Irreducible subgroups of algebraic groups

Martin W. Liebeck
Department of Mathematics
Imperial College
London SW7 2BZ
England

Donna M. Testerman
Department of Mathematics
University of Lausanne
Switzerland

1 Introduction

Let G be a semisimple algebraic group over an algebraically closed field K of characteristic $p \geq 0$. Following Serre, we define a subgroup Γ of G to be G-irreducible if Γ is closed, and lies in no proper parabolic subgroup of G. When $G = SL(V)$, this definition coincides with the usual notion of irreducibility on V. The definition follows the philosophy, developed over the years by Serre, Tits and others, of generalizing standard notions of representation theory (morphisms $\Gamma \rightarrow SL(V)$) to situations where the target group is an arbitrary semisimple algebraic group. For an exposition, see for example Part II of the lecture notes [8].

In this paper we study the collection of connected G-irreducible subgroups of semisimple algebraic groups G. Our first theorem is a finiteness result, showing that connected G-irreducible subgroups are “nearly maximal”.

Theorem 1 Let G be a connected semisimple algebraic group, and let A be a connected G-irreducible subgroup of G. Then A is contained in only finitely many subgroups of G.

Since connected G-irreducible subgroups are necessarily semisimple (see Lemma 2.1), the smallest possibility for such a subgroup is A_1. The next result shows that G-irreducible A_1’s usually exist. In large characteristic this is hardly surprising, as maximal A_1’s usually exist; but in low characteristic maximal A_1’s do not exist (see [4]), and the result provides a supply of “nearly maximal” A_1’s.

Theorem 2 Let G be a simple algebraic group over K. If $G = A_n$, assume that $p > n$ or $p = 0$. Then G has a G-irreducible subgroup of type A_1.

In the excluded case $G = A_n$, $0 < p \leq n$, it is easy to see that an irreducible subgroup A_1 exists if and only if all prime factors of $n + 1$ are at most p.

The second author acknowledges the support of the Swiss National Science Foundation Grant MHV 21-65839
In a subsequent paper [6] we shall use the G-irreducible A_1's constructed in the proof of Theorem 2 to exhibit examples of epimorphic subgroups of minimal dimension in simple algebraic groups, as defined in [2]. (A closed subgroup H of the connected algebraic group G is said to be epimorphic if any morphism of G into an algebraic group is determined by its restriction to H. Theorem 1 of [2] has a number of equivalent formulations of this definition: for example, H is epimorphic if and only if, whenever V is a rational G-module and $V \downarrow H = X \oplus Y$, then X, Y are G-invariant.)

Our final theorem concerns the description of conjugacy classes of connected G-irreducible subgroups of semisimple algebraic groups G. When G is simple, it has only finitely many classes of maximal connected subgroups (see [4, Corollary 3]). This is in general not the case for connected G-irreducible subgroups (see for example Corollary 4.5 below). However, Theorem 3 below shows that there is a finite collection of conjugacy classes of closed connected subgroups such that every G-irreducible subgroup is embedded in a specified way in a member of one of these classes. For the precise statement we require the following definition.

Definition Let X, Y be connected linear algebraic groups over K.

(i) Suppose X is simple. We say X is a twisted diagonal subgroup of Y if $Y = Y_1 \ldots Y_t$, a commuting product of simple groups Y_i of the same type as X, and each projection $X \to Y_i/Z(Y_i)$ is nontrivial and involves a different Frobenius twist.

(ii) More generally, if X is semisimple, say $X = X_1 \ldots X_r$, with each X_i simple, we say X is a twisted diagonal subgroup of Y if $Y = Z_1 \ldots Z_r$, a commuting product of semisimple subgroups Z_i, and, writing $\bar{X} = X/Z(X) = \bar{X}_1 \ldots \bar{X}_r$ and $\bar{Y} = Y/Z(Y) = \bar{Z}_1 \ldots \bar{Z}_r$, each \bar{X}_i is a twisted diagonal subgroup of \bar{Z}_i.

