A Survey of Quality of Service in Mobile Computing Environments

Dan Chalmers, Morris Sloman

Department of Computing
Imperial College, London, SW7 2BZ
Email: dc@doc.ic.ac.uk, mss@doc.ic.ac.uk

Abstract
The specification and management of Quality of Service (QoS) is important in networks and distributed computing systems, particularly to support multimedia applications. The advent of portable lap-top computers, palmtops and Personal Digital Assistants with integrated communication capabilities facilitates mobile computing. This paper is a survey of QoS concepts and techniques for mobile distributed computing environments. The requirements of current and future mobile computing are examined and the services required to support mobility are discussed. Generic concepts of QoS specification and management are overviewed followed by an analysis of the QoS work specific to mobile computing environments.

Keywords
Mobile systems, nomadic systems, portable computers, quality of service, multimedia, context aware computing.
1. Introduction

The availability of light-weight, portable computers and wireless communications has made mobile computing applications practical. An ever more mobile workforce, home working, and the computerisation of inherently mobile activities are driving a need for powerful and complex mobile computer systems and applications integrated with fixed systems. Mobile cellular telephony is widely available and computers are being integrated with these telephones to form mobile computing devices. Many businesses are dependent on distributed, networked computing systems and are beginning to rely on high-speed communications for multimedia interactions and Web-based services. Users are now requiring access to these services while travelling. In addition new multimedia applications are emerging for Web-enabled telephones and mobile computers with integrated communications.

Multimedia applications require more sophisticated management of those system components, which affect the Quality of Service (QoS) delivered to the user, than for simpler voice or data-only systems. The underlying concepts of bandwidth, throughput, timeliness (including jitter), reliability, perceived quality and cost are the foundations of what is known as Quality of Service. However, portable computers introduce particular problems of highly variable communication quality; management of data location for efficient access; restrictions of battery life and screen size; and cost of connection, which all impact the ability to manage and deliver the required QoS in a mobile environment.

The assumption that QoS will be provided and maintained, without some guarantee or notification of inability to deliver, is seriously flawed from a business and technological perspective. In many applications late information has ceased to have any value, and in “hard” real-time applications may be dangerous, or have financial repercussions. Many are prepared to tolerate slow computer interactions, or try to overcome problems by installing more processing power, or communication capacity. In many cases, over-dimensioning of the system is not economic and mission-critical real-time applications cannot simply trust this uncertain approach.

Much progress has been made on providing the ability to manage QoS. Formal notations, standards, and practical implementations, particularly in the field of networks, but also more recently in systems software now exist for this. While the underlying technologies of QoS and mobile systems are well understood, the combination of the two problems has only recently started to be addressed [1], [2]. This paper surveys the literature on QoS for mobile computing systems, rather than for wireless telecommunications.

Section 2 gives an overview of current and future mobile computing and some of the services needed to support mobility. This is followed by a summary of the generic concepts of QoS in order to understand how to specify and measure QoS in terms of its attributes and the management techniques which can also be applied to mobile systems. The QoS issues and current state of QoS provision for mobile computing environments are discussed in section 4, examining where the known QoS principles can be reused, or where mobility requires a different approach. The conclusion summarises our views on the most important research issues in this field.
2. Mobile Computing Systems

In this section, we examine current and future mobile computing applications and then discuss the services needed to support nomadic and mobile systems. The reader looking for a comprehensive set of references to work on mobile communications and computing may find [3] informative.

2.1 Mobile Computing Applications

There are many potential applications of mobile computing which will become important in the future, as the power of portable computing devices increases and the cost of wireless communications decreases.

Portable computing devices are commonly used for access to electronic mail, sending faxes, accessing the web or remote databases, using cellular telephones or local networks when users are travelling. Palm-top computers and personal digital assistants are being integrated with cellular telephones as part of the increasing convergence between telecommunications and computing. This type of very light-weight device could be used as an electronic ‘newspaper’ which is capable of delivering selective news which is personalised according to individual user preferences and is more up-to-date than a newspaper. This could include financial information on a user’s stock portfolio [4]. Web-based news delivery is already available, but currently only really used from desk-top workstations. Web-based access to multi-media entertainment, videos, music, and games is also likely to increase in the future but this would require a considerable decrease in wireless communication costs to be practical for mobile computing. However web-enabled cellular phones and in-car communications are beginning to emerge and are considered a future growth area.

There are a range of location-aware applications in which the computing device is able to determine the users physical location, e.g. using Global Positioning Systems (GPS) which can be used to display current position on maps, receive traffic and weather information and act as a car-navigation aid [5], [6]. This could be enhanced to provide local information such as nearest, hospitals, hotels or restaurants for travellers. Similar applications based on hand-held devices can be used as guides within museums, art-galleries or towns. These determine current position and provide information on exhibits or buildings near the user and also provide access to additional information such as a painter or architect’s biography. Location aware services are discussed in section 2.2.

