 700 and 1000 µM lidocaine treatment (24 h) significantly decreased Mat-LyLu cell number by 37 and 35 %, respectively, when
Figure 4.43 Phase-contrast light-photomicrography of Mat-LyLu cells treated with lidocaine.

Mat-LyLu cells were grown for 24 h under (A) control conditions, and in (B) 100 µM lidocaine, (C) 500 µM lidocaine, (D) 1000 µM lidocaine treatment in normoxia (left hand pictures) and hypoxia (2 % O₂; right hand pictures). Micrographs are typical of 3 experiments.
Figure 4.44 Phase-contrast light-photomicrography of Mat-LyLu cells, treated with lidocaine, in high magnification.

Mat-LyLu cells were grown for 24 h under (A) control conditions, and in (B) 100 µM lidocaine, (C) 500 µM lidocaine, (D) 1000 µM lidocaine treatment in normoxia (left hand pictures) and hypoxia (2 % O₂; right hand pictures). Micrographs are typical of 3 experiments.
Figure 4.45 Bar diagram showing lidocaine treatments had no toxic effect. A possible effect of 100, 500 and 1000 µM lidocaine on Mat-LyLu cell viability under normoxia (light grey columns) or hypoxia (2 % O₂; dark grey columns). Data are represented as means ± SEM (n = 3).
Figure 4.46 Dose dependent effect of lidocaine on Mat-LyLu cell number.

Bar diagram showing the effect of 10, 100, 500 and 700 µM lidocaine on cell number of normoxic (light grey columns) or hypoxic (dark grey columns) Mat-LyLu cells. Data are presented as means ± SEM (n ≥ 3). Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis. Table of multiple comparisons between different treatments for statistical significance are shown underneath the bar diagram.
compared to the corresponding hypoxic control (p < 0.05; n \geq 3 each; Figure 4.46). Hypoxia by itself had no effect.

Because 24 h treatments with 700 µM lidocaine under hypoxia reduced cell number, subsequent experiments were restricted to 1 to 500 µM range, in order not to ‘contaminate’ any effect on Matrigel invasion.

4.2.4.4 Nav1.7 mRNA expression

Mat-LyLu cells were treated for 24 h with 1, 10, 100 and 500 µM lidocaine under normoxic or hypoxic conditions and cDNAs were prepared for realtime PCR analyses. Agarose gel electrophoresis confirmed specific single bands at the expected sizes for Nav1.7 and Cytb5R (414 nt and 425 nt, respectively; n = 3 each; Figure 4.47A). The “no-template control” did not give any signal (n = 3 each; Figure 4.47A). Lidocaine treatment (24 h) had a dose-dependent, biphasic effect on Nav1.7 mRNA expression. No significant change was recorded for 1, 100 and 500 µM lidocaine under both normoxic and hypoxic conditions (p > 0.05; n = 3 each; Figure 4.47B). On the other hand, 10 µM lidocaine significantly decreased Nav1.7 mRNA under both conditions, by 36 % (compared to normoxic control) and 30 % (compared to hypoxic control) (p < 0.05; n \geq 3 each; Figure 4.47B). Hypoxia by itself increased Nav1.7 mRNA, as before.

4.2.4.5 Subcellular VGSCα protein expression

4.2.4.5.1 Relative distribution

Digital confocal analyses of the immunostaining obtained with the pan-VGSC antibody was used to test the possible effect of lidocaine (100 µM) on the subcellular
Figure 4.47 Effect of lidocaine on Mat-LyLu Nav1.7 mRNA expression.

(A) Typical PCR products of Nav1.7 (414 bp) and normalising/control gene Cytb5R (425 bp) mRNA in Mat-LyLu cells that was incubated with 1, 10, 100 and 500 µM lidocaine under normoxic or hypoxic (2 % O₂) conditions for 24 h. (B) Bar diagram showing the result of real-time PCR experiment in which the effect of lidocaine on Nav1.7 mRNA expression was studied under normoxic (light grey column) or hypoxic (dark grey column) conditions. The data were normalized to Cytb5R using the 2⁻ΔΔCt method and expressed relative to normoxic control Nav1.7 level. The table of multiple comparisons between different treatments for statistical significance are shown underneath the bar diagram. Kruskal-Wallis method was used for statistic analysis. Data are presented as means ± SEM (n = 3). (–): no template control.
distribution of VGSCα protein in Mat-LyLu cells under normoxic or hypoxic (2 % \(O_2\)) conditions (Figure 4.48). The subcellular distribution of the VGSCα protein was studied by ‘straight line cross-sectional profile’ analysis (Figure 4.49). The relative plasma membrane VGSCα protein levels were as follows: 9.7 ± 0.4 % (normoxia control), 10.1 ± 0.5 % (normoxia + lidocaine), = 9.5 ± 0.5 % (hypoxic control) and 9.9 ± 0.4 % (hypoxia + lidocaine); the corresponding internal VGSCα protein levels were as follows: 35.2 ± 0.5 % (normoxia control), =34.0 ± 0.5 % (normoxia + lidocaine), 35.6 ± 0.5 % (hypoxic control) and 35.2 ± 0.5 % (hypoxia + lidocaine) (for all: \(p > 0.05; n \geq 63\); Figure 4.50A&B). Thus, this method revealed that the relative level of plasma membrane and intracellular VGSCα protein was not affected by 24 h lidocaine (100 µM) treatment under both normoxic and hypoxic conditions.

4.2.4.5.2 Plasma membrane VGSCα protein level

Digital quantification of the VGSCα immunoreactivity protein level by ‘free-form line profile’ analysis of XYZ scans of Mat-LyLu cells, treated (24 h) with lidocaine (100 µM), revealed a significant decrease of plasma membrane VGSCα protein level: IR\(_{pm}\) = 155 ± 5 AU/µm (normoxic control) vs 129 ± 4 AU/µm (normoxic lidocaine) (\(p < 0.05; n \geq 74\) each; Figures 4.51 and 4.52A&B). On the other hand, 100 µM lidocaine treatment for 24 h did not change plasma membrane VGSCα protein level when the Mat-LyLu cells were maintained in hypoxia (\(p > 0.05; n \geq 74\); Figures 4.51 and 4.52A&B).

4.2.4.5.3 Internal VGSCα protein level

Digital quantification of the intracellular VGSCα immunoreactivity by ‘area histogram’ analysis of XYZ scans of Mat-LyLu cells revealed a significant decreases
Figure 4.48 Confocal immunocytochemistry study of Mat-LyLu cells incubated with lidocaine.

Typical XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic (2 % O₂) conditions with or without lidocaine (100 µM). Signal from concanavalin A plasma membrane marker (green), pan-VGSC antibody (red) and overlay of both (merged image) are shown in addition to bright field image. Scale bar (40 µm) applicable to all panels.
Figure 4.49 Typical image showing effect of lidocaine on VGSCα protein distribution along typical cellular cross-section in Mat-LyLu cells. Representative XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions with or without lidocaine (100 µM). White lines indicate typical cross-section. Scale bar (5µm) applicable to all panels.
Figure 4.50 Effect of lidocaine on VGSCα protein distribution along typical cellular cross-section in Mat-LyLu cells.

(A) Representative traces showing signal intensity of Con A plasma membrane marker (green) and VGSCα immunofluorescence (red) along cross-section from typical cells (Figure 4.49) incubated (24 h) in normoxic or hypoxic conditions with or without lidocaine (100 µM). (B) Bar diagram showing distribution of VGSCα protein immunoreactivity along subcellular cross-sections as a percentage of total (%). For plasma membrane (PM) immunoreactivity, 1.5 µm sections was measured inward from the edge of Con A staining. For internal (INT) immunoreactivity, middle 30 % of the cross-section was measured. Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis. Data are presented as means ± SEM (n = 63). Significance: (X) p > 0.05.
Figure 4.51 Typical image showing effect of lidocaine on VGSCα protein levels in plasma membrane of Mat-LyLu cells.
Representative XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions with or without lidocaine (100 µM). White lines indicate typical freeform line guided by Con A staining to measure cell surface protein level. Scale bar (5µm) applicable to all panels.
Figure 4.52 Effect of lidocaine on VGSCα protein levels in plasma membrane of Mat-LyLu cells.

(A) Representative trace showing signal intensity of Con A plasma membrane marker (green) and VGSCα (red) immunofluorescence along plasma membrane from typical cells (Figure 4.51) incubated (24 h) in normoxic or hypoxic conditions with or without lidocaine (100 µM). Dotted gray lines indicate mean pan-VGSC fluorescence. (B) Bar diagram showing level of VGSCα protein immunoreactivity along plasma membrane as immunoreactivity (AU) per µm. Inset: table of multiple comparisons between treatments for statistical significance. Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis. Data are presented as means ± SEM (n = 74).
of internal VGSCα protein level by 17 %, 16 % and 27 % when the cells were incubated in (i) normoxic condition with lidocaine (100 µM), (ii) hypoxic control condition and (iii) hypoxic condition with lidocaine (100 µM), respectively (for all: p < 0.05; n ≥77 each; Figures 4.53 and 4.54A&B)

4.2.4.6 Matrigel™ invasion

Matrigel™ invasion assays were used to study possible effects of lidocaine treatment on the invasiveness of Mat-LyLu cells maintained in normoxic or hypoxic conditions. There was some variability in the data obtained. Under normoxic conditions, although 1 µM lidocaine decreased the invaded cell number by 45 %, this change was not statistically significant (p > 0.05; n ≥ 4 each; Figures 4.55 and 4.56). Treatment of 10 µM and 100 µM lidocaine significantly decreased invaded cell numbers by 46 % and 76 %, respectively, under normoxic conditions (p < 0.05; n ≥ 4; Figures 4.55 and 4.56). Similarly, 24 h treatment of Mat-LyLu cells in hypoxic conditions with 1, 10 and 100 µM procaine significantly decreased invaded cell number by 69 %, 74 % and 58 %, respectively (p < 0.05; n ≥ 4 for all; Figures 4.55 and 4.56). Hypoxia by itself was not effective, as in all other assay sets.

4.3 Discussion

The main findings of this study on Mat-LyLu cells are as follows (Table 4.1):

1) Hypoxia, highly consistently, had no effect on cellular morphology, viability, proliferation or invasion. However, it increased Nav1.7 mRNA expression whilst decreasing VGSCα protein levels in plasma membrane and cytoplasm.
Figure 4.53 Typical image showing effect of lidocaine on internal VGSCα protein levels of Mat-LyLu cells.
Representative XYZ confocal images of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions with or without lidocaine (100 µM). White box indicates typical area covering 16 µm² square section of cytoplasm avoiding nucleus to measure internal protein level. Scale bar (5µm) applicable to all panels.
Figure 4.54 Effect of lidocaine on internal VGSCα protein levels of Mat-LyLu cells. (A) Representative histograms showing distribution of pixels (0.0625 µm2) with signal intensity of Con A plasma membrane marker (green) and VGSCα (red) immunofluorescence in cytoplasm from typical cells (Figure 4.53) incubated (24 h) in normoxic or hypoxic conditions with or without lidocaine (100 µM). Dotted gray lines indicate mean pan-VGSC fluorescence. (B) Bar diagram showing internal VGSCα protein immunoreactivity (AU). Inset: table of multiple comparisons between treatments for statistical significance. Data were analysed by ANOVA followed by Newman-Keuls post hoc analysis. Data are presented as means ± SEM (n = 77).
Figure 4.55 Typical images of invaded cells showing the effect of lidocaine on Mat-LyLu invasiveness. Typical phase-contrast light-microscopy images of invaded cells obtained from Matrigel™ invasion assays of Mat-LyLu cells incubated 24 h under normoxic and hypoxic conditions with or without lidocaine (1, 10 and 100 μM). Invaded cells were fixed and stained with crystal violet (purple). Scale bar (200 μm) applicable to all panels.
Figure 4.56 Effect of lidocaine on invasion of Mat-LyLu cells.
Bar diagram showing number of invaded Mat-LyLu cells, incubated 24 h under normoxic and hypoxic conditions with or without lidocaine (1, 10 and 100 µM). Data were expressed relative to the control (%) and presented as means ± SEM (n ≥ 4). Data were analysed by Kruskal-Wallis analysis of variance. The table of multiple comparisons between treatments for statistical significance are shown underneath the bar diagram.
2) **Ranolazine** treatment (20-300 µM; 24 h) had no effect on cellular viability or proliferation under both normoxic and hypoxic conditions. Nav1.7 mRNA expression was reduced in both conditions. There was no effect on plasma membrane VGSCα protein levels in both conditions, whilst internal VGSCα protein expression was reduced under normoxia. Importantly, ranolazine decreased invasiveness under both conditions with some dose dependency.

3) **Riluzole** treatment (1-5 µM; 24 h) had no effect on cellular morphology and viability; however, there was a tendency for reduction of cell number at high concentration (30 µM). Use of DMSO as a solvent introduced considerable variability in the data. There was some reduction of Nav1.7 mRNA and intracellular VGSC protein expression in normoxia. On the other hand, plasma membrane VGSCα protein level increased under hypoxia. Although there was a consistent trend in suppression of invasiveness by riluzole at concentrations that did not affect proliferation, the changes were not significant when compared to DMSO controls.

4) **Procaine** treatment (10-1000 µM; 24 h) slightly altered Mat-LyLu cell morphology under hypoxia; cell viability and numbers were not affected in both normoxia and hypoxia. Procaine decreased Nav1.7 mRNA expression and both internal and plasma membrane VGSCα protein levels were reduced by procaine under normoxic conditions; there was no effect on protein expression or distribution under hypoxia. Procaine decreased Mat-LyLu cell invasion both under normoxic and hypoxic conditions.