Theorem 3 Let G be a connected semisimple algebraic group of rank l. Then there is a finite set C of conjugacy classes of connected semisimple subgroups of G, of size depending only on l, with the following property. If X is any connected G-irreducible subgroup of G, then there is a subgroup $Y \in \bigcup C$ such that X is a twisted diagonal subgroup of Y.

The above results concern connected G-irreducible subgroups. Examples of non-connected G-irreducible subgroups X such that X^0 is not G-irreducible are easy to come by: for instance, $X = N_G(T)$, the normalizer of a maximal torus T is such an example, and there are many others for which $C_G(X^0)$ contains a nontrivial torus. However we have not found any examples for which $C_G(X^0)$ contains no nontrivial torus. It may be the case that if X is a non-connected G-irreducible subgroup such that X^0 is not G-irreducible, then $C_G(X^0)$ necessarily contains a nontrivial torus; this is easily seen to be true when $G = A_n$.

Notation For G a simple algebraic group over K and λ a dominant weight, we denote by $V_G(\lambda)$ (or just λ) the rational irreducible KG-module of high weight λ. When $p > 0$, the irreducible module λ twisted by a p^r-power field morphism of G is denoted by $\lambda^{(p^r)}$. Finally, if V_1, \ldots, V_k are X-modules then $V_1/\ldots/V_k$ denotes a G-module having the same composition factors as $V_1 \oplus \ldots \oplus V_k$.

2
2 Preliminaries

As above, let G be a semisimple connected algebraic group over the algebraically closed field K of characteristic p. We begin with two elementary results concerning G-irreducible subgroups.

Lemma 2.1 If X is a connected G-irreducible subgroup of G, then X is semisimple, and $C_G(X)$ is finite.

Proof Suppose $C = C_G(X)^0 \neq 1$. If C contains a nontrivial torus T, then $X \leq C_G(T)$, which lies in a parabolic; otherwise, C is unipotent, so $X \leq N_G(C)$ which lies in a parabolic by [3]. In either case we have a contradiction, and so $C_G(X)^0 = 1$, giving the result.

Lemma 2.2 Suppose G is classical, with natural module $V = V_G(\lambda_1)$. Let X be a semisimple connected closed subgroup of G. If X is G-irreducible then one of the following holds:

(i) $G = A_n$ and X is irreducible on V;

(ii) $G = B_n, C_n$ or D_n and $V \downarrow X = V_1 \perp \ldots \perp V_k$ with the V_i all non-degenerate, irreducible and inequivalent as X-modules;

(iii) $G = D_n$, $p = 2$, X fixes a nonsingular vector $v \in V$, and X is a G_v-irreducible subgroup of $G_v = B_{n-1}$.

Proof Part (i) is clear, so assume $G = Sp(V)$ or $SO(V)$. Let W be a minimal nonzero X-invariant subspace of V. Then W is either non-degenerate or totally isotropic. In the first case induction gives a non-degenerate decomposition as in (ii); note that no two of the V_i are equivalent as X-modules, since otherwise, if say $V_1 \downarrow X \cong V_2 \downarrow X$ via an isometry $\phi : V_1 \to V_2$, then X fixes the diagonal totally singular subspace $\{v + i\phi(v) : v \in V_1\}$ of $V_1 + V_2$ (where $i^2 = -1$), hence lies in a parabolic. Finally, if W is totally isotropic it can have no nonzero singular vectors (as X does not lie in a parabolic), so we must have $G = SO(V)$ with $p = 2$ and $W = \langle v \rangle$ nonsingular, yielding (iii).

The next result is fairly elementary for classical groups G, but rests on the full weight of the memoirs [7, 4] for exceptional groups.

Proposition 2.3 ([4, Corollary 3]) If G is a simple algebraic group then G has only finitely many conjugacy classes of maximal closed subgroups of positive dimension. The number of conjugacy classes is bounded in terms of the rank of G.