The utility services are potential users of mobile computing services. Emergency services such as fire and ambulance can access plans of buildings or details of hazardous chemicals from remote databases. The use of experimental mobile computers by engineers working on power distribution systems is described in [7], [8]. Portable computers with cellular telephones were used to obtain maps indicating the current state of the power distribution system in the area in which they were working. The engineers were also able to communicate with each other and with their control centre to co-ordinate activities and safely resolve switching requirements. There are many other applications where field-workers would benefit from use of mobile computing devices for access to detailed 3-D drawings or plans. e.g. aircraft maintenance engineers, architects, or construction workers [9].

Access to educational material from digital libraries extends the concept of home or remote learning to education and training while on the move in trains or buses.
The common factor in the above future applications is they are likely to be based on multimedia interactions and not just textual data or voice.

2.2 Mobility Support Services

Mobile systems can be categorised depending on whether they use fixed or radio communication services.

Nomadic systems are typically based on wired dial-up, or local area network communication facilities. Mobility is not transparent, requiring a new connection to be explicitly established when the user moves to a new location [4], [9]. For example, a nomadic user may carry a lap-top and connect to a network at various times from their home, office and various remote sites such as client’s offices or hotels. Whilst travelling between these locations the lap-top is disconnected from the network. The user may then make large geographical movements between connections, and connections over equipment with widely ranging capabilities, but will exhibit relatively static characteristics during a connection. Nomadic users may also use different computers to connect into their normal working environment. For example, many people have both an office and home computer or may connect using a local computer at a remote site of their organisation. This then presents the problem of making efficient provision of resources commonly required by the user.

Mobile systems use wireless technology for transparent communications while travelling in a train, car or plane or even while walking. During the course of a connection the radio reception is likely to vary considerably, and the physical location of the device may be hundreds of miles from it’s starting point. While mobile telephony is generally implemented in terms of a series of discrete connections to base stations providing “cells” of coverage, a sophisticated system may be implemented such that discontinuous connection is abstracted or hidden from the user or application.

There is no absolute distinction between nomadic and mobile systems e.g., a wireless based mobile system may move from one site to another while disconnected so it is both nomadic and mobile. Many of the services required to support nomadic and mobile systems are very similar as described in the next section, so we use the term mobile to cover both.

Mobile computers move, so the fundamental problem is for the system to track the current location of the mobile device in order to be able to communicate with it. Current network addressing mechanisms contain implicit location information – a subnet component maps onto a network at a particular place or within a particular organisation. Telephone numbers also contain implicit location information – country code, area code, and local exchange. In the mobile telephone service, the phone number identifies a home location register (HLR) which knows the current location of the mobile device. When the telephone roams to a different service provider’s coverage, it registers with a visiting location register which informs the HLR of the mobile phone’s current location. Similar techniques have been proposed for mobile computing [4], [10], [11]. An alternative is to use a global directory, such as X500 which maintains the current location information and is accessed using a name rather than an address.

Location aware services and applications require information on a user’s geographical location in order to display a position on a map or provide local information as described in section 2.1. This then requires a generalised location service, accessible by applications, to track the current position of the user. This can be accomplished using GPS, cellular
telephone base stations, active badges or determining which fixed computer is being used [6], [12]. Although the cellular telephone service providers know a subscriber’s current location, they do not permit access to this information by applications running on a computer connected via a telephone, for legal or commercial reasons.

Context aware applications require knowledge not only of location but the user’s context which includes characteristics of the particular computing device being used (e.g. PDA or notebook) and information about the users current environment (e.g. who else is in the vicinity, or whether the user is in quiet or noisy environment). The application then adapts the presentation of information or quality of service provided to the user’s current context [13]. This is discussed further in section 4.2.3.

Mobile computing devices may also need access to local servers supporting electronic mail, printing, file service or databases. This could imply the need to migrate resources from the user’s home servers to local ones, rather than just maintaining network connections to the home servers, in order to provide the required QoS or to reduce communication cost. [14] describes an implementation where some computing facilities acting on data (e.g. filters) are relocated in a cellular system, and discusses the problems of negotiating resource allocation as a result of location changes. Other systems e.g. [15] simply treat the base-stations as connection points into a fixed network, and do not engage in the complexities of reconfiguring in such limited time-scales.

3. Overview Of Quality Of Service

Management of QoS includes various aspects, relating to the nature of perceived quality. This section provides an overview of QoS concepts and both static and dynamic techniques for managing QoS. A more comprehensive overview of architectures supporting QoS is given in [16].

3.1 Definitions And Categories Of QoS

This overview of what is QoS and how to specify it is based on [2], [17], [18] whose treatment is primarily concerned with multimedia.

3.1.1 QoS Characteristics

QoS defines non-functional characteristics of a system, affecting the perceived quality of the results. In multimedia this might include picture quality, or speed of response, as opposed to the fact that a picture was produced, or a response to stimuli occurred. Table 1 shows the main technology-based QoS parameters. Basic mathematical models for concatenating throughput, delay, jitter and frame loss-rate are specified in [19], [20].

Table 2 summarises the main user-based parameters. User level QoS requirements, are described as perceived quality and then mapped to lower level QoS characteristics in [21]. [22] describes a selection of quality characterisations in terms of QoS parameters and value ranges, for various data types.