5) **Lidocaine** treatment (10 - 1000 µM; 24 h) had no effect on cell viability or cell numbers in normoxia; high doses had an inhibitory effect under
hypoxia. There was some reduction in Nav1.7 mRNA and VGSC\(\alpha\) protein expression by lidocaine in both normoxic and hypoxic conditions, but, in hypoxia, only cytoplasmic protein level was reduced by lidocaine. Lidocaine (10 and 100 \(\mu\)M) decreased Mat-LyLu cell invasion under both normoxic and hypoxic conditions.

4.3.1 Effects of hypoxia alone

The effects of hypoxia alone were highly consistent: Thus, no effect was seen cellular morphology, viability or cell number. Interestingly, Nav1.7 mRNA expression was increased whilst both cytoplasmic and plasma membrane VGSC\(\alpha\) protein levels were decreased. There was no effect on invasiveness.

4.3.2 Observations on cell morphology

None of the four pharmacological treatments had an obvious effect on the morphologies or distribution of Mat-LyLu cells. This was somewhat surprising since VGSC blockers have previously been shown to induce changes in morphologies of cells, including neurones (Wilkemeyer and Angelides, 1996; Sretavan et al., 1988) and Mat-LyLu cells (Fraser et al., 1999). These changes have generally been in the direction of making the cellular architecture appear less developed, e.g. retracted dendrites in the case of neurones (Friedman and Shatz, 1990). It is not clear why the observations of Fraser et al. (1999) could not be replicated here. Possible reasons for this include lack of fixing and staining of the cells, in the present study, which could have precluded some changes being clearly observed. However, some effects (loosening of cell contacts and lost of spindle-shaped / fibroblast-like morphology) were observed with the following treatments: i) 300 \(\mu\)M ranolazine (normoxia and
hypoxia). This could be due to inhibition of sodium - calcium exchanger activity (Antzelevitch et al., 2004). (ii) 1000 µM procaine and lidocaine (normoxia and hypoxia). This could be due to changes in the physicochemical properties (e.g. membrane fluidity) of lipid membranes. Such effects of 7 mM procaine and 1000 µM lidocaine were demonstrated on 1,2-dipalmitoylphosphatidylcholine membrane by Tsuchiya et al. (2007).

4.3.3 Effects on cell number

Here, the term “cell number” rather than “proliferation” has been used since it was not possible to study systematically possible effects on apoptosis. Nevertheless, since the working concentrations of the agents used did not affect cell viability (as determined by trypan blue staining), it can be assumed that the measurements made represent mainly proliferative activity. At the lower end of the concentration ranges of all 4 pharmacological agents used, there was no effect on cell number. Assuming that these low concentrations would affect/block mainly VGSC activity, the results agree with the established notion that VGSCs are not involved in cellular proliferation of cancer cells (Nakajima et al., 2009; Fulgenzi et al., 2006; Fraser et al., 1999, 2000, 2005). On the other hand, it was previously reported that 250 and 500 µM ranolazine decreased leukemia cell proliferation via inhibition of fatty acid oxidation (Samudio et al., 2010). Riluzole (3-10 µM) had no effect on proliferation of Mat-LyLu cells under both normoxic and hypoxic conditions. 30 µM riluzole decreased the Mat-LyLu cell number under both conditions. This decrease in Mat-LyLu cell number is not because of I_{NaP} block since riluzole concentration used was much higher than IC_{50} of I_{NaP} (IC_{50}=2 µM). It was also suggested that 25 µM riluzole treatment inhibits proliferation of melanoma cells via inhibition of glutamate release.
(Le et al., 2010). In addition, it was documented that riluzole (10-50 µM) decrease viable LNCaP and C4-2 prostate cancer cell number by inhibition of DNA synthesis and apoptotic cell death via ER stress (Akamatsu et al., 2009). Therefore, following experiments were carried out at riluzole concentrations between 1 and 5 µM.

4.3.4 mRNA versus protein expression

It was clear from the results (and as summarised in Table 1) that the various treatments had differential effects on Nav1.7 and VGSCα protein expression in Mat-LyLu cells. In fact, it can be assumed that the VGSCα studied represented mainly Nav1.7 protein in these cells, since this is the main VGSC species expressed in rat (and human) PCa cells (Diss et al., 2001, 2005; Nakajima et al., 2009). It is now generally accepted that mRNA and protein expression can be regulated differentially and independently in cells, such that (i) mRNA can be produced and ‘docked’ without being translated and (ii) protein synthesis can occur from such stored mRNA without any transcription (Sola et al., 1999; Ropponen et al., 2001; Orphanides and Reinberg, 2002; Schedel et al., 2004; Gu et al., 2006; Martin and Zukin, 2006; Pfeiffer and Huber, 2006). Such differential regulation presumably is functionally expedient and depends on intracellular factors such as mRNA stability and protein lifetime (Brackenbury et al., 2007; Brackenbury and Djamgoz, 2006; Ben Fredj et al., 2004; St Johnston, 2005). This could be particularly important pathophysiologically in cancer cells exposed dynamically to a wide variety of micro-environmental conditions. Previously also, Brackenbury and Djamgoz (2006) showed in Mat-LyLu cells that nerve growth factor upregulated VGSC protein expression without any change in Nav1.7 mRNA expression.
In the following, we discuss further the effects of the pharmacological agent used, one by one, on VGSC expression and cellular invasiveness.

4.3.5 Effects of ranolazine

Ranolazine, \((\pm)-4-[2\text{-hydroxy}-3\text{-}(o\text{-methoxyphenoxy})\text{propyl}]\text{-l-piperazineaceto-2',6'\text{-xylidide}}\), is an antianginal drug that does not affect heart rate or blood pressure (Maier, 2009). It is commercially available under the brand name of “Ranexa” and clinical usage was approved in the United States and European Union (Maier, 2009). Its main mode of action is thought to be blockage of persistent (late) Na\(^+\) current (I\(_{\text{NaP}}\)) of VGSCs (Antzelevitch \textit{et al.}, 2004; Fredj \textit{et al.}, 2006). Therapeutic plasma concentrations during treatment of patients with ischemic heart disease have been estimated to be in the range 2-8 µM (Rajamani \textit{et al.}, 2008). Depending on concentration, ranolazine can block both I\(_{\text{NaP}}\) and I\(_{\text{NaT}}\) but lower, clinical doses preferentially block I\(_{\text{NaP}}\) (Chen \textit{et al.}, 2009; Wang \textit{et al.}, 2008; Antzelevitch \textit{et al.}, 2004; Fredj \textit{et al.}, 2006). It was shown earlier that ranolazine thus blocks I\(_{\text{NaP}}\) of mouse myocytes and HEK-293 cells expressing long-QT syndrome 3 mutant VGSC with a half-maximum inhibitory concentration (IC\(_{50}\)) of \(\approx 15\) µM (Fredj \textit{et al.}, 2006). In the same study, the value of IC\(_{50}\) for block of I\(_{\text{NaT}}\) with ranolazine was 135 µM (Fredj \textit{et al.}, 2006). In addition, Antzelevitch \textit{et al.} (2004) found that ranolazine blocked I\(_{\text{NaP}}\) more effective than I\(_{\text{NaT}}\) of isolated canine ventricular myocytes (IC\(_{50}\)s = 5.9 and 296 µM, respectively). A similar effect of ranolazine was observed on human embryonic kidney 293T cells expressing inactivation-deficient rat Nav1.4, the values of IC\(_{50}\)s being 2.4 µM (I\(_{\text{NaP}}\)) and 225.4 µM (I\(_{\text{NaT}}\)) (Wang \textit{et al.}, 2008). Block of Na\(^+\) current by ranolazine was also documented for human Nav1.7 and rat Nav1.8 channels (Rajamani \textit{et al.}, 2008; Wang \textit{et al.}, 2008). Rajamani \textit{et al.} (2008) also
documented that ranolazine blocked Na\(^+\) current with IC\(_{50}\) value of 10.3 µM, when Nav1.7 was co-expressed with VGSCβ1 subunit in human embryonic kidney 293 cells. Various site-directed mutagenesis studies showed that ranolazine blocks VGSCs by binding to a conserved local anaesthetic site (D1/D3/D4:S6) on the inside of the membrane (Wang et al., 2008; Fredj et al., 2006). In addition to VGSC currents, however, ranolazine found to block the following ionic mechanisms: human Kv11.1 / human ether-a-go-go related gene, hERG (IC\(_{50}\) = 11.5 µM), sodium-calcium exchanger (IC\(_{50}\) = 91 µM), peak and late L-type voltage-gated Ca\(^+\) channel (VGCC) currents (IC\(_{50}\) = 50 and 296 µM, respectively) in canine myocytes (Antzelevitch et al., 2004). Kv11.1 was shown to be expressed in various cancer cell lines (Bianchi et al., 1998; Wang et al., 2002). However, there is no evidence of Kv11.1 expression in prostate cancer. Also, Ding et al. (2006) showed absence of VGCCs in Mat-LyLu cells. Initially, it was proposed that the antianginal effect of ranolazine occurred via inhibition of fatty acid oxidation (McCormack et al., 1996; Clarke et al., 1996). However, subsequently, it has been shown that ranolazine at therapeutical doses does not inhibit fatty acid oxidation (Hale et al., 2008). Therefore, we can assume that the primary effect of ranolazine seen in this study is via blockage of VGSC.

As already noted, the predominant VGSC functionally expressed in rat and human prostate cancer cells, Nav1.7, was reported to increase the metastatic potential (Diss et al., 2001; Grimes et al., 1995; Nakajima et al., 2009). Brackenbury and Djamgoz (2006) proposed that Nav1.7 mRNA is up-regulated at steady-state via positive feedback in Mat-LyLu cells. It was reported that blockage of VGSC activity with TTX reduced Nav1.7 mRNA expression in Mat-LyLu cells (Brackenbury and Djamgoz, 2006). Similarly, Mat-LyLu cell Nav1.7 mRNA expression decreased by 24 h ranolazine treatment (20-300 µM) under both hypoxic and normoxic conditions.
This indicates involvement of ranolazine on Nav1.7 mRNA regulation via inhibition of VGSC activity. Although ranolazine (50 µM) had no effect on plasma membrane VGSCα protein level, invasiveness was reduced significantly.

Previously, involvement of VGSC activity on invasive capacity of prostate cancer cells was studied extensively (Grimes et al., 1995; Laniado et al., 1997; Smith et al., 1998; Bennett et al., 2004; Nakajima et al., 2009). It was also suggested that, functional expression of VGSC is “necessary and sufficient” for prostate cancer cell invasion (Bennett et al., 2004). In addition, previously we showed that TTX decreased Mat-LyLu cell invasion under both normoxic and hypoxic conditions (Sections 3.2.2.7.3 and 3.3.6.3). Similarly, ranolazine (20-300 µM) decreased invasion of Mat-LyLu cells under both normoxic and hypoxic conditions probably via inhibition of VGSC / I_{NaP} activity.

These results raise the possibility that ranolazine may be useful as an anti-metastatic drug, especially as it is already in clinical use against angina (Maier, 2009). Interestingly, in the only in vivo study reported to date, ranolazine (30 mg/kg, twice daily), in fact, increased the number of tumours in APC^{Min/+} mice and tumours become more invasive, thought to occur via inhibition of fatty acid oxidation (Suckow et al., 2004). However, ranolazine used in that study was more than the maximum recommended dose for human: 500-1000 mg, twice daily (Chaitman, 2006).

4.3.6 Effects of riluzole

Riluzole (2-amino-6-trifluoromethoxy benzothiazole) is an anti-excitatory and neuroprotective agent. Its use, under the brand name “Rilutex”, was approved for treatment of the fatal neurodegenerative disease Amyotrophic Lateral Sclerosis
(ALS) in USA and Europe (Bensimon et al., 1994; Lacomblez et al., 1996). Riluzole was shown to be not harmful in humans at concentrations up to 10 µM (Weiss et al., 2010; Le Liboux et al., 1999). It was proposed that the neuroprotective property of riluzole was via inhibition of I_{NaP} (Urbani and Belluzi, 2000; Zona et al., 1998). Indeed, riluzole was shown to protect against cardiac ischemia by inhibiting I_{NaP} (Weiss et al., 2010). Riluzole would bind to VGSCα subunit (binding site is not known) and stabilize the channel in its inactivated formation (Doble, 1999; Hebert et al., 1994).

Riluzole treatment had some inhibitory effect on Nav1.7 mRNA expression and intracellular VGSCα protein expression in both normoxia and hypoxia. Although riluzole caused some increase in VGSCα protein expression in plasma membrane under hypoxia, there was no effect on invasiveness. In fact, although there was a strong and consistent trend towards inhibition, riluzole had no effect on invasiveness at concentrations (1 – 5 µM) that did not affect cellular viability or proliferative activity. This is likely to be due the significant variability introduced by DMSO used as a solvent.

Riluzole had no effect on Nav1.7 mRNA expression in normoxia but decreased it significantly under hypoxia. It was previously reported that hypoxia would increase I_{NaP} amplitude and therefore increase internal Na^+ concentration in neurons and cardiac cells (Hammarström and Gage, 1998; Ju and Gage, 1996). As discussed earlier (Section 4.3.1.3), Nav1.7 mRNA was regulated by VGSC activity in Mat-LyLu cells (Brackenbury and Djamgoz, 2006). Therefore, we can speculate that the increase intracellular Na^+ and the subsequent increase in PKA activity could be the reasons of increase in Nav1.7 mRNA expression in Mat-LyLu cells.
The effect on VGSCα protein expression was studied with 2.5 µM riluzole which nevertheless increased plasma membrane expression. This was surprising considering the activity-dependent positive feedback hypothesis, involving intracellular trafficking, proposed by Brackenbury and Djamgoz (2006) according which a reduction would be expected. One possibility is that 2.5 µM riluzole was not sufficient to block I_{NaP} completely, since regulation may occur in all-or-none fashion (Brackenbury and Djamgoz, 2006).