We shall also require a description of the maximal closed connected subgroups of semisimple algebraic groups. Let G be a semisimple algebraic group, and write $G = G_1 \cdots G_r$, a commuting product of simple factors G_i. Define $\mathcal{M}(G)$ to be the following set of connected subgroups of G:

\[\mathcal{M}(G) = \{ \text{closed connected subgroups of } G \} \]
Lemma 2.4 The collection $\mathcal{M}(G)$ comprises all the maximal closed connected subgroups of the semisimple group G.

Proof It is clear that the members of $\mathcal{M}(G)$ are maximal closed connected subgroups of G. Conversely, suppose that M is a maximal closed connected subgroup of G. Factoring out $Z(G)$, we may assume that $Z(G) = 1$. Let π_i be the projection map $M \to G_i$. If some π_i is not surjective, then M lies in $(\prod_{j \neq i} G_j) \cdot M_i$, which is contained in a member of $\mathcal{M}(G)$ under (1) of the definition above. Otherwise, all π_i are surjective and we easily see that M lies in a member of $\mathcal{M}(G)$ under (2) above.

By Proposition 2.3, there are only finitely many G-classes of subgroups in $\mathcal{M}(G)$ under (1) in the definition above. If the collection of subgroups under (2) is non-empty, then it consists of finitely many G-classes if $p = 0$, and infinitely many classes if $p > 0$, since in this case we can adjust the morphism ϕ by an arbitrary field twist.

Write $\mathcal{M}_1(G)$ for the collection of subgroups of G under (1), so that $\mathcal{M}_1(G)$ consists of finitely many G-classes of subgroups.

If H is a proper connected G-irreducible subgroup of G, then there is a sequence of subgroups $H = H_0 < H_1 < \cdots < H_s = G$ such that for each i, H_i is semisimple and $H_i \in \mathcal{M}(H_{i+1})$. Write $\mathcal{M}_0(G)$ for the collection of G-irreducible subgroups H for which there is such a sequence with $H_i \in \mathcal{M}_1(H_{i+1})$ for all i. By Proposition 2.3 again, there are only finitely many G-classes of subgroups in $\mathcal{M}_0(G)$.

3 Proof of Theorem 1

Let G be a connected semisimple algebraic group, and let A be a connected G-irreducible subgroup of G. We prove that A is contained in only finitely many subgroups of G.

The proof proceeds by induction on $\dim G$. The base case $\dim G = 3$ is obvious. Clearly we may assume without loss that $Z(G) = 1$. Write $G = G_1 \cdots G_r$, a direct product of simple groups G_i, and let $\pi_i : G \to G_i$ be the i^{th} projection map.

Lemma 3.1 If H is a subgroup of G containing A, then H is closed and H^0 is semisimple.
Proof Observe that $A^H = \langle A^h : h \in H \rangle$ is closed and connected, and hence $N_G(A^H)$ is also closed. This normalizer contains H, hence contains \bar{H}. Thus $A^H \triangleleft \bar{H}^0$. By Lemma 2.1, \bar{H}^0 is semisimple and $C_A(\bar{H})^0 = 1$. It follows that $A^H = \bar{H}^0$. Thus $\bar{H}^0 \leq H \leq \bar{H}$. This means that H is a union of finitely many cosets of \bar{H}^0, hence is closed, as required.

In view of this lemma, it suffices to show that the number of closed connected overgroups of A in G is finite. Suppose this is false, so that A is contained in infinitely many connected subgroups of G. We shall obtain a contradiction in a series of lemmas.

By Lemma 2.1, $C_G(A)$ and $N_G(A)/A$ are finite. Recall the definitions in Section 2 of the collections $\mathcal{M}(G)$ and $\mathcal{M}_1(G)$ of maximal connected subgroups of G.

Lemma 3.2 There exists $M \in \mathcal{M}(G)$ such that A lies in infinitely many G-conjugates of M.

Proof First, if $A \leq M \in \mathcal{M}(G)$, then M is semisimple by Lemma 2.1, and by induction A has only finitely many overgroups in M. It follows that A lies in infinitely many members of $\mathcal{M}(G)$.