Table 1 Technology-Based QoS Characteristics

<table>
<thead>
<tr>
<th>Category</th>
<th>Parameter</th>
<th>Description / Example</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Parameter</th>
<th>Description / Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timeliness</td>
<td>Delay</td>
<td>Time taken for a message to be transmitted</td>
</tr>
<tr>
<td></td>
<td>Response time</td>
<td>Round trip time from request transmission to reply receipt</td>
</tr>
<tr>
<td></td>
<td>Jitter</td>
<td>Variation in delay or response time</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>System level data rate</td>
<td>Bandwidth required or available, in bits or bytes per second.</td>
</tr>
<tr>
<td></td>
<td>Application level data rate</td>
<td>Bandwidth required or available, in application specific units per second, e.g. video frame rate</td>
</tr>
<tr>
<td></td>
<td>Transaction rate</td>
<td>Number of operations requested or processed per second</td>
</tr>
<tr>
<td>Reliability</td>
<td>Mean Time To Failure (MTTF)</td>
<td>Normal operation time between failures. See [18] for a further treatment of reliability issues.</td>
</tr>
<tr>
<td></td>
<td>Mean Time To Repair (MTTR)</td>
<td>Down time from failure to restarting normal operation</td>
</tr>
<tr>
<td></td>
<td>Mean Time Between Failures (MTBF)</td>
<td>MTBF = MTTF + MTTR</td>
</tr>
<tr>
<td></td>
<td>Percentage of time available</td>
<td>MTTF / MTTF + MTTR</td>
</tr>
<tr>
<td></td>
<td>Loss or corruption rate</td>
<td>Proportion of total data which does not arrive as sent, e.g. network error rate</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Parameter</th>
<th>Description / Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criticality</td>
<td>Importance rating (priority)</td>
<td>Arbitrary scale of importance, may be applied to users, different flows in a multimedia stream, etc.</td>
</tr>
<tr>
<td>Perceived QoS</td>
<td>Picture detail</td>
<td>Pixel resolution</td>
</tr>
<tr>
<td></td>
<td>Picture colour accuracy</td>
<td>Maps to colour information per pixel</td>
</tr>
<tr>
<td></td>
<td>Video rate</td>
<td>Maps to frame rate</td>
</tr>
<tr>
<td></td>
<td>Video smoothness</td>
<td>Maps to frame rate jitter</td>
</tr>
<tr>
<td></td>
<td>Audio quality</td>
<td>Audio sampling rate and number of bits</td>
</tr>
<tr>
<td></td>
<td>Video / audio synchronisation</td>
<td>Video and audio stream synchronisation, e.g. for lip-sync.</td>
</tr>
<tr>
<td>Cost</td>
<td>Per-use cost</td>
<td>Cost to establish a connection, or gain access to a resource</td>
</tr>
<tr>
<td></td>
<td>Per-unit cost</td>
<td>Cost per unit time or per unit of data, e.g. connection time charges and per query charges.</td>
</tr>
<tr>
<td>Security</td>
<td>Confidentiality</td>
<td>Preventing access to information, usually by encryption but also requires access control mechanisms</td>
</tr>
<tr>
<td></td>
<td>Integrity</td>
<td>Proof that data sent was not modified in transit, usually by means of an encrypted digest.</td>
</tr>
<tr>
<td></td>
<td>Non-repudiation of sending or delivery.</td>
<td>Signatures to prove who and when data was sent or received.</td>
</tr>
<tr>
<td></td>
<td>Authentication</td>
<td>Proof of identity of user or service provider to prevent masquerading, using public or secret encryption keys.</td>
</tr>
</tbody>
</table>

3.2 QoS Management

QoS management is defined in [2] as the necessary supervision and control to ensure that the desired quality of service properties are attained and sustained which applies both to continuous media interactions and to discrete interactions. It can be considered a specialised area of distributed systems management.
The various aspects of interaction and types of guarantees required, as described above, must be synthesised into a specification of requirements, and relationships for trade-offs to enable the delivered QoS to be managed. We divide these first into static functions, applied at the initiation of an interaction, and dynamic functions, applied as needed during an interaction.

3.2.1 Static QoS Management Aspects

The static QoS management functions relating to properties or requirements which remain constant throughout some activity, are summarised in Table 3, drawing from [2], [17], [22].

Table 3 Static QoS Management Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Definition</th>
<th>Example Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specification</td>
<td>The definition of QoS requirements or capabilities.</td>
<td>Requirements at various levels of abstraction are described as combined parameter, value, allowed variation, and guarantee level descriptions. [23], [24], [25], [26] are interesting examples of work on specification of QoS requirements, and behaviour in relation to actual QoS experienced.</td>
</tr>
<tr>
<td>Negotiation</td>
<td>The process of reaching an agreed specification between all parties.</td>
<td>A comparison of specifications in admission control with modification of requirements on failure, and resource reservation when an agreement is reached. The modification of requirements should consider the inter-relation of parameters and preferences of the user [27], [28].</td>
</tr>
<tr>
<td>Admission Control</td>
<td>The comparison of required QoS and capability to meet requirements.</td>
<td>The available resources may be estimated with the aid of resource reservation information, and performance models.</td>
</tr>
<tr>
<td>Resource Reservation</td>
<td>The allocation of resources to connections, streams etc.</td>
<td>A time-sliced model of capacity reserved is common e.g. [29], [30], [31].</td>
</tr>
</tbody>
</table>

In determining requirements, and agreeing to contracts it is important that the end-to-end nature of the requirements are considered. For instance, a video server may be able to computationally service a frame rate which neither it’s disk interface or all parts of the network passing the data to the recipients can sustain. In some situations it is necessary to consider human users as part of an end-to-end system, treating them as active participants, rather than passive receivers of information. For instance, people have thresholds of boredom, and finite reaction times. A specification of the user’s perceptions is thus required, as it is the user that ultimately defines whether the result has the right quality level.