Previously, effects of riluzole on human prostate cancer cells were investigated in 3 separate studies, as follows:

1. Abdul and Hoosein (2002) initially studied effects on four different cell lines, including the VGSC-expressing PC-3 cells and found that riluzole inhibited growth with an IC$_{50}$ of 43-128 µM.

2. Parihar et al. (2003) found that riluzole (EC$_{50}$ = 2 µM) evoked concentration-dependent increases in proliferation of PC-3 (and LNCaP) cells. However, this effect was proposed to be through intermediate-conductance Ca$^{2+}$-activated K$^+$ channels.

3. Akamatsu et al. (2009) showed that riluzole (10-50 µM) induces inhibition of DNA synthesis and apoptotic cell death via endoplasmic reticulum stress in both LNCaP and C4-2 prostate cancer cell lines.

In conclusion, riluzole is likely to have anti-PCa effects via a number of ionic and cellular mechanisms. Further work is required to determine the role of I_{NaP} in the effects of riluzole. In particular, anti-invasive/metastatic effects would be worthwhile investigating further.
4.3.7 Effects of procaine

Procaine (4-aminobenzoic acid-2-diethylaminoethyl ester) is a clinically used local anaesthetic. It was documented that its main mode of action is via VGSC block by interacting with local anaesthetic binding site at D1/D3/D4:S6 of VGSCα subunit (Lilley and Robinson, 1998; Bräu et al., 1998; Ragsdale et al., 1994). However, procaine can also block voltage-dependent K⁺ current in peripheral nerves with IC₅₀ value of 6302 µM (Bräu et al., 1998).

Procaine (1 mM but not 0.5 mM) inhibited growth of breast cancer MCF-7 cells via DNA-demethylation (Villar-Garea et al., 2003). In the present study, procaine (1 µM – 1 mM) had no effect on Mat-LyLu cell number under normoxia or hypoxia. This result is consistent with VGSC activity having no role in Mat-LyLu cell proliferation (Fraser et al., 2000).

Procaine reduced Mat-LyLu cell invasion dose dependent manner under both normoxic and hypoxic conditions, consistent with involvement of VGSC activity. Overall, this agrees with previous work showing enhancement of prostate cancer cell invasiveness by functional VGSC expression (e.g. Grimes et al., 1995; Laniado et al., 1997; Smith et al., 1998; Bennett et al., 2004; Nakajima et al., 2009). However, as well the presumed suppression of VGSC activity, procaine also had some inhibitory effects on Nav1.7 mRNA and VGSCα protein expression. Thus, procaine may have potential as an anti-metastatic drug. Interestingly, procaine was reported to enhance antitumoral activity of several drugs used in cancer therapy, such as cisplatin, mitomycine C, peplomycin and doxorubicin (Chlebowski et al., 1982; Esposito et al., 1990; Viale et al., 1998; Mizuno and Ishida, 1982).
4.3.8 Effects of lidocaine

Lidocaine (2-diethylamino-N-(2,6-dimethylphenyl) acetamide), a structural analogue of ranolazine, is another clinically used local anaesthetic. It is reported to be useful in therapy of painful diabetic polyneuropathies, neuralgic pain and traumatic peripheral nerve injuries (Klinger et al., 1997). Lidocaine achieves anaesthetic effect mainly by blocking VGSC activity by binding to local anaesthetic site located at D1/D3/D4:S6 region (Sheet et al., 2007; Chevrier et al., 2004; Lilley and Robinson, 1998; Bräu et al., 1998; Ragsdale et al., 1994). Lidocaine was also shown to block VGSC in MDA-MB-231 breast cancer cell line (Fraser et al., 2005). It was also reported that lidocaine (200 µM) decrease endocytic membrane activity via VGSC channel blockage (Onganer and Djamgoz, 2005). In addition, similar to procaine, lidocaine can also block voltage-dependent K⁺ currents in peripheral nerves with an IC₅₀ of ~1118 µM (Bräu et al., 1998). In the present study, lidocaine (10 and 100 µM) decreased invasion of Mat-LyLu cells under both normoxic and hypoxic conditions, thereby providing further evidence on involvement of VGSC in invasiveness of cancer cells. At these concentrations (in fact, up to 1 mM), lidocaine had no effect on Mat-LyLu cell number in normoxia. Only at high concentrations (700 and 1000 µM) was cell number reduced under hypoxic conditions.

At the concentrations used to suppress invasiveness, there was also a tendency to inhibit expression of Nav1.7 mRNA and VGSCα protein. These results agree generally with previous findings (i) that VGSC activity promotes cellular invasiveness without any involvement in proliferation and (ii) VGSC expression is under auto-controlling such that channel activity can have both transcriptional and post-translational effects (Brackenbury and Djamgoz, 2006).
Overall, the effects of lidocaine reported elucidated here would support the notion that lidocaine can also have anti-cancer/metastatic effects. It was shown earlier that that 3.5 mM lidocaine caused growth inhibition of SHG human melanoma cells (Chlebowski et al., 1982). In another study, Mammo et al. (2002) found that lidocaine inhibited the invasiveness of various human cancer cell lines but this was thought to be independent of any VGSC blockage.

4.4 Concluding remarks
In overall conclusion, 3 of the 4 VGSC blockers (ranolazine, procaine and lidocaine) employed in the present study produced inhibitory effects on metastatic cell behaviour (invasion) at concentrations that did not affect primary cell growth. These findings further support the following viewpoints. First, primary and secondary tumourigenesis are controlled differently, perhaps even independently (Hanahan and Weinberg, 2000; Welch et al., 2000; Welch, 2004; Welch, 2006). Second, VGSC blockers can be useful clinically as anti-metastatic drugs (Onkal and Djamgoz, 2009; Gillet et al., 2009; Roger et al., 2006; Prevarskaya et al., 2007; Brackenbury and Djamgoz, 2006). The only apparent exception was riluzole which did not produce statistically significant effects in spite of the strong inhibitory trends. This was likely to be due to the obligatory use of DMSO as a solvent. Nevertheless, with further experimentation and optimization, it is possible that riluzole can also produce significant effects. We should emphasise, however, that blocking VGSC activity was accompanied by changes in Nav1.7 mRNA and protein expression, and these secondary effects will need to be taken into account when considering the full clinical potential of VGSC blockers as anti-metastatic agents.
Chapter 5

STUDY OF INTRACELLULAR Ca\(^{2+}\) OSCILLATIONS IN
HUMAN METASTATIC PROSTATE CANCER PC-3M
CELLS
5.1 Introduction

Ca$^{2+}$ signalling is a key player in transmembrane activity and intracellular signal transmission. Ca$^{2+}$ signalling regulates many cellular processes such as fertilization (Ozil and Swann, 1995), cell cycle (e.g. Ding et al., 2010), apoptosis (Norberg et al., 2008), mitochondrial redox state (Hajnóczky et al., 1995), differential gene expression (Wang et al., 2010; Liao et al., 2006; Dolmetsch et al., 1998; Li et al., 1998; Haisenleder et al., 2001; Buonanno and Fields, 1999; Olson and Williams, 2000), motility / invasion (Amuthan et al., 2002; Wei et al., 2009; Huang et al., 2004; Komuro and Rakic, 1996), muscle contraction, pacemaker activity, growth-cone turning / migration (Gomez et al., 1995; Gomez et al., 2001), axonal growth (Tang et al., 2003), development of neurotransmitter phenotype (Ciccolini et al., 2003), formation of nodules in plant root hairs (Ehrhardt et al., 1996), development of muscle (Ferrari et al., 1998), release of cytokines (Uhlén et al., 2000), exocytosis (Tse et al., 1993), adhesion (Giannone et al., 2002; Liao et al., 2006), chemotaxis, and synaptic plasticity (Parkash and Asotra, 2010; Mycielska et al., 2004 Berridge, 1998; Berridge, 2009). Ca$^{2+}$ signalling has also been implicated in modulation of metastatic cell behaviours (MCBs) in various cancers, including prostate cancer (PCa), breast cancer, head and neck squamous cell carcinoma, pulmonary adenocarcinoma, rhabdomyoblasts, fibrosarcoma, and retinoblastoma (Wang et al., 2010; Liao et al., 2006; Huang et al., 2004; Zhong et al., 2010; Wu et al., 1997; Amuthan et al., 2002; Amuthan et al., 2001; Cook and Lockyer, 2006; Wertz and Dixit, 2000; Lehen’kyi et al., 2007). In addition, changes in expression profiles of Ca$^{2+}$ channels and pumps in cancer cells were proposed to play important role in carcinogenesis (Parkash and Asotro 2010; Monteith et al., 2007).
Since high levels of intracellular Ca2+ ([Ca2+]\textsubscript{i}) can be cytotoxic, cells spend considerable energy in order to maintain a basal [Ca2+]\textsubscript{i} of \(\leq 100\) nM, while extracellular Ca2+ concentrations are at mM levels (Parkash and Asotro, 2010; Berridge \textit{et al.}, 2003; Berridge \textit{et al.}, 1998). This regulation of [Ca2+]\textsubscript{i} is carried out by chelation / binding, compartmentalisation and extrusion of intracellular Ca2+ (Parkash and Asotro, 2010; Berridge \textit{et al.}, 2003; Berridge \textit{et al.}, 1998). On the whole, therefore, physiological changes in intracellular Ca2+ are brief (Parkash and Asotro 2010; Rey \textit{et al.}, 2010; Clapham 2007; Berridge \textit{et al.}, 1998).

Ca2+ signalling can be mediated by influx of Ca2+ through plasma membrane and/or release of Ca2+ from internal stores (Roderick and Cook, 2008; Clapham, 2007; Berridge \textit{et al.}, 2003; Berridge \textit{et al.}, 1998). In turn, Ca2+ influx can occur via many different membrane mechanisms including voltage-gated Ca2+ channels (VGCCs), receptor-operated and store-operated Ca2+ channels (Berridge \textit{et al.}, 1998). However, a rise in [Ca2+]\textsubscript{i} can also result from slowing or reversal of Na+ - Ca2+ exchanger (NCX) activity (Poburko, \textit{et al.}, 2007; Eder \textit{et al.}, 2005; Rosker \textit{et al.}, 2004; Arnon \textit{et al.}, 2000). On the other hand, two main Ca2+-release channels have been characterized in endoplasmic reticulum (ER): ryanodine receptor (RyR) and inositol-triphosphate receptor (IP\textsubscript{3}R) (Campbell \textit{et al.}, 1987; Streb \textit{et al.}, 1983). In addition, several pumps have been implicated in Ca2+ signalling / [Ca2+]\textsubscript{i} regulation, including sarcoplasmic-endoplasmic reticulum Ca2+-ATPase (SERCA), plasma-membrane Ca2+-ATPase (PMCA) and mitochondrial Ca2+ uniporter, as well as NCX (Berridge \textit{et al.}, 2003; Berridge \textit{et al.}, 1998).

Liao \textit{et al.} (2006) proposed that extracellular Ca2+ is a mediator of PCa bone metastasis. In addition, PCa cell motility, including galvanotaxis, was suggested to be regulated by Ca2+ signalling (Wang \textit{et al.}, 2010; Mycielska and Djamgoz, 2004).
In PCa, TRPC1, TRPC3, TRPC4, TRPV2, TRPV6, TRPM8 subtypes of transient receptor potential (TRP) cation (including Ca$^{2+}$) channel family were identified (Abeele et al., 2003a; Abeele et al., 2003b; Abeele et al., 2004; Fixemer et al., 2003; Schmidt et al., 2006). In addition, some involvement of TRPV2 and TRPM8 in MCBs in PCa was documented (Monet et al., 2010; Gkika et al., 2010). For example, silencing of TRPV2 by siRNA reduced growth and invasion of PC-3 cells (Monet et al., 2010). Furthermore, TRPM8 activation mediated reduction in PC-3 cell motility was recently documented (Gkika et al., 2010).

Functional expression of voltage-gated Na$^+$ channels (VGSCs) have been associated with initiation and progression of several metastatic carcinomas (Grimes et al., 1995; Blandino et al., 1995; Laniado et al., 1997; Allen et al., 1997; Grimes and Djamgoz, 1998; Abdul and Hoosein, 2002; Roger et al., 2003; Fraser et al., 2004; Ou et al., 2005; Fraser et al., 2005; Onganer and Djamgoz, 2005; Onganer et al., 2005; Brackenbury and Djamgoz, 2006; Fulgenzi et al., 2006; Roger et al., 2007; Diaz et al., 2007; Nakajima et al., 2009; Gao et al., 2009; Gao et al., 2010; House et al., 2010). VGSC activity was shown to potentiate galvanotaxis, lateral motility, endocytic membrane activity, transverse migration and invasion in cancer cells (Brackenbury and Djamgoz, 2006; Gillet et al., 2009; Nakajima et al., 2009; Fraser et al., 2003; Mycielska et al., 2003; Djamgoz et al., 2001; Krasowska et al., 2004; Grimes et al., 1995; Laniado et al., 1997; Smith et al., 1998; Bennet et al., 2004). Concurrently, it was shown that strongly metastatic hepatoma and mammary adenocarcinoma have higher internal Na$^+$ concentrations than corresponding nontumoural cells (Cameron et al., 1980). Similarly, the Na$^+$ content is higher in advanced breast cancers than benign tumours (Ouwerkerk et al., 2007).
Interestingly, influx of Na\(^+\) through openings of VGSCs (Sagel et al., 1991; Gosling et al., 1998) as well as TRP channels (Poburka, et al., 2007; Eder et al., 2005; Rosker et al., 2004; Arnon et al., 2000) was proposed to mediate Ca\(^{2+}\) influx by slowing or reversing NCX activity.