We next claim that the overgroups of A in $\mathcal{M}(G)$ represent only finitely many G-conjugacy classes of subgroups. For if not, there must exist j,l such that A lies in subgroups $G_{j,l}(\phi)$ for morphisms ϕ involving infinitely many different field twists. Since the high weights of composition factors of $L(G_1) \downarrow A$ are ϕ-twists of those of $L(G_j) \downarrow A$ this implies that the highest weight of A on $L(G)$ is arbitrarily large, a contradiction. This proves the claim, and the lemma follows.

From now on, let M be the subgroup provided by Lemma 3.2.

Lemma 3.3 M contains infinitely many G-conjugates of A, no two of which are M-conjugate.

Proof By the previous lemma, A lies in infinitely many conjugates of M; say A lies in distinct conjugates M^g for $g \in C$, where C is an infinite subset of G. Let $g, h \in C$, so A^g and A^h lie in M; if these subgroups are M-conjugate, say $A^g = A^{h^{-1}m}$ with $m \in M$, then $h^{-1}mg \in N_G(A)$. Letting n_1, \ldots, n_t be coset representatives for A in $N_G(A)$, we have $h^{-1}mg = an_i$ for some $a \in A$ and some i. Thus $M^g = M^{ban_i}$, so as $a \in M^h$, we have $M^g = M^{ban_i}$.

To summarise: fix $g \in C$; then if $h \in C$ is such that $A^{g^{-1}}$ and $A^{h^{-1}}$ are M-conjugate, we have $M^h = M^{g^{n_i-1}}$ for some i, so there are only finitely many such h. The lemma follows.

Lemma 3.4 We have $M \in \mathcal{M}_1(G)$.

Proof Suppose not. Then there exist distinct $j, k \in \{1, \ldots, r\}$ and a surjective morphism $\phi : G_j \to G_k$, such that $M = G_{j,k}(\phi) = G_0 \cdot D_{j,k}$,
where \(G_0 = \prod_{i \neq j,k} G_i \) and \(D_{j,k} = \{ g \cdot \phi(g) : g \in G_j \} \).

We may take it that \(A \leq M \), so that each element of \(A \) is of the form \(a = a_0 \cdot a_j \cdot \phi(a_j), \) where \(a_0 \in G_0, a_j \in G_j \). Since \(M \) contains infinitely many \(G \)-conjugates of \(A \), no two of them \(M \)-conjugate, it follows that \(M \) contains infinitely many conjugates of the form \(A^{g_k} (g_k \in G_k) \). If \(a \in A \) is as above, then \(a^{g_k} = a_0 \cdot a_j \cdot \phi(a_j)^{g_k} \), so it follows that \(\phi(a_j)^{g_k} = \phi(a_j) \) for all \(a_j \in \pi_j(A) \). But this means that \(g_k \in C_{G_k}(\pi_k(A)) \), which is finite, a contradiction.

Lemma 3.5 There exists \(M_1 \in \mathcal{M}_1(M) \) such that \(M_1 \) contains infinitely many \(G \)-conjugates of \(A \), no two of which are \(M \)-conjugate.

Proof By Lemma 3.3, \(M \) contains infinitely many \(G \)-conjugates of \(A \), no two of which are \(M \)-conjugate. Call these conjugates \(A^{g_{\lambda}} (\lambda \in \Lambda) \) where \(\Lambda \) is an infinite index set. For each \(\lambda \in \Lambda \), there exists \(M_{\lambda} \in \mathcal{M}(M) \) containing \(A^{g_{\lambda}} \). Then infinitely many \(M_{\lambda} \) are in \(\mathcal{M}_1(M) \), since otherwise there exist \(j, k \) such that \(A^{g_{\lambda}} \leq M_{j,k}(\phi) \) for morphisms \(\phi \) involving infinitely many different field twists, which is impossible as in the proof of Lemma 3.2.

Since there are only finitely many \(M \)-classes of subgroups in \(\mathcal{M}_1(M) \), infinitely many of the \(M_{\lambda} \) lie in a single \(M \)-class of subgroups, with representative say \(M_1 \). Then \(M_1 \) contains infinitely many \(G \)-conjugates \(A^{g_{\lambda,m_{\lambda}}} (m_{\lambda} \in M) \), no two of which are \(M \)-conjugate.