3.2.2 Dynamic QoS Management Aspects

The dynamic aspects of QoS management respond to change within the environment, allowing a contract to be fulfilled on an ongoing basis. Contract specifications are often inexact as resource usage and flow characteristics are not generally completely defined in advance [32]. The dynamic management functions are summarised in Table 4. These issues are expanded on in [2], [17], [22], [33].

Most of the literature discusses maintaining a QoS contract under adverse conditions, often by reducing data volume. However, it should also be noted that QoS functions may be applied to increase data transfer rates when the system improves its ability to provide a service, i.e. a quality ordered sequence of alternatives due to media scaling or renegotiation.
may be traversed in the directions of both improvement and degradation when QoS passes given thresholds.

Table 4 Dynamic QoS Management Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Definition</th>
<th>Example Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring</td>
<td>Measuring QoS actually provided.</td>
<td>Monitor actual parameters in relation to specification, usually introspective. Frequency of monitoring affects monitoring traffic load but reducing frequency may result in out of specification performance for a period of time. See [34] for discussion on piggy-back monitoring with other traffic.</td>
</tr>
<tr>
<td>Policing</td>
<td>Ensuring all parties adhere to QoS contract.</td>
<td>Monitor actual parameters in relation to contract, to ensure other parties are satisfying their part [35].</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Modification of parameters by the system to maintain QoS. Applications are not required to modify behaviour.</td>
<td>The use of filters to buffer or smooth streams, in order to maintain stable delay, data rate and jitter [36]. QoS aware routing to maintain network characteristics. Scaling media, e.g. by modifying levels of detail provided within a stream.</td>
</tr>
<tr>
<td>Renegotiation</td>
<td>The renegotiation of a contract</td>
<td>This is required when the maintenance functions cannot achieve the parameters specified in the contract, usually as a result of major changes or failures in the system. Usually invoked by exceptions raised by the monitoring, policing and maintenance functions. [19], [37].</td>
</tr>
<tr>
<td>Adaptation</td>
<td>The applications adapts to changes in the QoS of the system, possibly after renegotiation.</td>
<td>Application dependent adaptation may be needed after renegotiation or if the QoS management functions fail to maintain the specified QoS. Often achieved by media scaling [27], [38], [39].</td>
</tr>
<tr>
<td>Synchronisation</td>
<td>Combining two or more streams with temporal QoS constraints between them e.g. synchronisation of speech and video streams.</td>
<td>This involves representing each stream in a format where temporal information is stored with the data, allowing cross referencing between the streams.</td>
</tr>
</tbody>
</table>

4. Quality Of Service In Mobile Computing Systems

We shall now summarise the problems of mobility in direct relation to QoS, and then describe some of the ideas and solutions being developed specifically to manage QoS in a mobile environment.

4.1 The Impact of Mobility on QoS

One of the key differences between mobile and fixed system is that the former have to be able to adapt to the changes in QoS resulting from mobility, rather than trying to provide hard guarantees of QoS [9], [15], [40], [41].

4.1.1 The Effects of Link Type On QoS

Nomadic systems may connect via a local area network and then reconnect via a modem or wireless link at a later time. A wireless link is obviously needed to support mobile
computing. The key considerations of bandwidth, range and cost are summarised for some popular communication technologies in Table 5.

Table 5 Common Communication Systems

<table>
<thead>
<tr>
<th>Comms. System</th>
<th>Typical Bandwidth</th>
<th>Range</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Local Area Network (LAN)</td>
<td>10 – 1000 Mb/s</td>
<td>Fixed, wired network.</td>
<td>Infrastructure & interfaces</td>
</tr>
<tr>
<td>Wireless LAN</td>
<td>1 – 10 Mb/s</td>
<td>100 – 500 m from base station.</td>
<td>Infrastructure & interfaces</td>
</tr>
<tr>
<td>Infra-Red</td>
<td>19.2 Kb/s – 1 Mb/s</td>
<td>Within room.</td>
<td>Infrastructure & interfaces</td>
</tr>
<tr>
<td>Satellite systems</td>
<td>Up to 2Mb/s in the immediate future</td>
<td>World-wide in the future</td>
<td>Probably a monthly fee, plus costs for usage. Expected to be high.</td>
</tr>
<tr>
<td>Modem via Dial-up Telephone</td>
<td>9.6 – 128 Kb/s</td>
<td>Fixed, wired network</td>
<td>A monthly fee, and / or costs for usage. Low cost.</td>
</tr>
<tr>
<td>DECT</td>
<td>32 Kb/s</td>
<td>Cellular phone networks</td>
<td>A monthly fee, and/or costs for usage. High cost.</td>
</tr>
<tr>
<td>CDPD</td>
<td>19.2 kb/s</td>
<td>approaching national coverage.</td>
<td></td>
</tr>
<tr>
<td>GSM</td>
<td>9.6 Kb/s</td>
<td>Some standards differences.</td>
<td></td>
</tr>
</tbody>
</table>