Therefore, in this chapter we proposed the hypothesis that VGSC activity modulates the intracellular Ca\(^{2+}\) levels.

5.2 Aims and scope of the present study

The main aim was to elucidate some basic aspects of Ca\(^{2+}\) signalling in human metastatic PCa PC-3M cells. The specific aims were as follows:

3. To test whether spontaneous Ca\(^{2+}\) oscillations occurred;
4. To determine the possible role of VGSC activity in Ca\(^{2+}\) signalling; and
5. To gain an insight to the subcellular regulatory components involved in Ca\(^{2+}\) oscillations.

5.3 Results

Fluo-4, a Ca\(^{2+}\) indicator dye, and high-speed confocal digital imaging system were used to record changes in intracellular [Ca\(^{2+}\)] levels in human metastatic PCa cell line PC3M, human weakly metastatic PCa cell line LNCaP and rat highly metastatic PCa cell line Mat-LyLu in a comparative approach. [Ca\(^{2+}\)], was measured as “ΔF/F” (as defined in the Materials and Methods” chapter) and plotted as a percentage of the value above the average baseline (treated as 0 %).
5.3.1 Spontaneous oscillations of intracellular Ca2+ in PCa cells: Basic characteristics and comparative aspects

Of PC-3M cells, 24 ± 6 % showed spontaneous Ca2+ oscillations (n = 6; Figure 5.1A; Supplementary Videos 1 and 2). A transient event was accepted as an “oscillation” if it (i) occurred a minimum of 3 times and (ii) reached a minimum amplitude of 50 %. The [Ca2+]\textsubscript{i} oscillations did not appear to be localized to any particular part of the PC-3M cells. Both spontaneously oscillating and non-oscillating PC-3M cells responded to depolarization of membrane potential (induced by application of 100 mM KCl) with increase in [Ca2+]\textsubscript{i} (Figure 5.1A&B). There was no noticeable change in oscillation frequency or amplitude over 30 min of recording (Figure 5.1A). The basic characteristics of the Ca2+ oscillations in PC-3M cells were as follows: amplitude = 172 ± 17 % and frequency = 0.5 ± 0.04 oscillation/min (n = 38). In some cases, cells discharged repetitively and cumulatively without returning to baseline. Such cells were excluded from the analyses.

In contrast to PC-3M, the weakly metastatic human PCa cell line LNCaP did not have any spontaneous Ca2+ activity (n = 3; Figure 5.2A; Supplementary Videos 3 and 4). Nevertheless, membrane potential depolarization (induced by 100 mM KCl) caused a rapid rise in [Ca2+]\textsubscript{i} (n = 3; Figure 5.2A).

In strongly metastatic rat PCa Mat-LyLu cells, no spontaneous Ca2+ event was recorded (n = 3; Figure 5.2B; Supplementary Videos 5 and 6). In addition, membrane depolarization (induced by 100 µM KCl) had no effect on [Ca2+]\textsubscript{i} (n = 3; Figure 5.2B). This result agreed generally with the data of Ding \textit{et al.} (2006) showing lack of functional VGCC expression in Mat-LyLu cells.

In the remainder of the experiments, mainly the PC-3M cells were used.
Figure 5.1 Spontaneous Ca2+ oscillations in PC3M cells.
Representative traces showing oscillatory changes in internal fluorescence intensity in PC-3M cells that were loaded with the Ca2+ indicator dye Fluo-4: (A) A typical oscillating cell; (B) A typical non oscillating cell. Changes in fluorescence intensity are expressed as $\Delta F/F_0$ (%). Applications of given treatments are indicated by arrows. Vehicle control, control buffer solution (MPS) without any treatment; KCl, potassium chloride (100 mM).
Figure 5.2 Spontaneous changes in $[\text{Ca}^{2+}]_i$ in LNCaP and Mat-LyLu cells

Typical recordings showing internal fluorescence intensity change over time in LNCaP (A) and Mat-LyLu (B) cells loaded with the Ca$^{2+}$ indicator dye Fluo-4. Changes in fluorescence intensity are expressed as $\Delta F/F_0$ (%); black arrows indicate treatment application at shown time points. KCl was used at 100 mM.
5.3.2 Effects of VGSC blockers on Ca$^{2+}$ oscillations in PC-3M cells

5.3.2.1 Effect of TTX

Blocking VGSC activity with 1 µM TTX significantly decreased amplitude of Ca$^{2+}$ oscillations in PC-3M cells by some 47 %, from 137 ± 17 % to 73 ± 17 % (p < 0.05; n = 23; Figures 5.3A and 5.4A; Supplementary Videos 7 and 8). In addition, frequency of oscillations was significantly reduced by 59 %, from 0.39 ± 0.04 to 0.16 ± 0.03 oscillation/min (p < 0.001; n = 23; Figures 5.3A and 5.4B). There was no change in the number of oscillating PC-3M cells following the TTX treatment: 13 ± 6 % (control) and 13 ± 4 % (TTX-treated) (p > 0.05; n = 3; Figure 5.4C). TTX (1 µM) had no effect on the internal Ca$^{2+}$ level in non-oscillating PC-3M cells (n = 3; Figure 5.3B). Depolarization of membrane potential (induced by 100 mM KCl) in the presence of TTX (1 µM) increased [Ca$^{2+}$]$_i$ in both oscillating and non-oscillating PC-3M cells (n = 3 each; Figure 5.3A&B).

5.3.2.2 Effect of ranolazine

Ranolazine was used as a selective blocker of the VGSC persistent current (I_{NaP}). Treatment with 20 µM ranolazine significantly reduced the Ca$^{2+}$ oscillation amplitude by 43 %, from 149 ± 20 % to 85 ± 15 % (p < 0.05; n = 17; Figures 5.5A and 5.6A; Supplementary Videos 9 and 10). Oscillation frequency was also significantly decreased by 59 %, from 0.44 ± 0.04 to 0.18 ± 0.03 oscillation/min (p < 0.001; n = 17; Figures 5.5A and 5.6B). Also, similar to TTX, ranolazine (20 µM) had no significant effect on number of oscillating PC-3M cells: 25 ± 12 % (control) and 22 ± 13 % (ranolazine-treated) (p > 0.05; n = 3; Figure 5.6C). There was no
Figure 5.3 Effect of TTX on spontaneous Ca\(^{2+}\) oscillations in PC-3M cells

Representative traces showing the effect of TTX (1 µM) on spontaneous Ca\(^{2+}\) oscillations in a typical oscillating (A) and non-oscillating (B) PC-3M cell. Changes in fluorescence intensity are expressed as ΔF/F\(_0\) (%). Treatment application times are indicated by arrows. Vehicle control, buffer solution (MPS) without any treatment; KCl, potassium chloride (100 mM).
Figure 5.4 Summary of the effects of TTX on spontaneous Ca^{2+} oscillations in PC-3M cells.

Bar diagrams illustrate the effect of 1 µM TTX on the amplitude (A) and the frequency (B) of spontaneous Ca^{2+} oscillations recorded in PC-3M cells. Data were obtained in a ‘matched’ fashion (i.e. from the same cells) under control conditions and then in the presence of TTX (15 min each). Paired t-tests were used for statistical comparisons (n = 23). (C) Effect of TTX (1 µM) on the percentage of oscillating PC-3M cells. Paired t-test was used for statistical analysis (n = 3). Data are presented as mean ± SEM. Significance: (*) p < 0.05; (**) p < 0.001; (X) p > 0.05.
Figure 5.5 Effect of ranolazine on spontaneous Ca\(^{2+}\) oscillations in PC-3M cells.
Representative traces showing the effect of 20 µM ranolazine on spontaneous Ca\(^{2+}\) oscillations in PC-3M cells: (A) an oscillating cell; (B) non-oscillating cell. Changes in fluorescence intensity are expressed as ΔF/F\(_0\) (%). Treatment application times are indicated with arrows. Vehicle control, buffer solution (MPS) without any treatment; KCl, potassium chloride (100mM); Rano, ranolazine (20 µM).
Figure 5.6 Summary of the effects of ranolazine on spontaneous Ca\(^{2+}\) oscillations in PC-3M cells.

Bar diagrams illustrating the effect of 20 µM ranolazine on the amplitude (A) and the frequency (B) of Ca\(^{2+}\) oscillations in PC-3M cells. Data were obtained in a ‘matched’ fashion (i.e. from the same cells) under control conditions and then in the presence of ranolazine (15 min each). Paired t-tests were used for statistical comparisons (n = 17). (C) Effect of ranolazine (20 µM) on the percentage of oscillating PC-3M cells. Paired t-test was used for statistical analysis (n = 3). Data are presented as mean ± SEM. Significance: (*) p < 0.05; (**) p < 0.001; (X) p > 0.05.
significant change of intracellular Ca$^{2+}$ concentration in non-oscillating PC-3M cells after ranolazine treatment ($n = 3$; Figure 5.5B). Finally, increases in intracellular Ca$^{2+}$ levels were recorded after depolarization of membrane potential with 100 µM KCl in the presence of ranolazine (20 µM) in both oscillating and non-oscillating PC-3M cells ($n = 3$; Figures 5.5A&B).

It was concluded that VGSC activity, in particular I_{NaP}, played a significant role in regulating the [Ca$^{2+}$]$_i$ oscillations in PC-3M cells.

5.3.3 Effects of Na$^+$-free conditions on Ca$^{2+}$ oscillations

Role of extracellular Na$^+$ in Ca$^{2+}$ oscillations were studied by substituting NaCl in the bathing solutions with equimolar LiCl or choline chloride.

5.3.3.1 Effect of Li$^+$-substituted Na$^+$-free solution

No change was recorded in the Ca$^{2+}$ oscillation amplitude of PC-3M cells when maintained in control and Li$^+$-substituted Na$^+$-free conditions (165 ± 13 and 172 ± 17 %, respectively; $p > 0.05$; $n \geq 38$; Figures 5.7A and 5.8A; Supplementary Videos 11 and 12). In addition, there was no difference in frequency of Ca$^{2+}$ oscillations: 0.52 ± 0.04 oscillation/min (control) and 0.52 ± 0.04 oscillation/min (Li$^+$-substituted) ($p > 0.05$; $n \geq 38$; Figures 5.7A and 5.8B). The number of oscillating cells also was not changed in the Li$^+$-substituted Na$^+$-free conditions: 24 ± 6 % (control) and 37 ± 4 % (Li$^+$-substituted) ($p > 0.05$; $n \geq 3$; Figure 5.8C). Depolarization of membrane potential (induced by 100 mM KCl) significantly increased intracellular Ca$^{2+}$ levels in both oscillating and non-oscillating PC-3M cells under Li$^+$-substituted Na$^+$-free conditions ($n = 3$; Figure 5.7A&B).
Figure 5.7 Effect of Na\(^+\) free (Li\(^+\) substituted) conditions on Ca\(^{2+}\) oscillations in PC-3M cells.

Exemplar recordings showing the effect of Li\(^+\) substituted Na\(^+\) free MPS on Ca\(^{2+}\) oscillations in oscillating (A) and non-oscillating (B) PC-3M cells. Changes in fluorescence intensity are expressed as $\Delta F/F_0$ (%). Treatment application times are indicated by arrows. KCl, potassium chloride (100 mM).
Figure 5.8 Summary of the effects of Na\(^+\) free (Li\(^+\)-substituted) conditions on spontaneous Ca\(^{2+}\) oscillations in PC-3M cells.

Bar diagrams showing the effect of Na\(^+\) free (Li\(^+\)-substituted) MPS on the amplitude (A) and the frequency (B) of Ca\(^{2+}\) oscillations in PC-3M cells. Data were obtained in a ‘matched’ fashion (i.e. from the same cells) under control conditions and then in the presence of Na\(^+\)-free MPS (15 min each). Paired t-tests were used for statistical comparisons \((n \geq 38)\). (C) Effect of Li\(^+\) substituted Na\(^+\) free MPS on the percentage of oscillating PC-3M cells \((n = 3)\). Paired t-test was used for statistical analysis. Data are presented as mean ± SEM. Significance: \((X) p > 0.05\).
5.3.3.2 Effect of choline-substituted Na\(^+\)-free solution

Choline-substituted Na\(^+\)-free conditions significantly decreased the amplitude of Ca\(^{2+}\) oscillations in PC-3M cells by 28 %, from 165 ± 13 to 119 ± 9 % (p < 0.05; n ≥ 34; Figures 5.9A and 5.10A; Supplementary Videos 13 and 14). On the other hand, when the cells were exposed to the choline-substituted Na\(^+\)-free conditions, oscillation frequency was significantly elevated by 63 %, from 0.52 ± 0.04 oscillation/min (control) to 0.85 ± 0.09 oscillation/min (choline\(^+\)-substituted) (p < 0.05; n ≥ 34; Figures 5.9A and 5.10B). However, there was no effect on the number of oscillating cells: 24 ± 6 % (control) and 47 ± 12 % (choline\(^+\)-substituted) (p > 0.05; n ≥ 3; Figure 5.10C). Membrane depolarization (induced by 100 mM KCl) caused increases in the intracellular Ca\(^{2+}\) level in both oscillating and non-oscillating PC-3M cells under choline-substituted Na\(^+\)-free conditions, as in the control solution (n =3; Figures 5.9A&B).

It was concluded that extracellular Na\(^+\) played a significant role in regulating the [Ca\(^{2+}\)]\(_i\) oscillations in PC-3M cells.