Recall the definition of \(\mathcal{M}_0(G) \) from Section 2. Choose \(N \in \mathcal{M}_0(G) \), minimal subject to containing infinitely many \(G \)-conjugates of \(A \), no two of which are \(N \)-conjugate.

Lemma 3.6 There are infinitely many distinct \(G \)-conjugates of \(A \) lying in \(\mathcal{M}(N) \), no two of which are \(N \)-conjugate.

Proof Say \(A^{g_{\lambda}} (\lambda \in \Lambda) \) are infinitely many conjugates of \(A \) lying in \(N \), no two of them \(N \)-conjugate. If the conclusion of the lemma is false, then for infinitely many \(\lambda \), there is a subgroup \(N_{\lambda} \in \mathcal{M}(N) \) such that \(A^{g_{\lambda}} \leq N_{\lambda} \). As in the previous proof, infinitely many of these \(N_{\lambda} \) are in \(\mathcal{M}_1(N) \), of which there are only finitely many \(N \)-classes, so infinitely many \(N_{\lambda} \) are \(N \)-conjugate to some \(N_1 \in \mathcal{M}_1(N) \). But then \(N_1 \) contains infinitely many \(G \)-conjugates of \(A \) (namely \(A^{g_{\lambda,n_{\lambda}}} \) for some \(n_{\lambda} \in N \)), no two of which are \(N \)-conjugate, contradicting the minimal choice of \(N \).

At this point we can obtain a contradiction. Write \(N = N_1 \cdots N_k \), a commuting product of simple factors \(N_i \). By Lemma 3.6, there are infinitely many distinct \(G \)-conjugates \(A^{g_{\lambda}} \) lying in \(\mathcal{M}(N) \), no two of which are \(N \)-conjugate. As \(\mathcal{M}_1(N) \) consists of only finitely many \(N \)-classes of subgroups, infinitely many of the \(A^{g_{\lambda}} \) are in \(\mathcal{M}(N) \setminus \mathcal{M}_1(N) \). Hence there exist \(j, l \) such that infinitely many \(A^{g_{\lambda}} \) are of the form \(N_{j,l}(\phi_{\lambda}) \), where \(\phi_{\lambda} \) is a surjective morphism \(N_j \to N_l \), and no two of these subgroups are \(N \)-conjugate. Then the morphisms \(\phi_{\lambda} \) must involve
in a subgroup SO_1 group (Assume subgroup A of each conjugate A^g) is arbitrarily large.

This completes the proof of Theorem 1.

4 Proof of Theorem 2

Let G be a simple algebraic group over K in characteristic p, as in Theorem 2 (so that if $G = A_n$ then $p > n$ or $p = 0$). We aim to construct a G-irreducible subgroup $A \cong A_1$.

Lemma 4.1 The conclusion of Theorem 2 holds if $p = 0$.

Proof Suppose $p = 0$. First consider the case where G is classical. The irreducible representation of A_1 of high weight r embeds A_1 in Sp_{r+1} if r is odd, and in SO_{r+1} if r is even. Hence SL_n, Sp_{2n} and SO_{2n+1} all have irreducible subgroups A_1. As for the remaining case $G = SO_{2n}$, an A_1 embedded irreducibly in a subgroup SO_{2n-1} is G-irreducible.

When G is of exceptional type, but not E_6, it has a maximal subgroup A_1 (see [7]), and this is obviously G-irreducible; and for $G = E_6$, a maximal A_1 in a subgroup F_4 is G-irreducible (its connected centralizer in G is trivial, so it cannot lie in any Levi subgroup).

In view of Lemma 4.1, we assume from now on that $p > 0$.

Lemma 4.2 The conclusion of Theorem 2 holds if G is classical.

Proof Assume G is classical. If $G = A_n = SL_{n+1}$ then $p > n$ by hypothesis, so G has a subgroup A_1 acting irreducibly on the natural $n + 1$-dimensional G-module (with high weight n); clearly this subgroup does not lie in a parabolic of G.