Although new wireless technologies with higher bandwidth are emerging [42], it is a reasonable assumption that wireless network technology will continue to provide bandwidth at least an order of magnitude lower than that of fixed networks for some time, and continue to have characteristics which are more susceptible to environmental variations than wired connections. The area of coverage, and thus the degree of movement allowed while remaining connected, is related to bandwidth. Wireless LAN can cover a cell of about 500–1000m diameter while GSM (Global Systems Mobile) may cover several square km per cell but provide country-wide and international coverage through widely deployed base stations. Satellite systems may provide similar global coverage but at very high cost in the medium term future.

The use of multimedia applications requiring high data throughput is problematic for mobile systems. Whereas speech-quality audio with compression requires only 8Kb/s, even low-fidelity video tends towards Mb/s data rates. In addition, it is not desirable to simply limit the capabilities of systems to the lowest common denominator. It is better to try to manage the variations in data rates of the connection due to mobility and if possible, make applications adapt to these variations. Hence, the *static* QoS management functions must support a greater range of base-line capabilities to support mobile use.

4.1.2 The Effects Of Movement On QoS

One of the main problems of movement is due to hand-over as the mobile device moves from a cell covered by one base station to an adjacent cell of a different base-station during a connection. This hand-over time may result in a short loss of communication which may not be noticeable for voice interaction but can result in loss of data for other applications. Another problem is that of selecting a suitable base-station to which it can hand-over, which has sufficient spare capacity to support the connection [9]. For mobile computing, the base
station may have to provide local processing, storage or other services as well as communication. [43] describes a system for QoS driven resource estimation and reservation to support hand-over. Their approach is based on a connection casting a “shadow” of advance requirement on neighbouring cells, where the shadow is stronger in the direction of movement. This can be sometimes be established by including geographical knowledge of likely paths of movement. A stronger shadow represents a greater likelihood of the resource being required. The rate of hand-over may also be measured, suggesting reservation of more than one cell in advance (the cell currently occupied then casts a longer shadow of advance reservation). This gathering of information in conjunction with knowledge of the environment then allows confident predictions of future requirements to be made, enabling higher resource usage as fewer resources in the network are reserved unnecessarily. Another form of context aware resource reservation is described in [44], where each end of a flow is characterised as static or mobile, and advance reservations are made for mobile flows on the predicated next cell.

However, these techniques cannot completely hide all mobile link effects. Mobile wireless networks have blind spots under bridges, behind buildings or hills, where the signal may be very weak resulting in temporary quality reduction or connection loss when the mobile device is in a moving car or train. Variations in link quality can also be caused by atmospheric conditions such as rain or lightning. These effects require more sophisticated dynamic QoS management than fixed systems.

It is thus the variation in QoS which is the crucial difference between mobile systems and communications based on wired networks. This implies the need for adaptive QoS management which specifies a range of acceptable QoS levels, rather than trying to guarantee specific values. The QoS management is also responsible for co-operation with QoS aware applications to support adaptation, rather than insulating applications from variation in underlying QoS. The effects of mobility on QoS require that algorithms employed must be capable of managing frequent loss and re-appearance of mobile device in the network, and that overhead should be minimised during periods of low connectivity. This is in contrast to traditional distributed applications, where reasonably stable presence and consistently high network quality are often assumed.

4.1.3 The Restrictions Of Portable Devices On QoS

There are a number of limitations imposed by portability of the mobile computing device [1], [4], [9]. The main limitation is in the physical size of mobile computers, as discussed below:

Mobile systems typically are designed with the limitations of batteries in mind, even where a mains power alternative is possible. Current battery technology still requires considerable space and weight for modest power reserves, and is not expected to become significantly more compact in the near future. This then places limits on the design due to the need to provide low power consumption as a primary design goal: low power processor, displays and peripherals, and the practice of having systems powered down or “sleeping” when not in active use are common measures to reduce power consumption in portable PCs and Personal Digital Assistants (PDAs). Low power consumption components are generally a level of processing power below their higher consumption desktop counterparts, thus limiting the complexity of tasks performed. The practice of intermittent activity may appear as frequent failures in some situations. Similarly, mobile communications technology requires significant power, particularly for transmission, so network connection must be intermittent.
The second point is that of user interfaces: large screens, full-size keyboards, and sophisticated and easy to use pointer systems are commonplace in a desktop environment. These facilitate information-rich, complex user interfaces, with precise user control. In portable computers, screen size is reduced, keyboards are generally more cramped, and pointer devices less sophisticated. PDAs have small, low-resolution screens which are often more suited to text than graphics and may only be monochrome. They have minimal miniature keyboards, pen-based, voice or simple cursor input and selection devices. These limitations in input and display technology require a significantly different approach to user interface design.