5.3.4 Involvement of extracellular Ca\(^{2+}\) in spontaneous Ca\(^{2+}\) oscillations

In order to study the possible involvement of extracellular Ca\(^{2+}\) on the spontaneous Ca\(^{2+}\) oscillations, intracellular Ca\(^{2+}\) levels of PC-3M cells were recorded first under Ca\(^{2+}\)-free conditions in the presence of the Ca\(^{2+}\) chelating agent EGTA (5 µM). Then, 2.5 mM Ca\(^{2+}\) was re-admitted into the bath solution. In the absence of extracellular Ca\(^{2+}\), there was no oscillation in PC-3M cells (n =3; Figures 5.11A&B; Supplementary Videos 15 and 16). After the application of Ca\(^{2+}\) (2.5 mM), however, the intracellular Ca\(^{2+}\) level showed a sharp rise and this was followed by a rapid fall
Figure 5.9 Effect of Na⁺ free (choline-substituted) MPS on Ca²⁺ oscillations in PC-3M cells.

Typical recordings showing the effect choline-substituted Na⁺ free MPS on Ca²⁺ oscillations in an oscillating (A) and non-oscillating (B) PC-3M cell. Changes in fluorescence intensity were expressed as ΔF/F₀ (%). Treatment application times are indicated by arrows. KCl, potassium chloride (100 mM).
Figure 5.10 Summary of the effects of Na\(^+\) free (choline-substituted) MPS on spontaneous Ca\(^{2+}\) oscillations in PC-3M cells.

Bar diagrams showing the effect of choline-substituted Na\(^+\) free MPS on the amplitude (A) and the frequency (B) of Ca\(^{2+}\) oscillations in PC-3M cells. Data were obtained in a ‘matched’ fashion (i.e. from the same cells) under control conditions and then in the presence of Na\(^+\)-free MPS (15 min each). Paired t-tests were used for statistical comparisons (\(n \geq 34\)). (C) Effect of choline-substituted Na\(^+\) free MPS on the percentage of oscillating PC-3M cells. Paired t-test was used for statistical analysis (\(n = 3\)). Data are presented as mean ± SEM. Significance: (*) \(p < 0.05\); (X) \(p > 0.05\).
Figure 5.11 Effect of varying the extracellular [Ca$^{2+}$] on spontaneous Ca$^{2+}$ oscillations in PC-3M cells.
Recordings showing that extracellular Ca$^{2+}$ is necessary for spontaneous Ca$^{2+}$ oscillations in PC-3M cells: (A) an oscillating cell. (B) a non-oscillating cell. Recordings were first taken in the presence of Ca$^{2+}$-free MPS supplied with 5 μM EGTA, and then in the presence of 2.5 mM Ca$^{2+}$. Changes in fluorescence intensity were expressed as ΔF/ΔF₀ (%). Treatment application times are indicated with arrows.
to a new level that was still above the original baseline \((n = 3; \text{Figures 5.11}).\) Subsequently, some PC-3M cells started to oscillate \((n = 3; \text{Figures 5.11A}).\)

It was concluded that extracellular Ca\(^{2+}\) played a significant role in generating the \([\text{Ca}^{2+}]_i\) oscillations in PC-3M cells.

5.3.5 Effects of thapsigargin and EGTA on spontaneous Ca\(^{2+}\) oscillations

Thapsigargin was used as an inhibitor of SERCA (Sagara and Inesi, 1999; Wei et al., 2009). First, the intracellular Ca\(^{2+}\) levels of PC-3M cells were recorded under control conditions for 10 min. Then, thapsigargin (5 µM) was added to the bathing solution and \([\text{Ca}^{2+}]_i\) was recorded for a further 40 min. Finally, effect of membrane depolarization was monitored by applying 100 mM KCl. Immediately after thapsigargin application, intracellular Ca\(^{2+}\) level elevated sharply and this was followed by a small drop and then a second elevation of intracellular Ca\(^{2+}\) level; this sequence of events was seen in both oscillating and non-oscillating PC-3M cells \((n = 3; \text{Figure 5.12}; \text{Supplementary Videos 17 and 18}).\) Following the second rise, \([\text{Ca}^{2+}]_i\) steadly fell to a new level that was higher than the original baseline \((n = 3; \text{Figure 5.12}).\) Interestingly, depolarization of membrane potential in the presence of thapsigargin caused decreases in intracellular Ca\(^{2+}\) level in both oscillating and non-oscillating PC-3M cells \((n = 3 \text{ each}; \text{Figure 5.12}).\)

Next, intracellular Ca\(^{2+}\) levels were recorded under Ca\(^{2+}\)-free conditions with EGTA (5 µM) added for 10 min followed by application of (i) thapsigargin (5 µM) and/or (ii) after 40 min, membrane depolarization using 100 mM KCl. Under the initial Ca\(^{2+}\)-free conditions, there was no \([\text{Ca}^{2+}]_i\) oscillations \((n = 3; \text{Figure 5.13A}).\) After thapsigargin application, the internal Ca\(^{2+}\) level increased sharply followed by a fast decline to baseline that was maintained for at least 40 min of recording \((n = 3; \text{Figure 5.13B}).\)
Figure 5.12 Effect of thapsigargin on Ca$^{2+}$ oscillations in PC-3M cells.
Example recordings showing the effect of thapsigargin (depletes the Ca$^{2+}$ store in ER) on Ca$^{2+}$ signalling in oscillating (A) and non-oscillating (B) PC-3M cells. Changes in fluorescence intensity were expressed as ΔF/F$_{o}$ (%). Treatment application times are indicated by arrows. KCl, potassium chloride (100 mM).
Figure 5.13 Effect of extracellular and intracellular \([\text{Ca}^{2+}]\) on \(\text{Ca}^{2+}\) oscillations in PC-3M cells.

(A) Traces showing the effect of thapsigargin on spontaneous \(\text{Ca}^{2+}\) oscillations in PC-3M cells in the presence of \(\text{Ca}^{2+}\)-free MPS (supplied with 5\(\mu\text{M}\) EGTA). (B) Same as part A but 2.5 mM \(\text{Ca}^{2+}\) was added following thapsigargin application. Changes in fluorescence intensity were expressed as \(\Delta F/F_0\) (%). Treatment application times are indicated with arrows. KCl, potassium chloride (100 mM).
Figure 5.13A; Supplementary Videos 19 and 20). Membrane depolarization with 100 mM KCl caused a small increase in $[\text{Ca}^{2+}]_i$ ($n = 3$; Figure 5.13A).

Next, Ca$^{2+}$ oscillations were recorded under Ca$^{2+}$-free conditions in the presence of EGTA (5 µM) applied for 10 min followed by treatment with thapsigargin (5 µM) to deplete ER Ca$^{2+}$ stores. Finally, 15 mins after thapsigargin application, 2.5 mM Ca$^{2+}$ was reintroduced into the external bath and recordings were continued for a further 5 min. Finally, the membrane was depolarized with 100 mM KCl application. Again, under the initial Ca$^{2+}$-free conditions, there was no Ca$^{2+}$ oscillations in PC-3M cells ($n = 3$; Figure 5.13B). After addition of thapsigargin, a sharp $[\text{Ca}^{2+}]_i$ transient was generated which then returned back to baseline and no further change was recorded ($n = 3$; Figure 5.13B). After the re-addition of Ca$^{2+}$ into the external bath solution, there was no change in $[\text{Ca}^{2+}]_i$ ($n = 3$; Figure 5.13B). Finally, depolarizing the membrane potential caused an increase in internal Ca$^{2+}$ concentration ($n = 3$; Figure 5.13B).

It was concluded (i) that release from internal stores contributed to the $[\text{Ca}^{2+}]_i$ oscillations in PC-3M cells and (ii) that SERCA had a significant role in this process.

5.3.6 Effects of caffeine and ryanodine on spontaneous Ca$^{2+}$ oscillations

The possible involvement of RyR-induced release of Ca$^{2+}$ from internal stores in the $[\text{Ca}^{2+}]_i$ oscillations was studied using caffeine and micromolar ryanodine as an activator and inhibitor of RyR, respectively (Williams and Sims, 2007; Mariot et al., 2000).

Intracellular Ca$^{2+}$ levels of PC-3M cells were recorded under control conditions for 10 min. Then, 10 mM caffeine was added to the external bath solution. Finally, the membrane potential was depolarized by 100 mM KCl. In oscillating PC-
3M cells, caffeine (10 mM) suppressed Ca\(^{2+}\) oscillations without significantly changing the steady-state baseline level \(n = 3\); Figures 5.14A; Supplementary Videos 21 and 22). In non-oscillating cells, application of caffeine significantly elevated the \([\text{Ca}^{2+}]_{i}\) level without inducing oscillations \(n = 3\); Figure 5.14B). Depolarization caused increases in \([\text{Ca}^{2+}]_{i}\), in both oscillating and non-oscillating PC-3M cells \(n = 3\); Figures 5.14A&B).

Inhibition of RyR with 50 µM ryanodine significantly decreased the amplitude of the Ca\(^{2+}\) oscillations in PC-3M cells by 59 %, from 204 ± 23 % to 84 ± 17 % \(p < 0.001; n = 26\); Figures 5.15A and 5.16A; Supplementary Videos 23 and 24). In addition, oscillation frequency was significantly reduced by 72 %, from 0.71 ± 0.08 to 0.20 ± 0.05 oscillation/min \(p < 0.001; n = 26\); Figures 5.15A and 5.16B). There was no significant change in number of oscillating PC-3M cells by 50 µM ryanodine treatment \(p > 0.05; n = 3\); Figure 5.16C). Ryanodine (50 µM) had no effect on \([\text{Ca}^{2+}]_{i}\), in non-oscillating PC-3M cells \(n = 3\); Figure 5.15B). Depolarization of membrane potential (with 100 mM KCl) in the presence of ryanodine (50 µM) increased internal Ca\(^{2+}\) levels in both oscillating and non-oscillating cells \(n = 3\); Figure 5.15A&B).

It was concluded that RyR had a significant role in regulating the \([\text{Ca}^{2+}]_{i}\), oscillations in PC-3M cells.

5.4 Discussion

The main findings of this study are as follows: (1) A subpopulation (~25 %) of human strongly metastatic PC-3M cells generated spontaneous, ‘global’ Ca\(^{2+}\) oscillations; (2) no such activity was found in human weakly metastatic LNCaP cells
Figure 5.14 Effect of caffeine on Ca$^{2+}$ oscillations in PC-3M cells.

Representative traces showing the effect of 10 mM caffeine on Ca$^{2+}$ oscillations in PC-3M cells: (A) an oscillating cell; (B) a non oscillating cell. Changes in fluorescence intensity were expressed as $\Delta F/F_0$ (%). Treatment application times are indicated with arrow. KCl, potassium chloride (100 mM).
Figure 5.15 Effect of ryanodine on Ca\(^{2+}\) oscillations in PC-3M cells.

Typical recordings showing the effect of ryanodine (50 µM) on Ca\(^{2+}\) oscillations in PC-3M cells: (A) an oscillating cell; (B) a non-oscillating cell. Changes in fluorescence intensity were expressed as ΔF/F\(_0\) (%). Treatment application times are indicated by arrows. Vehicle control, buffer solution (MPS) without any treatment; KCl, potassium chloride (100 mM).
Figure 5.16 Summary of the effects of ryanodine on spontaneous Ca^{2+} oscillations in PC-3M cells.
Bar diagrams showing the effects of 50 µM ryanodine on the amplitude (A) and the frequency (B) of Ca^{2+} oscillations in PC-3M cells. Data were obtained in a ‘matched’ fashion (i.e. from the same cells) under control conditions and then in the presence of ryanodine (15 min each). Paired t-tests were used for statistical analysis ($n = 26$). (C) Effect of ryanodine (50 µM) on the percentage of oscillating PC-3M cells. Paired t-test was used for statistical analysis ($n = 3$). Data are presented as mean ± SEM. Significance: (**) $p < 0.001$; (X) $p > 0.05$.
or the strongly metastatic rat PCa cell line, Mat-LyLu. (3) The averages of the basic characteristics of the \([\text{Ca}^{2+}]_i\) oscillations in PC-3M cells were as follows: 172 % (amplitude) and 0.5 oscillation/min (frequency). (4) TTX and ranolazine reduced both frequency and amplitude of \(\text{Ca}^{2+}\) oscillations but did not affect the percentage of oscillating cells. (5) Substituting extracellular \(\text{Na}^+\) with equimolar \(\text{Li}^+\) had no effect on frequency and amplitude of \(\text{Ca}^{2+}\) oscillations or the number of oscillating cells. (6) Substituting extracellular \(\text{Na}^+\) with equimolar \(\text{choline}^+\) reduced the amplitude but increased the frequency of \(\text{Ca}^{2+}\) oscillations (7) Under \(\text{Ca}^{2+}\) free conditions, no oscillations were detected in PC-3M cells but after addition of \(\text{Ca}^{2+}\) some cells started to oscillate (but not after also thapsigargin pre-treatment). (8) Efflux of \(\text{Ca}^{2+}\) from internal stores by thapsigargin treatment induced influx of external \(\text{Ca}^{2+}\). (9) Stimulating RyR caused an increase in intracellular \(\text{Ca}^{2+}\), whilst inhibiting RyR decreased both amplitude and frequency of \(\text{Ca}^{2+}\) oscillations. These results are summarised qualitatively in Table 5.1.