Next, if $G = C_n = Sp_{2n}$, then G has a subgroup $(Sp_2)^n = (A_1)^n$, and we choose a subgroup $A \cong A_1$ of this via the embedding $1, 1^{(p)}, 1^{(2)}, \ldots, 1^{(p^n-1)}$; then A fixes no nonzero totally isotropic subspace of the natural module, hence lies in no parabolic of G. Similarly, if $G = D_{2n} = SO_{4n}$, then G has a subgroup $(SO_4)^n = (A_1)^{2n}$, and we choose $A \cong A_1$ in this via the embedding $1, 1^{(p)}, \ldots, 1^{(2p^n-1)}$.

Now let $G = D_{2n+1} = SO_{4n+2}$. Then G has a subgroup $SO_5 \times (SO_4)^{n-1} \cong A_3 \times (A_1)^{2(n-1)}$, which contains a subgroup $(A_1)^{2n}$ lying in no parabolic of G; choose $A \cong A_1$ in this $(A_1)^{2n}$ via the embedding $1, 1^{(p)}, \ldots, 1^{(2p^n-1)}$ again.

Finally, for $G = B_{2n} = SO_{4n+1}$, choose $A \cong A_1$ in a subgroup $(SO_4)^n = (A_1)^{2n}$ via the above embedding, while for $G = B_{2n+1} = SO_{4n+3}$ choose A in a subgroup $SO_3 \times (SO_4)^n \cong (A_1)^{2n+1}$. This completes the proof.

7
Assume from now on that \(G \) is of exceptional type. We choose our subgroup \(A \cong A_1 \) as follows. For \(G = E_8, E_7, F_4 \) or \(G_2 \), there is a maximal rank subgroup \((A_1)^l\) (where \(l = 8, 7, 4 \) or 2 respectively), and we choose

\[
A < (A_1)^l, \text{ via embedding } 1, 1^{(p^2)}, 1^{(p^3)}, \ldots, 1^{(p^{(l-1)})}.
\]

For \(G = E_6 \) with \(p > 2 \), there is a maximal rank subgroup \((A_2)^3\), and we choose

\[
A < (A_2)^3, \text{ via embedding } 2, 2^{(p^2)}, 2^{(p^4)}.
\]

Finally, for \(G = E_6 \) with \(p = 2 \), take a subgroup \(F_4 \) of \(G \), and a subgroup \(C_4 \) of that, generated by short root groups in \(F_4 \); now take \(A < C_4 \), embedded via the irreducible symplectic 8-dimensional representation \(1 \otimes 1^{(2)} \otimes 1^{(4)} \).

Lemma 4.3 (i) For \(G \neq E_6 \), \(L(G)/L(A_1^1) \) restricts to \(A \) as follows:

- \(G = E_8 \): 14 distinct 4-fold tensor factors,
- \(G = E_7 \): 7 distinct 4-fold tensor factors,
- \(G = F_4 \): one 4-fold factor and 6 distinct 2-fold factors,
- \(G = G_2 \): \(1 \otimes 3^{p^2} \) (\(p \neq 2, 3 \)), \(1 \otimes 1^{(9)}/1 \otimes 1^{(27)} \) (\(p = 3 \)), \(1 \otimes 1^{(4)} \otimes 1^{(8)} \) (\(p = 2 \)),

Moreover, \(L(A_1^1) \) restricts to \(A \) as \(2/2^{(p^2)}/\ldots/2^{(p^{(l-1)})} \) if \(p \neq 2 \), and as \(1^{(2)}/1^{(8)}/\ldots/1^{(2l-1)}/0^l \) if \(p = 2 \).

In particular, the nontrivial composition factors of \(L(G) \downarrow A \) are all distinct.