In environments where users may use a variety of systems in different situations, the interface to applications may then be heterogeneous, and be required to scale with available devices, in a similar manner to the network connection’s scaling depending on the medium used. Ideally there should be a consistent user interface for particular applications across a range of computing devices but this is not always easy to achieve.

Whilst the limitation in battery size and power are expected to remain, I/O device technology is becoming more sophisticated: headset technology developed for virtual reality, and traditional display technology’s resolution and colour representation in thin packages are areas of much development. Advances in computing power are enabling handwriting and speech based input technologies, although traditional keyboard input, and information display are unlikely to become significantly different or more advanced, due to the limitations of eyesight and dexterity of users.

QoS management in a mobile environment must allow for scaling of delivered information, and also simpler user interfaces when connecting using a general mix of portable devices and higher-power non-portable devices [1], [6]. Again the field of context aware computing provides groundwork in this area, where rather than treating the geographical context (as for mobility), one can treat the selection of end-system as giving a resource context.

4.1.4 The Effects On Other Non-Functional Parameters

Any form of remote access increases security risks but wireless based communication is particularly susceptible to undetected monitoring so mobility complicates traditional security mechanisms. Even nomadic systems will make use of less secure telephone and internet based communications than office systems using LANs. Some organisations may place restrictions on what data or services can be accessed remotely, or require more sophisticated security than is needed for office systems. In addition, there are legal and ethical issues raised in the monitoring of users’ locations. However these topics are complex, application and jurisdiction dependant, so full consideration is not possible here.

Cost is another parameter which may be affected by the use of mobile communications. However, while wireless connections are frequently more expensive, the basic principles of QoS management in relation to cost are the same as for fixed systems. The only major additional complexity is created by the possibility of a larger range of connection, and thus cost, options, and the possibility of performing accounting in multiple currencies.
4.2 Current Work On Management Of QoS In Mobile Environments

4.2.1 Management Adaptivity

As stated in section 4.1.2, one of the key concepts in managing QoS for mobile environments is adaptation to changes in QoS. In the following we discuss three classes of change which have to be catered for, although others approach this issue with regard to transparent and non-transparent scaling of media [38].

Large-grained change is characterised as changes due to types of end-system, or network connection in use. Typically these will vary infrequently, often only between sessions, and thus are managed largely at the initialisation of interaction with applications, possibly by means of context awareness.

Hideable changes are those minor fluctuations, some of which may be peculiar to mobile systems, which are small enough in degree and duration to be managed by traditional media-aware buffering and filtering techniques. Buffering can be used to remove jitter by smoothing a variable (bit or frame) rate stream to a constant rate stream. Filtering of packets may differentiate between those containing base and enhancement levels of information in multimedia streams e.g. moving from colour to black and white images and are similar to those in fixed network systems [35]. However, as mobile systems move, connections with different base stations have to be set up and connections to remote servers re-routed via the new base stations. This requires moving or installing filters for these connection. A new connection may not provide the same QoS as the previous one, and so the required filter technique may differ. To manage this requires an extension of the traditional interactions for migrating connections between base stations. The selection and hand-over of control must take account of available QoS, required QoS, and the capacity of the network to accommodate any required filters. Where the network cannot maintain the current level of service, base stations should initiate adaptation in conjunction with hand-over [14], [41].

Fine-grained change are those changes which are often transient, but significant enough in range of variation and duration to be outside the range of effects which can be hidden by traditional QoS management methods. These include:

- Movement between base stations in wireless networks.
- Environmental effects in wireless networks.
- Other flows starting and stopping in part of the system thus affecting resources available.
- Changes in available power causing power management functions to be initiated, or degradation in functions such as radio transmission.

These types of change must either be notified to or negotiated with the applications concerned. as they require co-operation between QoS management and the application for adaptation [7], [15], [32], [37], [40], [45], [46]. These effects may be seen as transient failure or loss, of parts of the system and can be similar to QoS degradation which can occur due to overload in fixed networks such as the Internet. Some notion of time-outs on quiet connections is one simple way of differentiating between failure and absence of data or connection fade, without imposing costly polling protocols on low bandwidth connections [7]. A more advanced approach may be to absorb acceptable transient losses by probabilistic or statistical QoS specifications, which will also cause downward adaptation towards failure under sustained degradation. However, speedy reaction to degradation is important, as lossy protocols manifest themselves as severe jitter, or performance not meeting specifications.
This may be achieved with techniques already developed for path adaptation, media scaling and selection, fault tolerance, and monitoring. Geographical and hand-over effects may be seen as failures lasting 1 or 2 seconds, so management systems should use a model of QoS requirements that allows them to absorb the more transient changes, and thus reduce unnecessary adaptations. Typical adaptations are likely to involve large steps in quality presented to users, as storage or media scaling to many levels for data intensive streams is generally expensive. Very frequent changes in presented quality may be more intrusive than small losses, or continued lower quality presentation. However, it is also important that QoS management should be able to react quickly to change when appropriate – agile response to fluctuations in QoS is considered in [45]. A user-level QoS parameter can be included to describe the trade-off between stable presentation and agile adaptation. [44], [47] suggests that where movement causes frequent fluctuations in service, the maintenance of QoS at a steady low level to provide seamless operation, is preferred by users. However, users whose systems experience less frequent fluctuations would tend to prefer that the QoS provided is maximised, at the expense of occasional disruption. This then may lead to a sliding scale of agility as a function of rate of variations causing adaptation. Another technique which is applicable in this scenario is to guarantee (as far as is possible) to provide a service at a basic level, and give best-effort management to enhancements.