5.4.1 Calcium signalling in PCa cells

Intracellular \(\text{Ca}^{2+}\) signalling regulates many cellular processes, particularly, motility, invasion, transcription, cell cycle/proliferation and apoptosis, which are also relate directly to the metastatic potential of cancer cells, as in PCa, breast cancer; head and neck squamous cell carcinoma, pulmonary adenocarcinoma, rhabdomyoblasts, fibrosarcoma and retinoblastoma (Wang et al., 2010; Liao et al., 2006; Huang et al., 2004; Zhong et al., 2010; Wu et al., 1997; Amuthan et al., 2002; Amuthan et al., 2001; Cook and Lockyer, 2006; Wertz and Dixit, 2000; Lehen’kyi et al., 2007). Here, we studied \(\text{Ca}^{2+}\) signalling in several PCa cell lines, PC-3M, LNCaP (both human) and Mat-LyLu (rat), in a comparative approach.
Table 5.1 Synopsis of results

<table>
<thead>
<tr>
<th>TREATMENT</th>
<th>AMPLITUDE</th>
<th>FREQUENCY</th>
<th>RESPONSE TO KCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTX</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Ranolazine</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Na⁺-free: Li⁺</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Na⁺-free: choline⁺</td>
<td>-</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>Ca²⁺-free</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Thapsigargin (locked)</td>
<td>(baseline reduction)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caffeine</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Ryanodine</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

- : DECREASE
+ : INCREASE
0 : NO CHANGE
ND: NOT DETERMINED
The results depended on the cells’ metastatic potential as well as species of origin. Thus, only human strongly metastatic PC-3M cells generated spontaneous Ca^{2+} oscillations. It is not clear why the analogous rat PCa cell line did not show Ca^{2+} oscillations, although Mat-LyLu cells share many of the ionic characteristics of PC-3 cells, including the subtypes of VGSC (Nav1.7) and voltage-gated K^+ channel (Kv1.3) expression (Diss et al., 2001; Fraser et al., 2003). Nevertheless, the present results on Mat-LyLu cells complement the previous findings of Ding et al. (2006) who also could not reveal any spontaneous activity of [Ca^{2+}]_i and showed additionally (i) that Mat-LyLu cell membranes were insensitive to changes in extracellular Ca^{2+} levels and (ii) that membrane depolarization had no effect on [Ca^{2+}]_i. Taken together, these results would imply that the Dunning cells may not be a valid model of human PCa, at least as far as intracellular Ca^{2+} signalling and regulation are concerned.

Interestingly, only ~25 % of PC-3M cells showed spontaneous [Ca^{2+}]_i oscillations. This is in line with the well known heterogeneity of cancer cell lines. In the case of functional VGSC expression also, only subpopulations of prostate cancer cells were positive, 10 % and 50 % of human and rat strongly metastatic cells, respectively (Laniado et al., 1997; Grimes et al., 1995). It could be suggested that 25 % expression of VGSC cannot make significant changes in MCBs. However, it is well established that blocking VGSC activity does cause significant suppression of MCBs of these cells. For instance, Laniado et al. (1997) showed that 10 % of the ‘parent’ strongly metastatic human prostate cancer PC-3 cells expressed functional VGSCs. On the other hand, blocking VGSC in these cells using nanomolar concentration of the specific VGSC blocker, TTX, caused 31 % reduction in invasiveness. Although, our data and current literature taken together would suggest
that Ca\(^{2+}\) oscillations could be important in modulating VGSC-dependent MCBs (e.g. directional motility and invasion), further experiments are required to establish the precise role of Ca\(^{2+}\) oscillations in MCBs.

The present study is the first characterization of [Ca\(^{2+}\)]\(_i\) oscillations in human PCa cells. As discussed earlier, Ca\(^{2+}\) signalling is important generally for functioning of cells. On the other hand, prolonged increase in [Ca\(^{2+}\)]\(_i\) can cause cell death (Roderick and Cook, 2008; Wertz and Dixit, 2000). Accordingly, Berridge \textit{et al.} (1998) proposed that cells avoid cell death by delivering Ca\(^{2+}\) signals that has to be relayed over long time periods as repetitive brief ‘transients’, i.e. as “Ca\(^{2+}\) oscillations”. It was suggested that cellular information can be encoded in the frequency and/or amplitude of the Ca\(^{2+}\) oscillations (Berridge \textit{et al.}, 2003; Berridge \textit{et al.}, 1998).

No change in intracellular Ca\(^{2+}\) levels under control condition was recorded in weakly metastatic human PCa cell line, LNCaP. Previously, a store-operated Ca\(^{2+}\) entry mechanism was described in LNCaP cells (Lallet-Daher \textit{et al.}, 2009; Lehen’kyi \textit{et al.}, 2007; Gackière \textit{et al.}, 2006; Abeele \textit{et al.}, 2004; Abeele \textit{et al.}, 2003a; Abeele \textit{et al.}, 2003b; Gutierrez \textit{et al.}, 1999). However, similar to our results, no spontaneous oscillation was reported in LNCaP cells. On the other hand, here, we demonstrated that membrane depolarization can regulate the intracellular Ca\(^{2+}\) level in LNCaP cells. In contrast, Lallet-Daher \textit{et al.} (2009) reported that hyperpolarisation via activation of Ca\(^{2+}\)-activated K\(^+\) channels, would cause influx of Ca\(^{2+}\) in PCa cell lines. In addition, Gutierrez \textit{et al.} (1999) showed that fluctuations in membrane potential between -80 and +80 mV did not affect the Ca\(^{2+}\) permeability of LNCaP cells. Further work is necessary to decipher these apparent inconsistencies.
5.4.2 A model of intracellular Ca2+ oscillations in PC-3M cells

From the present findings, taken together with published data, a working model of spontaneous Ca2+ oscillations in PC-3M cells can be proposed, as illustrated in Figure 5.17. In this model, the oscillations in [Ca2+]\textsubscript{i} are generated and modulated, and these occur in compartmentalised fashion (i.e. in a cellular micro-environment), as follows:

1. PC-3M cell membranes are tonically depolarized at rest and, consequently, VGSCs spend a significant time in open state. This is consistent with the highly reproducible effects of TTX (an open-channel blocker) on strongly metastatic, including PC-3/M cells, reported over many years (Grimes et al., 1995; Nakajima et al., 2009; Onganer et al., 2007; Mycielska et al., 2005; Scorey et al., 2006; Laniado et al., 1997).

2. The VGSC activity leads to Na+ influx, possibly mainly via I\textsubscript{NaP} and further depolarize the membrane potential (V\textsubscript{m}). Indeed, Cameron et al. (1980) have shown that strongly metastatic cells have higher levels of Na+, and malignant versus benign tumours are also higher in their Na+ content (Ouwerkerk et al., 2007).

3. The influx of Na+ (and the depolarization of V\textsubscript{m}) can raise [Ca2+]\textsubscript{i} by slowing or reversing NCX activity (Poburko, et al., 2007; Eder et al., 2005; Rosker et al., 2004; Arnon et al., 2000; Blaustein and Lederer, 1999; Matsuoka and Hilgemann, 1992; Miura and Kimura, 1989). The latter is electrogenic with a stoichiometry of 3Na+: 1 Ca2+ (Blaustein and Lederer 1999).

4. The increase in [Ca2+]\textsubscript{i} can activate RyR receptors and result in further rise in [Ca2+]\textsubscript{i} (Berridge et al., 2003).

Steps 1 – 4 can explain the rising phase of given Ca2+ ‘spike’. In order to return [Ca2+]\textsubscript{i} back to baseline and repeat the cycle, a Ca2+-sensitive negative
A basic model explaining possible mechanisms underlying spontaneous Ca2+ oscillations in PC3M cells.

Influx of Na+ through VGSC activates NCX\textsubscript{rev}. Extracellular Ca2+ is exchanged with intracellular Na+ by NCX\textsubscript{rev} therefore [Ca2+]\textsubscript{i} increases. Increased [Ca2+]\textsubscript{i} activates RyR and more Ca2+ is released into the cell and produces growth phase of Ca2+ transient. Plasma-membrane is hyperpolarized by IK\textsubscript{Ca} channel which is activated by increased [Ca2+]\textsubscript{i}. Membrane hyperpolarization inactivates VGSC. At the same time, cytoplasmic Ca2+ was removed by PMCA, SERCA and Uniporter to extracellular solution, into ER and into mitochondria, respectively, until [Ca2+]\textsubscript{i} reaches equilibrium. [Na+], intracellular Na+ concentration; [Ca2+]\textsubscript{i}, intracellular Ca2+ concentration, VGSC, voltage-gated Na+ channel; NCX\textsubscript{rev}, Na+-Ca2+ exchanger working in reverse mode; RyR, ryanodine receptor; SERCA, sarcoplasmic-endoplasmic reticulum Ca2+ ATPase; PMCA, plasma-membrane Ca2+ ATPase; Uniporter, mitochondrial uniporter; IK\textsubscript{Ca}, Ca2+ activated potassium channels; ↑ increase activity; ↓ decrease activity; V\textsubscript{M}, membrane potential. Red line shows actions in activation/growth phase of a Ca2+ transient (inset) and blue line shows actions in decay phase of a Ca2+ transient.
‘feedback’ mechanism is required. In oscillating networks, such feedback is frequently provided by Ca$^{2+}$-activated K$^+$ (gK_{Ca}) channels (Fridlyand et al., 2009). K$\text{Ca}_{3.1}$ and K$\text{Ca}_{1.1}$ subtypes of gK_{Ca} (IK_{Ca}) channels are also expressed in PC-3/M cells (Yan and Aldrich, 2010; Bloch et al. 2007; Lallet-Daher et al., 2009; Parihar et al., 2003; Laniado et al., 2001).

5. Increased intracellular Ca$^{2+}$ up to a level would activate gK_{Ca} channels which would then hyperpolarize the plasma membrane V$_m$ and thus reduce VGSC activity (Lallet-Daher et al., 2009; Félotou, 2009).

6. The increased [Ca$^{2+}$]$_i$ (locally up to mM level) would result in inhibition of RyR (Berridge et al., 2003). At the same time, further decrease of [Ca$^{2+}$]$_i$ would result from (i) extrusion of Ca$^{2+}$ from the cell by PMCA, and (ii) uptake into ER and mitochondria by SERCA and uniporter, respectively.

7. As [Ca$^{2+}$]$_i$ recovers back towards baseline, gK_{Ca} channels are inactivated, V$_m$ starts to depolarize and the condition in (1) is re-established, leading to repeat of the cycle and resulting in the [Ca$^{2+}$]$_i$ oscillations.

In this model, amplitude would be increased by activities of VGSC and RyR, and decreased by all Ca$^{2+}$ sequestration mechanisms (PMCA, SERCA etc.). On the other hand, frequency would be controlled in a complex manner by all mechanisms. In addition, we cannot rule out the possibility that other Ca$^{2+}$ entry and / or efflux mechanisms are involved in the model of Figure 5.17. Such additional mechanisms could include TRPC1, TRPC3, TRPC4, TRPV2, TRPV6, and TRPM8.
5.4.3 Role of the various subcellular mechanisms in Ca2+ signalling / oscillations

In the following, with reference to Table 5.1, we discuss / re-evaluate the role played by the various subcellular mechanisms investigated in the Ca2+ oscillations in PC-3M cells.

5.4.3.1 VGSC and cation (Na+) influx

Blocking VGSC activity with TTX or ranolazine produced similar effects, indicating that it was I\textsubscript{NaP} that was mainly responsible for the involvement of VGSC activity in the Ca2+ oscillations. Thus, both frequency and amplitude of Ca2+ oscillations were reduced. On the other hand, when extracellular Na+ was substituted with equimolar Li+, there was no change in the amplitude or frequency of the oscillations but rise and decay time constants were reduced. These effects can be due to multiple reasons. First, it is well known VGSCs are permeable to Li+ (Blaustein and Santiago, 1977; Hille, 1972). Therefore, we can assume that Li+ influx occurred and V\textsubscript{m} depolarized as normal. Second, in the absence of extracellular Na+, NCX will initially work in reverse (driven by the Ca2+ and Na+ gradient) and this mode will be facilitated by the V\textsubscript{m} depolarization. Subsequently, however, intracellular Li+ would not be able substitute for Na+ in NCX which will be inhibited (Blaustein and Lederer, 1999). Nevertheless, the initial rise in [Ca2+]\textsubscript{i} with RyR can enable [Ca2+]\textsubscript{i} to reach normal amplitude and oscillations may continue with regular frequency.

Interestingly, when extracellular Na+ was replaced by the large organic choline+, there was a decrease in amplitude but an increase in frequency of oscillations. These effects can be explained by the facts (i) that NCX again would tend to work in reverse (Palty et al., 2004; Blaustein and Lederer, 1999) but (ii) that
since there will have been no V_m depolarization (due to the VGSC impermeability of choline$^+$), and hence any rise in $[Ca^{2+}]_i$ would be limited. As regards the frequency, return of $[Ca^{2+}]_i$ back to baseline might be quicker without the V_m depolarization, so the cycle would be repeated more frequently.

5.4.3.2 Extracellular Ca$^{2+}$

In the absence of extracellular Ca$^{2+}$, PC-3M cells had no spontaneous Ca$^{2+}$ oscillations. After re-administering Ca$^{2+}$ into the external bath solution, however, an increase in internal Ca$^{2+}$ was observed which, after some delay, returned to a new baseline (higher than the original). Following the return to new baseline Ca$^{2+}$ levels, some cells did start to oscillate. These results are consistent with the proposed role of NCX. Previously, Lehen'kyi et al. (2007) demonstrated in LNCaP cells that increased extracellular Ca$^{2+}$ would induce an increase in intracellular Ca$^{2+}$. However, when the cationic channel TRPV6 was knocked down by siRNA, extracellular Ca$^{2+}$ did not affect the intracellular Ca$^{2+}$ levels (Lehen’kyi et al., 2007). Therefore it was proposed that TRPV6 was ‘constitutively open’ and mediated tonic Ca$^{2+}$ influx into LNCaP cells (Lehen’kyi et al., 2007). A similar mechanism could also be involved in the role of extracellular Ca$^{2+}$ in PC-3M cell $[Ca^{2+}]_i$ oscillations.