(ii) For \(G = E_6 \) (\(p \neq 2 \)), \(L(G)/L(A_3^2) \) restricts to \(A \) as \((2 \otimes 2^{(p^2)} \otimes 2^{(p^4)})^{2} \); and \(L(A_3^2) \) restricts to \(A \) as \(2/2^{(p^2)}/2^{(p^4)}/4/4^{(p^4)}/A^{(p^4)} \) if \(p \neq 3 \), and as \(2/2^{(3^2)}/2^{(3^4)}/1\otimes 1^{(3^2)}/1^{(3^3)}/1^{(3^5)}/1^{(6)} \) if \(p = 3 \).

(iii) For \(G = E_6 \) (\(p = 2 \)), letting \(V_{27} = V_G(\lambda_1) \), we have

\[
V_{27} \downarrow A = 1^{(2)} \otimes 1^{(4)} \otimes 1^{(8)} \otimes 1^{(8)}/1^{(2)}/1^{(8)}/1^{(4)}/1^{(4)}/1^{(8)}/1^{(8)}/1^{(8)}/0^3.
\]

Proof (i) For \(G = E_8 \), the restriction of \(L(G) \) to a subsystem \(D_4D_4 \) is given by [5, 2.1]: it is \(L(D_4D_4)/\lambda_1 \otimes \lambda_1/\lambda_3 \otimes \lambda_3/\lambda_4 \otimes \lambda_4 \). Now consider the restriction further to \(A_1^8 \). This is embedded as \(SO_4 \cdot SO_4 \) in each \(D_4 \) factor, so the factor \(\lambda_1 \otimes \lambda_1 \) of \(L(G) \downarrow D_4D_4 \) restricts to \(A_1^8 \) as a sum of 4-fold tensor factors, each of dimension 16. The normalizer \(N_G(A_1^8) \) acts as the 3-transitive permutation group \(AGL_3(2) \) on the 8 factors, and the smallest orbit of this on 4-sets has size 14. It follows that \(L(G) \downarrow A_1^8 \) has at least 14 distinct 4-fold tensor factors. Since \(14 \cdot 16 + \dim A_1^8 = \dim G \), these 14 modules comprise all the composition factors of \(L(G)/L(A_1^8) \) restricted to \(A_1^8 \). Part (i) follows for \(G = E_8 \). The other types are handled similarly.

(ii) The restriction \(L(E_6) \downarrow (A_2)^3 \) is given by [5, 2.1], and (ii) follows easily.

(iii) We have \(V_{27} \downarrow F_4 = V_{F_4}(\lambda_4)/0 \), and \(V_{F_4}(\lambda_4) \downarrow C_4 = V_{C_4}(\lambda_2) \). Hence \(V_{27} \downarrow C_4 \) has the same composition factors as the wedge-square of the natural 8-dimensional \(C_4 \)-module, minus 1 trivial composition factor. Now calculate the composition factors of the \(A_1 \)-module \(\wedge^2(1 \otimes 1^{(2)}) \otimes 1^{(8)} \) to get the conclusion. ■

Lemma 4.4 The subgroup \(A \) is \(G \)-irreducible.
Proof First assume $G \neq E_6$. If $A < P = QL$, a parabolic subgroup with unipotent radical Q and Levi subgroup L, then the composition factors of A on $L(Q)$ are the same as those on $L(Q^{opp})$, the Lie algebra of the opposite unipotent radical. By the last sentence of Lemma 4.3(i), it follows that all composition factors of A on $L(Q)$ must be trivial, whence from Lemma 4.3(i) we see that $\dim Q \leq l/2$, which is impossible.

Now assume $G = E_6$ with $p \neq 2$. If $p \neq 3$ then $L(G) \downarrow A$ has no trivial composition factors, so A cannot lie in a parabolic. Now suppose $p = 3$. By Lemma 4.3(ii), $L(G) \downarrow A$ has two isomorphic 27-dimensional composition factors. If $A < QL$ as above, then these factors must occur in $L(Q) + L(Q^{opp})$, and the only other possible composition factors in $L(Q) + L(Q^{opp})$ are trivial. Hence $\dim Q$ must be 27 or 28. There is no such unipotent radical in E_6.