It is common, in much of the literature, to concentrate on adaptation due to last-hop effects, as this fits the model of a mobile device with wireless link. In many situations it is a reasonable assumption that the wireless connection will determine the overall QoS. However, an end-to-end QoS management philosophy is still required, particularly for multicast systems, and those using the Internet for some part of their connection.

The impact of cost on patterns of desired adaptivity also becomes more pronounced in mobile systems, where connections typically have a charge per unit time or per unit data. Adaptation paths related to QoS management should be able to describe how much the user is willing to pay for a certain level of presentation quality or timeliness. The heterogeneity inherent in systems which may provide network access through more than one media will also be a factor here, as certain types of connection will cost more than others, and cost of connection may vary due to telecoms provider tariff structures.

4.2.2 Resource Management And Reservation

Some researchers contend that resource reservation is not relevant in mobile systems, as the available bandwidth in connections is too highly variable for a reservation to be meaningful. However, some resource allocation and admission control would seem prudent when resources are scarce, even if hard guarantees of resource provision are not practical. [44], [47] proposes that guarantees be made in admission control on lower bounds of requirements, whilst providing best-effort service beyond this. This is achieved by making advance reservation of minimum levels of resources in the next predicted cell to ensure availability and smooth hand-off, and maintaining a portion of resources to handle unforeseen events. The issue of resource reservation is given some consideration by those working on base-stations and wired parts of mobile infrastructures, as these high bandwidth components must be shared by many users, so the traditional resource management approach still applies.

[48] describes a model of adaptivity within currently available resources. Adaptation is divided into levels of description based on the user, the application and the system – recognising that change may be required by the user or the system, and take place in the
application or the system. A region of acceptable performance is mapped onto a region of the resource space in which adaptation can take place.

Resource management is related to context awareness, discussed below, as awareness of available resources is fundamental to managing them in a heterogeneous system.

4.2.3 Context Awareness

A further aspect of resource management is that of large-grained adaptivity, and context awareness. [49] defines situation as “the entire set of circumstances surrounding an agent, including the agent’s own internal state” and from this context as “the elements of the situation that should impact behaviour”. Context aware adaptation could include migrating data between systems as a result of mobility; changing a user interface to reflect location dependent information of interest; selecting a local printer or power-conscious scheduling of actions in portable environments. The QoS experienced is also dependant on awareness of context, and appropriate adaptation to that context [11]. A fundamental paper on context awareness is [13], which emphasises that context depends on more than location i.e. proximity to other users and resources or environmental conditions such as lighting, noise or social situations. In consideration of QoS presentation, the issues of network connectivity, communications cost and bandwidth, and location are obvious factors, affecting data for interactions as well as how end-systems are used and user’s preferences. For instance, network bandwidth may be available to provide spoken messages on a PDA with audio capability, but in many situations text display would still be the most appropriate delivery mechanism – speech may not be intelligible on a noisy factory floor, and secrecy may be needed in meetings with customers. “Quality” can thus cover all non-functional characteristics of data affecting any aspect of perceived quality.

[7] proposes that protocol management should analyse connections, and adapt to make best use of the available resources. [50] describes the use of Mobile IP [10] to provide location transparency for mobile hosts, and the selection between interfaces to provide the most suitable communications interface and protocol for the situation and QoS requirements. The selection between alternative network interfaces then becomes a first level of context and QoS aware resource management. [40] describes an approach based on tuple-spaces, which allow time and space decoupled modelling of connections, which supports fault tolerance, mobility, heterogeneity and change in a natural manner. The use of agents acting over tuple-spaces provides the various aspects of management required, such as admission control, resource reservation, security etc. This approach then allows tuple-spaces to manage the context based variation in services received, and also smaller changes by the use of filter agents. An architecture for exporting environment awareness to mobile computing applications, based on the use of events to indicate changes, is described in [51].

4.2.4 Use Of Standards

The International Standards Organisation (ISO) and International Telecommunications Union (ITU) have a joint working group defining a reference model for Open Distributed Processing (RM-ODP). They are working on a framework for specifying QoS and its components in an ODP system, but there is no specific consideration of mobility [52]. The Object Management Group have developed the Common Object Request Broker Architecture (CORBA) specification with vendors providing CORBA compliant platforms for implementing distributed systems [53]. QoS support is to be included in the CORBA 3.0 specification scheduled for release in mid 1999. The work within the Internet Engineering Task Force
(IETF) has concentrated on mechanisms to support QoS management within the internet [54], [55], [56], [57], [58]. Some of these can be adapted to manage QoS for mobile systems.