5.4.3.3 Thapsigargin

Possible role of sarcoplasmic-endoplasmic reticulum Ca$^{2+}$ pump (SERCA) on the spontaneous Ca$^{2+}$ oscillations was investigated using thapsigargin as a specific inhibitor (Sagara and Inesi, 1991). Thapsigargin caused a significant rise in basal intracellular Ca$^{2+}$ level in PC-3M cells indicating that SERCA was active tonically in PC-3M cells. This initial increase was immediately followed by a second Ca$^{2+}$ peak
and then $[\text{Ca}^{2+}]_i$ decreased and levelled off higher than the initial resting condition. On the other hand, when PC-3M cells were maintained in Ca$^{2+}$-free conditions, which would result in the emptying of Ca$^{2+}$ from ER stores, thapsigargin did not produce the second peak and $[\text{Ca}^{2+}]_i$ returned to baseline. This suggested strongly that the secondary peak and elevation of $[\text{Ca}^{2+}]_i$ were mediated by influx of extracellular Ca$^{2+}$. Previously, a store-operated Ca$^{2+}$ entry mechanism was described in LNCaP, DU145 and PC-3 PCa cells where ER depletion indeed caused influx of Ca$^{2+}$ from extracellular solution (Lallet-Daher et al., 2009; Lehen’kyi et al., 2007; Gackière et al., 2006; Abeele et al., 2004; Abeele et al., 2003a; Abeele et al., 2003b; Gutierrez et al., 1999). Furthermore, Lallet-Daher et al. (2009) proposed that activation of an intermediate-conductance Ca$^{2+}$-activated K$^+$ channel (IK$_{\text{Ca}}$, KCa3.1) would hyperpolarize plasma membrane and this change in V_m mediated store-operated Ca$^{2+}$ entry via TRPV6 cation channels in PCa cells. Similarly, depolarizing plasma membrane of PC-3M cells after efflux of Ca$^{2+}$ from ER caused decrease in internal Ca$^{2+}$ level. Therefore, similar to LNCaP, DU145 and PC-3 cells, PC-3M cells are also likely to possess a store-operated Ca$^{2+}$ entry mechanism.

Following inhibition of SERCA, no spontaneous Ca$^{2+}$ oscillations were observed in PC-3M cells. This was probably due to ‘swamping’ of the Ca$^{2+}$ homeostasis resulting from Ca$^{2+}$ release and influx. Consistent with this, the secondary elevated of $[\text{Ca}^{2+}]_i$ was close to the peak reached by the oscillations.

5.4.3.4 Ryanodine receptor

Ca$^{2+}$ signalling works mostly by producing brief changes in intracellular Ca$^{2+}$ levels. These changes in intracellular Ca$^{2+}$ can be mediated by influx of Ca$^{2+}$ through plasma membrane and/or release of Ca$^{2+}$ from internal stores (Roderick and Cook,
Two families of Ca2+ release channels were identified in the primary Ca2+ storing organelle, ER: RyR and IP\textsubscript{3}R. Rayanodine receptor is generally found in excitable cells (Chen et al., 2009). However, expression of RyR was shown in breast and prostate cancer cells (Abdul et al., 2008; Mariot et al., 2000). This agrees with the notion that metastatic cells possess some of the characteristics typical of excitable cells such as neurones (e.g. Onganer et al., 2005). Furthermore, strong correlation between RyR expression and breast cancer grade was reported (Abdul et al., 2008). It was shown that LNCaP cells express functional RyR and the caffeine can mediate Ca2+ efflux from intracellular Ca2+ stores via RyR (Mariot et al., 2000). Accordingly, in the present study, caffeine was used to confirm the presence of functional RyRs in PC-3M cells. Indeed, caffeine (at 10 mM concentrations that would stimulate RyRs) increased [Ca2+]	extsubscript{i} and suppressed Ca2+ oscillations. Conversely, inhibiting RyR with a high concentration of ryanodine reduced both amplitude and frequency of the spontaneous Ca2+ oscillations, without affecting the baseline level. These results suggested (i) that functional RyRs were present in PC-3M cells and (ii) that RyR activity plays a significant role in generation of the spontaneous Ca2+ oscillations.

5.4.4 Possible pathophysiological consequence of Ca2+ oscillations in PCa (PC-3M) cells and future perspectives

As already noted in this chapter, Ca2+ signalling is important for both the physiology and pathophysiology of cells. In particular, since prolonged increases in [Ca2+]	extsubscript{i} would be cytotoxic, Berridge et al. (1998) suggested that intracellular Ca2+ signalling would be more expedient as repetitive brief ‘transients’ (i.e. as “Ca2+ oscillations”) that can be allowed to occur over long time periods. Importantly, Berridge et al.
(1998, 2003) also suggested that cellular information can be encoded in the frequency and/or amplitude of Ca2+ oscillations. Such oscillations can subserve a wide range of cellular functions from fundamental gene expression to proliferation and motility/migration (e.g. Dolmetsch et al., 1998; Ding et al., 2010; Komura and Rakic, 1996). Most such processes are common also to cancer cells and most probably relate to the metastasis. Accordingly, \([\text{Ca}^{2+}]_i\) oscillated in the strongly metastatic PC-3M but not the weakly/non-metastatic LNCaP cells (Figures 5.1A vs 5.2A). It was proposed that information of Ca2+ signal can be encoded in the frequency and/or amplitude of oscillations (Berridge et al., 2003; Berridge et al., 1998). For example, De Koninck and Schulman (1998), showed that amplitude and frequency of \([\text{Ca}^{2+}]_i\) spikes can modulate CaM kinase II activity. Further work is required to relate the amplitude / frequency characteristics of the \([\text{Ca}^{2+}]_i\) oscillations to the different components of the metastatic cascade.

Here, we presented a simple cycling model of \([\text{Ca}^{2+}]_i\) oscillations in PC-3M cells. Whilst the model is well supported by the pharmacological evidence presented, it should be tested further and possibly expanded at least along the lines of the following:

1. At present, the \([\text{Ca}^{2+}]_i\) signal is treated as ‘global’. Higher temporal and spatial resolution would be useful (i) to determine if the proposed spatial compartmentalization of the signalling components indeed exists and (ii) to reveal if \([\text{Ca}^{2+}]_i\) travels intracellular as ‘waves’ (Subramanian et al., 2001; Wei et al., 2009).

2. The possible role of the membrane potential (\(V_m\)) should be elucidated experimentally using voltage-sensitive dyes, such Di-8-ANEPPS (Valverde et al., 2010). Similarly, whether the proposed influx of Na+
indeed occurs can be tested using Na+-sensitive dyes, CoroNa Green or SBFI (Meier et al., 2006).

3. The proposed role of NCX (in forward and reverse modes) can be tested using mode-selective pharmacological blockers (Hobai and O’Rourke, 2004; Laskowski and Medler, 2009).

4. The possible role of other cation channels, such as TRPV6 (Fixemer et al., 2003), should also be investigated. However, exposing the cells to 100 mM KCl consistently elevated the [Ca2+]\textsubscript{i} level. This is not consistent with the role of such a passive mechanism. In turn, this raises the possibility of V_m having effects upon other electrogenic mechanisms. These would be additional to NCX since the KCl treatment was still potently effective under Na+-free conditions when NCX activity would be expected to be impaired.

5. Finally, it is possible that the proposed Na+ influx and/or the Ca2+ itself can activate kinases and these may modulate the [Ca2+]\textsubscript{i} oscillations by phosphorylating the regulatory components. In particular, Na+ can stimulate PKA (Brackenbury and Djamgoz, 2006) and Ca2+ is a substrate for CaM kinase (Colomer and Means, 2007).
Chapter 6

GENERAL DISCUSSION
According to Office for National Statistics (2010), 1 in 4 deaths in the UK were caused by cancer in 2008 and prostate cancer (PCa) is second commonest cause of cancer death in man. Ionic mechanisms, such as voltage-gated sodium channel (VGSC) activity and Ca\(^{2+}\) signalling, were shown to play important role in metastatic behaviour of PCa, as reviewed by Onkal and Djamgoz (2009) and Prevarskaya et al. (2010). Therefore, it was proposed that targeting these mechanisms could be a novel and effective strategy to tackle cancer, including PCa (Onkal and Djamgoz, 2009; Prevarskaya et al., 2010). On the other hand, microenvironmental effects such as O\(_2\) and Ca\(^{2+}\) levels could modulate metastatic cell behaviours (MCBs) in PCa (Alqawi et al., 2007; Watson et al., 2008; Ackerstaff et al., 2007; Liao et al., 2006). Importantly, hypoxia has been detected in cancerous tissue of prostate (Movsas et al., 2000). Therefore, the main aims of this thesis were (i) to study effect of ‘long-term’ (24 h or longer) hypoxia (2 % O\(_2\)) on VGSC expression and possible consequent effect on MCBs in a comparative approach to strongly and weakly metastatic PCa cell lines, Mat-LyLu and AT-2, respectively; (ii) to investigate effects of clinically approved pharmacological VGSC blockers on VGSC expression and Matrigel invasion in Mat-LyLu cells to evaluate their anti-cancer potential; and (iii) to characterise transient changes in intracellular Ca\(^{2+}\) level (“Ca\(^{2+}\) oscillations”) and possible involvement of VGSC in this signalling in strongly metastatic human and rat PCa cells (PC-3M and Mat-LyLu, respectively) and weakly metastatic human PCa LNCaP cells.

6.1 Summary of key findings

The main findings of the studies described in this Thesis are as follows:
1. Hypoxia (2 % O₂) longer than 24 h significantly decreased the number of Mat-LyLu cells while not effecting AT-2 cell number. On the other hand, Nav1.7 and VGSCβ1 subunits (predominant VGSC α- and β- subunits expressed in PCa) mRNA levels increased significantly by long-term hypoxia (2 % O₂, 24 h). However, a small but significant decrease in VGSC α-subunit level was detected in the hypoxic Mat-LyLu cells; VGSCβ1 protein level was not affected. Similar hypoxia had no effect on lateral motility and Matrigel invasion of Mat-LyLu cells but transverse migration was increased by in a VGSC dependent manner.

2. At micromolar concentration, clinically used pharmacological VGSC blockers (ranolazine, riluzole, procaine and lidocaine) (i) reduced Nav1.7 mRNA expression, (ii) decreased VGSCα protein level and (iii) decreased Matrigel invasion of Mat-LyLu cells under both normoxia (21 % O₂, 24 h) and hypoxia (2 % O₂, 24 h).

3. Spontaneous transient changes in intracellular calcium activity ([Ca²⁺]), - “Ca²⁺ oscillations” - occurred in ~25 % of PC-3M cells; no such activity was detectable in LNCaP and Mat-LyLu cells. Ranolazine and TTX modulated both oscillation frequency and amplitude in PC-3M cells. Both extracellular and endoplasmic reticulum (ER) Ca²⁺ played a significant role in the oscillation process. Ryanodine receptor (RyR) was also involved in the Ca²⁺ oscillations.
6.2 Hypoxic regulation of VGSC expression and MCB in PCa

Tumour microenvironment plays important role in MCB of PCa cells and it was proposed that cancerous cells would not be able to acquire metastatic phenotype by only genetic alteration without the impact of microenvironmental factors (e.g. Chung et al., 2005). One of the distinct characteristic of the microenvironment in PCa is decreased tissue O$_2$ level, ~1.5 % vs. ~4 %, in cancerous and normal tissue, respectively (Movsas et al., 2000). In addition, androgen-deprivation therapy was proposed to cause tissue hypoxia (Rudolfsson and Bergh, 2009). Accordingly, changes in MCB were detected in hypoxic PCa (Alqawi et al., 2007; Watson et al., 2008; Ackerstaff et al., 2007). VGSC expression and function were correlated earlier with metastatic potential of PCa (e.g. Grimes et al., 1995; Laniado et al., 1997; Diss et al., 2005). In a different area of research, it was shown that hypoxia in neurons and cardiac cells increased the persistent sodium current of VGSC, and, therefore, could increase intracellular Na$^+$ concentration and thus lead to intracellular Ca$^{2+}$ overload (Hammarström and Gage, 1998; Ju et al., 1996; Wang et al., 2007). Increased intracellular Na$^+$ was also shown to increase Nav1.7 mRNA and plasma membrane (PM) trafficking of VGSC α-subunit while having no effect on total protein level in Mat-LyLu cells; these effects were largely mediated by the adenylate cyclase (AC) / protein kinase A (PKA) pathway (Brackenbury and Djamgoz, 2006). The increased Nav1.7 mRNA expression in Mat-LyLu cells under hypoxic conditions shown in the present study is consistent with the earlier work (Brackenbury and Djamgoz, 2006). However, decreased VGSCα protein level in PM was detected in hypoxic Mat-LyLu cells. Similarly, Préze-Pinzón et al. (1992) showed that reduced O$_2$ level decreased VGSC α-subunit protein expression in turtle brain and O’Reilly et al. (1997) proposed that reduced O$_2$ level could cause a decrease in VGSC expression in
neurones, as a part of a process to conserve energy during metabolic stress. Consequently, the metabolic phenotypes of PCa cells were shown to be effected by hypoxic stress (Higgins et al., 2009). In addition, mRNA and protein could be differentially regulated (e.g. Orphanides and Reinberg, 2002). On the other hand, Onkal (2010) showed that peak current density of VGSC in Mat-LyLu cells increased significantly in hypoxic (2 % O₂, 24 h). This would imply that VGSC could be regulated post-translationally, independently of protein expression. Thus, it would be appear that VGSC expression in Mat-LyLu cells can be regulated independently, at least partially, at a hierarchy of levels (from transcription to post-translation).