Finally, assume $G = E_6$ with $p = 2$. Suppose $A < P = QL$, with the parabolic P chosen minimally. By minimality, A must project irreducibly to any A_r factor of L'; since the irreducible representations of A have dimension a power of 2, it follows that the only possible such factors are A_3 and A_1. Consequently either $L' = A_3A_1$, or L' lies in a subsystem D_5. If $L' = A_3A_1$, then A acts on the natural modules for A_3, A_1 as $1 \otimes 1^{q(1)}, 1^{q(1)}$ respectively, for some powers q, q' of 2. The restriction $V_{27} \downarrow A_3A_1$ is given by [5, 2.3], and it follows that $V_{27} \downarrow A$ has a composition factor $1 \otimes 1^{q(1)}$ if $q \neq q'$, and has two composition factors $1 \otimes 1^{q(1)}$ if $q = q'$. This conflicts with Lemma 4.3(iii). Therefore $L' \neq A_3A_1$. The remaining possibilities for L' lie in a subsystem D_5. The irreducible orthogonal A_1-modules of dimension 10 or less have dimensions 4 and 8, and do not extend the trivial module (see [1, 3.9]). It follows that $L' \leq D_4$. Observe that $V_{27} \downarrow D_4 = \lambda_1/\lambda_3/\lambda_4/0^3$. Hence it is readily checked that no possible embedding of A in D_4 gives composition factors for $V_{27} \downarrow A$ consistent with Lemma 4.3(iii).

This completes the proof of Theorem 2.

By varying the field twists involved in the definitions of A above, we obtain the following.

Corollary 4.5 Let G be a simple algebraic group in characteristic $p > 0$, and assume that $G \neq A_n$. Then G has infinitely many conjugacy classes of G-irreducible subgroups of type A_1.

5 Proof of Theorem 3

Let G be a connected semisimple algebraic group of rank l. The proof proceeds by induction on $\dim G$. The base case $\dim G = 3$ is trivial. Let X be a connected G-irreducible subgroup of G. By Lemma 2.1, X is semisimple. Write $G = G_1 \ldots G_r$ and $X = X_1 \ldots X_s$, commuting products of simple factors G_i and X_i. Without loss we can factor out the finite group $Z(G)$, and hence assume that $Z(G) = 1$.

Suppose first that X projects onto every simple factor G_i of G. Say X_1 projects onto the factors G_1, \ldots, G_t. Identifying the direct product $G_1 \ldots G_t$ with $G_1 \times \ldots \times G_1$ (t factors), and replacing X by a suitable G-conjugate, we
can take

\[X_1 = \{ (x^{\tau_1}, \ldots, x^{\tau_t}) : x \in G_1 \}, \]

where each \(\tau_i = \gamma_i q_i \) with \(\gamma_i \) a graph automorphism or 1, and \(q_i \) a Frobenius morphism or 1. For each \(k \) let \(S_k = \{ i : q_i = q_k \} \), and define a corresponding subgroup \(G_{S_k} \leq \prod_{i \in S_k} G_i \) by

\[G_{S_k} = \{ \prod_{i \in S_k} x^{\gamma_i} : x \in G_1 \}. \]

Then \(X_1 \) is a twisted diagonal subgroup of \(G_1^+ := \prod_{i \in S_k} G_{S_k} \). Repeating this construction for each simple factor \(X_i \) of \(X \), we obtain a subgroup \(G_1^+ \cdots G_s^+ \) of \(G \) containing \(X \) as a twisted diagonal subgroup. There are only finitely many such subgroups \(G_1^+ \cdots G_s^+ \) in \(G \). Hence if we include the conjugacy classes of these subgroups in our collection \(\mathcal{C} \), we have the conclusion of Theorem 3 in this case.

Now suppose \(X \) does not project onto some factor, say \(G_1 \), of \(G \). Then there exists a maximal connected subgroup \(M_1 \) of \(G_1 \) such that \(X \leq M_1 G_2 \cdots G_r \). By Proposition 2.3, up to \(G_1 \)-conjugacy there are only finitely many possibilities for \(M_1 \). Since \(M_1 G_2 \cdots G_r \) is a semisimple group of dimension less than \(\dim G \), the result now follows by induction.

References