The ODP and CORBA approaches are directed at maintaining transparency of platform, and hiding complexity from applications with respect to fixed computing devices. However [1] contends that in an adaptive, mobile environment this approach is no longer relevant. Some implementations e.g. [14], [41] are based on CORBA, or software components previously developed for fixed network QoS architectures [7]. These systems provide adaptive connections using existing components, while retaining the benefits of known interfaces, and re-use of low level protocol implementations. [59] surveys mobile distributed systems platforms, including a variation on the Open Group’s Distributed Computing Environment (DCE), called mobile DCE. All the platforms examined (apart from Lancaster’s tuple-space based platform) use remote procedure call (RPC) based interaction semantics, with relaxed synchrony requirements. However, his conclusions are that the essentially synchronous nature of these protocols are unsuitable for use under degrading network QoS, due to periods of disconnection, which is his reason for suggesting asynchronous communication via tuple-spaces.

5. Conclusions

We summarise the critical issues in managing QoS in a mobile environment, and the most interesting work relating to these issues. We consider the following to be important topics, both in existing work described in the literature, and for future development:

- The provision of context awareness, and adaptability to large-grained system dynamics, including end-system heterogeneity, and network heterogeneity. Context information must be accessible to applications to enable adaptation of QoS by user interfaces [9], [11], [13], [40].

- Context derived maps of resources, with resource models for QoS aware resource selection [11], [13]. Performance monitoring as input to these models to permit adaptation by QoS management [9], [13]. This enables context aware adaptation of protocols, with regard to overhead, and degree of synchrony depending on degree of connectivity [13], [59].

- Provision for the definition of adaptation paths from user-level QoS parameters, including trade-offs, using variation tolerant specification of parameters. Trade-off should take account of meta-data relating to objects involved in requests, priority and deadline information, and available filters. QoS specification may include stability / agility and adaptation / underlying QoS effect hiding trade-off controls [9], [27], [45].

- Reservation without guarantees to increase confidence in the system’s ability to perform tasks as required, particularly during periods of stability in the underlying QoS of the system. Reservation to include concepts of priority, deadlines, duration and volume of data, derived from user or application specification, meta-data and experience in a context. Additionally the use of probabilistic and stochastic resource models to enable task allocation and resource reservation with fault tolerance [31], [35], [43].

- Filtering to include delay or rejection of data, as well as scaling. Selection of filters should be aided by meta-data, and awareness of available resources. Filters should act as “plug-in” modules on QoS aware components of the system [11], [14], [35], [41].

- Control of in-service mobility, and migration of resources which is a mobile network oriented problem [41], [43]. Models of physical and network location and movement.
patterns to enable intelligent caching, replication and migration of data for nomadic use [40], [43], [59].

In summary, much progress has already been made in providing QoS in various mobile and fixed environments. We believe that the techniques developed for QoS provision in specific environments should be brought together in a generic and flexible QoS management system so that the most appropriate methods can be deployed. Key factors to achieve this in a heterogeneous environment are the ability to define perceived QoS at the user interface level; how to relate this to underlying QoS supported within the underlying system, and how QoS aware applications can adapt. Rather than isolating mobile systems as a special case, infrastructure and applications should be able to adapt to their environment, whatever that might be.

6. Acknowledgements

We gratefully acknowledge financial support from the EPSRC (Grant GR/L 06010) and the useful suggestions from the referees.

7. References

Quality of Service in Mobile Computing Environments

Quality of Service in Mobile Computing Environments

Biographies

Dan Chalmers (dc@doc.ic.ac.uk) obtained his BSc (Hons.) in Software Engineering from University of Manchester Institute of Science and Technology and a MSc in Advanced Computing from Imperial College. He worked as a Systems Engineer for Ericsson Ltd., Burgess Hill, U.K. before doing his MSc. He is currently a Research Associate in the Department of Computing, Imperial College and studying part-time for his PhD. His research interests include architectural description languages and dynamic reconfiguration of components and services in response to changes in Quality of Service or context, particularly to support mobile multimedia applications.

http://www-dse.doc.ic.ac.uk/~dc

Morris Sloman (mss@doc.ic.ac.uk) obtained his BSc (Eng) in Electronic Engineering from University of Cape Town, South Africa and a PhD in Computing from University of Essex, U.K. Professor Sloman has been in the Department of Computing, Imperial College since 1976. He has managed many research projects funded by the UK Engineering and Physical Science Research Council (EPSRC), European Union and various industries on management, security and design of distributed systems, multimedia systems and mobility.

He is editor of a reference book on Management of Network and Distributed Systems published by Addison Wesley, co-editor of IEE/IOP/BCS Distributed Systems Engineering Journal and a member of the editorial board of the Journal of Network and Systems Management. He was program co-chair of the First IEEE Enterprise Distributed Object Computing (EDOC) workshop and is a member of the EDOC steering committee. He program co-chair of the 1999 IEEE/IFIP Integrated Management Symposium (IM’99). Professor Sloman is chairman of the EPSRC Multimedia and Network Applications Funding Programme.

http://www-dse.doc.ic.ac.uk/~mss