Increased VGSC activity was shown to enhance lateral motility, transverse migration and Matrigel invasion of Mat-LyLu cells (Fraser et al., 2003; Brackenbury and Djamgoz, 2006; Grimes et al., 1995). Accordingly, in the present study, transverse migration of Mat-LyLu cells increased with hypoxia (2 % O₂, 24 h) and this effect was VGSC dependent. However, the hypoxia-mediated increased VGSC activity did not cause any effect on lateral motility and Matrigel invasion. These observations suggest that, under the hypoxic conditions induced, the effect on MCBs was specific to transverse migration, paralleling intra/extravasation, which has been suggested to be one of the critical components of the metastatic cascade (Wyckoff et al., 2000). Importantly, TTX decreased both normoxic and hypoxic Mat-LyLu cell invasiveness equally, supporting the proposed role of VGSC in invasion (Grimes et al., 1995; Laniado et al., 1997; Smith et al., 1998; Bennett et al., 2004; Nakajima et al., 2009). On the other hand, the hypoxia-mediated increase in VGSC activity did not further increase the invasiveness of Mat-LyLu cells probably because VGSC was already working maximally under normoxic condition, as suggested earlier.
(Brackenbury and Djamgoz, 2006). In addition, Gillet et al. (2009) showed that VGSC activity leads to intracellular alkalization and perimembrane acidification. In same study, they showed that VGSC activity dependent increase in invasiveness of strongly metastatic human breast cancer (BCa) MDA-MB-231 cells was caused by pH-dependent activation of cysteine cathepsins, which play crucial role in BCa cell invasion (Gillet et al., 2009). Since, hypoxia was shown to be involved in changes in lactic acid production (Higgins et al., 2009), the resulting acidification of intracellular pH could be one reason for not detecting VGSC activity dependent increase in invasion of hypoxic Mat-LyLu cells. Similar to the results presented here, Alqawi et al. (2007) reported that 5 h hypoxia (1 % O₂) had no affect on Mat-LyLu cells invasion. On the other hand, they showed that after 3 weeks of hypoxia (1 % O₂) only 5 % of Mat-LyLu cells survived and after 8 weeks (1 % O₂), the surviving cells were found to be significantly more invasive than normoxic cells. Therefore, it was proposed that hypoxia acts as a selective pressure on cancerous cells and selects for highly invasive and apoptosis-resistant phenotype (Alqawi et al., 2007). In addition, these results, taken together, clearly show that different periods of hypoxia can have different affects on PCa cells.

6.3 \(\text{Ca}^{2+} \) signalling downstream to VGSC activity possibly leading to MCB regulation

Like hypoxia, other microenvironmental factors can also play important role in cancer development and progression. In particular, the high \(\text{Ca}^{2+} \) concentration in bone environment was proposed to facilitate metastasis of PCa to bone (Liado et al., 2006). Interestingly, Mat-LyLu cells, which spread to lymph node and lung but not to bone, was shown to be not responsive to extracellular \(\text{Ca}^{2+} \) (Ding et al., 2008).
Accordingly, no [Ca\(^{2+}\)] oscillations were detected in the present study. This result alone may indicate that Mat-LyLu cells are only a limited model of metastatic PCa. Also, LnCaP cells, which are weakly (and non-skeletal) metastatic, did not show any spontaneous [Ca\(^{2+}\)] activity. On the other hand, 25% of PC-3M cells, which are skeletal metastatic, had spontaneous Ca\(^{2+}\) oscillations. These Ca\(^{2+}\) oscillations were dependent on extracellular Ca\(^{2+}\). Accordingly, the parental cell line of PC-3M, PC3, which is also skeletal metastatic, was shown to be more adhesive when extracellular Ca\(^{2+}\) concentration was elevated (Liado et al., 2006). In addition, increase in extracellular Ca\(^{2+}\) level was reported to induce increase in proliferation of PC3 and C4-2B (a metastatic variant of LnCaP) cells but not the parent LNCaP cell line (Liado et al., 2006). These results would indicate that Ca\(^{2+}\) signalling is important for metastasis of human PCa cells to bone.

It was proposed earlier that Ca\(^{2+}\) signalling could be downstream to VGSC activity leading to MCB, including galvanotaxis (Mycielska and Djamgoz 2004; Mycielska and Djamgoz 2003; Onkal and Djamgoz, 2009). Therefore, having studied this hypothesis, we found that VGSC activity was indeed involved in modulation of Ca\(^{2+}\) oscillations. Accordingly, Na\(^{+}\) entry via VGSC was proposed to mediate increase in [Ca\(^{2+}\)], by slowing or reversing Na\(^{+}\)/Ca\(^{2+}\) exchanger (NCX) (Poburko et al., 2007; Eder et al., 2005; Rosker et al., 2004; Arnon et al., 2000; Blaustein and Lederer, 1999; Matsuka and Hilgemann; Miura and Kimura, 1989). In addition, this local increase in [Ca\(^{2+}\)] could be amplified by activation of ER Ca\(^{2+}\) release channels including ryanodine receptor (Berridge et al., 2003). In the present study, we showed that disruption of ryanodine receptor or depletion of ER Ca\(^{2+}\) stores had negative effect on Ca\(^{2+}\) signalling. Therefore, our results taken together with the current
literature further support the notion that Ca\(^{2+}\) signalling is downstream to VGSC activity and has important consequences for metastasis.

6.4 Pharmacological VGSC inhibition and clinical implications.

As described above, tumour microenvironment, in addition to genetic modifications, can play a key role in the acquisition of metastatic phenotype (Chung et al., 2005). Indeed, reduced O\(_2\) level is one of the characteristics of cancerous tissue (Vaupel et al., 2007; Harrison and Blackwell). In addition, Movsas et al. (2000) reported a positive correlation between hypoxia and clinical stage of cancer and patient age in PCa patients. Therefore, non invasive imaging of tissue O\(_2\) levels was proposed as a promising tool for cancer diagnosis. Long-term hypoxia, could lead to cell death in Mat-LyLu cells, as shown by Alqawi et al. (2007). Accordingly, androgen deprivation therapy was shown to cause prostate tissue hypoxia leading to cell death due to changes in O\(_2\) supply and demand (Rudolfsson and Bergh, 2009). However, this hypoxic microenvironment would select for apoptosis-resistant cells and increased metastatic ability which could be a cause of the relapse and re-emergence of metastasis in PCa undergoing prolonged androgen downregulation (Rudolfsson and Bergh, 2009; Koochekpour, 2010). Since the aim of research is to understand and establish novel therapeutically strategies for cancer and metastatic disease, in vitro studies should be carried out under microenvironmental conditions similar to those found in vivo.

Because VGSC activity was shown to increase MCBs, it was proposed as a novel and promising target for cancer therapy (Onkal and Djamgoz, 2009). However, when pharmacological VGSC blocker used at a concentration necessary for complete block of both transient and persistent currents of VGSC (I\(_{NaP}\) and I\(_{NaT}\)), they would
be lethal, e.g. by stopping heartbeat. However, at lower concentrations, these pharmacological blockers were shown to preferentially block I_{NaP} (Chen et al., 2009; Samudio et al., 2010; Rajamani et al., 2008; Antzelevitch et al., 2004; Weiss et al., 2010; Le et al., 2010; Parihar et al., 2003; Doble, 1996; Zona et al., 1998; Hammarström and Gage, 1998). Specifically, ranolazine and riluzole were proposed to mediate anti-anginal and neuroprotective effects by blocking I_{NaP} (Antzelevitch et al., 2004; Fredj et al., 2006; Urbani and Belluzi, 2000; Zona et al., 1998). In addition, low doses of lidocaine were shown to preferentially block I_{NaP} (Hammarström and Gage, 1998). Therefore, here, we used clinically approved pharmacological VGSC blockers - ranolazine, riluzole, procaine and lidocaine - at clinically safe micromolar doses, to study their possible effects on VGSC expression and Matigel invasion of Mat-LyLu cells. We concluded that these agents reduced invasiveness of PCa cells and thus could be used as anti-cancer drug.

6.5 Future perspective.

There are still many aspects of PCa that need to be elucidated, as follows:

I. We showed here that hypoxia increased mRNA levels of VGSC and transverse migration (by VGSC-dependent mechanism). Brackenbury and Djamgoz (2006), proposed that VGSC activity increased VGSC mRNA expression and migration via the AC/PKA. Therefore, involvement of this pathway in hypoxia induced increase in migration could be studied.

II. Previously, the hypoxia-induced increase in VGSC peak current density was reported in Mat-LyLu cells (Onkal, 2010). In addition, enhancement I_{NaP} was reported in hypoxic cardiac and neuronal cells (Hammarström and Gage, 1998; Ju and Gage, 1996). However, there is no electrophysiological
evidence on hypoxic effect on I_{NaP} in our model cells. Therefore, I_{NaP} activity can be further examined in both normoxia and hypoxia using electrophysiological techniques.

III. I_{NaP} and I_{NaT} components of VGSCs in various cell types were shown to have different sensitivity to ranolazine, riluzole, procaine and lidocaine, depending on concentration (Chen et al., 2009; Samudio et al., 2010; Rajamani et al., 2008; Antzelevitch et al., 2004; Weiss et al., 2010; Le et al., 2010; Parihar et al., 2003; Doble, 1996; Zona et al., 1998; Hammarström and Gage, 1998). However, differential effect of these drugs on I_{NaP} and I_{NaT} was not studied in Mat-LyLu cells. Therefore, dose-dependent effects of these drugs on I_{NaP} and I_{NaT} in Mat-LyLu cells could be examined by electrophysiology.

IV. *In vivo* effects of these pharmacological VGSC blockers on PCa metastasis can be studied using appropriate animal models. Such models could be the Copenhagen rat (Lamb and Zhang, 2005; Blouin et al., 2005) or the TRAMP transgenic mouse model (Gingrich et al., 1996; Kaplan-Lefko et al., 2003). Such studies could further validate the anti-cancer potential of these drugs and assess their safety.

V. In the present study, we showed that 25 % of PCa (PC-3M) cells showed spontaneous Ca^{2+} oscillations. Such Ca^{2+} signalling was shown to play important role in many cellular processes including invasion, migration, motility, adhesion, galvanotaxis, and secretion (Amuthan et al., 2002; Wei et al., 2009; Huang et al., 2004; Komuro and Rakic, 1996; Giannone et al., 2002; Liao et al., 2006; Tse et al., 1993; Giannone et al., 2002; Liao et al., 2006; Mycielska and Djamgoz 2003; Mycielska and Djamgoz 2004).
Therefore, the role of the oscillations in PCa can be determined by investigating differences in MCBs of oscillating vs. non-oscillating cells.

VI. of VGSC activity in Ca\(^{2+}\) signalling could be further examined by (i) measurement of changes in intracellular Na\(^+\) concentrations, (ii) examining changes in membrane potentials and (iii) observing changes in [Ca\(^{2+}\)], following increase in intracellular Na\(^+\).

VII. Other proposed component of this Ca\(^{2+}\) oscillation signalling including NCX and Ca\(^{2+}\)-activated K\(^+\) channels could be further studied by (i) using selective mode dependent pharmacological inhibitors and (ii) colocalization of VGSC and NCX (e.g. in caveolae).
References

different activation modes and molecular origin in LNCaP human prostate

Abriel H, Kamynina E, Horisberger JD & Staub O. (2000). Regulation of the cardiac

Ackerstaff E, Artemov D, Gillies RJ, Bhujwalla ZM. (2007). Hypoxia and the
presence of human vascular endothelial cells affect prostate cancer cell

Adachi K, Toyota M, Sasaki Y, Yamashita T, Ishida S, Ohe-Toyota M, Maruyama

induces apoptotic cell death in human prostate cancer cells via endoplasmic

Akopian AN, Okuse K, Souslova V, England S, Ogata N & Wood JN. (1999). Trans-
splicing of a voltage-gated sodium channel is regulated by nerve growth factor.

sodium channel expression and potentiation of human breast cancer metastasis.

Gastaldi M, Bartolomei F, Massacrier A, Planells R, Robaglia-Schlupp A, Cau P. (1997). Increase in mRNAs encoding neonatal II and III sodium channel alpha-

Isom LL. (2002). The role of sodium channels in cell adhesion. Front Biosci 7, 12-23.

Publications

Refereed/full/archival papers

Mazurek MP, Prasad PD, Gopal E, Fraser SP, Bolt L, Rizaner N, Palmer CP, Foster CS, Palmieri F, Ganapathy V, Stühmer W, Djamgoz MB, Mycielska ME.

Manuscripts in preparation

Appendix 1 Hypoxia (2 % O$_2$, 24 h) increased peak Na$^+$ current density in Mat-LyLu cells.

(A) Typical whole-cell VGSC current in (i) normoxic (~21 % O$_2$, 24h) and (ii) hypoxic (2 % O$_2$, 24h) Mat-LyLu cells, elicited by 60 ms pulses to between -80 mV and +45 mV from a holding potential of -100 mV; interpulse duration was 2 s.

(B) Bar diagram showing average peak current density in normoxic and hypoxic Mat-LyLu cells. Inset: bar diagram showing whole-cell capacitance in normoxic and hypoxic Mat-LyLu cells.

(C) Mean I-V relationship for normoxic and hypoxic Mat-LyLu cells. Current density was larger in hypoxic Mat-LyLu cells in the voltage range -15 to +15 mV. Un-paired student t-test was used for statistic analysis. Data are presented as means ± SEM (n = 21 - 25). Significance: (**) p < 0.01; (X) p > 0.05. (Modified from Onkal, 2010)