Power Domains and Iterated Function Systems*

Abbas Edalat

Department of Computing
Imperial College of Science, Technology and Medicine
180 Queen's Gate
London SW7 2BZ UK

Abstract

We introduce the notion of weakly hyperbolic iterated function system (IFS) on a compact metric space, which generalises that of hyperbolic IFS. Based on a domain-theoretic model, which uses the Plotkin power domain and the probabilistic power domain respectively, we prove the existence and uniqueness of the attractor of a weakly hyperbolic IFS and the invariant measure of a weakly hyperbolic IFS with probabilities, extending the classic results of Hutchinson for hyperbolic IFSs in this more general setting. We also present finite algorithms to obtain discrete and digitised approximations to the attractor and the invariant measure, extending the corresponding algorithms for hyperbolic IFSs. We then prove the existence and uniqueness of the invariant distribution of a weakly hyperbolic recurrent IFS and obtain an algorithm to generate the invariant distribution on the digitised screen. The generalised Riemann integral is used to provide a formula for the expected value of almost everywhere continuous functions with respect to this distribution. For hyperbolic recurrent IFSs and Lipschitz maps, one can estimate the integral up to any threshold of accuracy.

1 Introduction

The theory of iterated function systems has been an active area of research since the seminal work of Mandelbrot [31] on fractals and self-similarity in nature in late seventies and early eighties [24, 2, 12, 28, 29, 17, 4]. The theory has found applications in diverse areas such as computer graphics, image compression, learning automata, neural nets and statistical physics [6, 7, 1, 5, 10, 28, 29, 9, 8].

In this paper, we will be mainly concerned with the basic theoretical work of Hutchinson [24] and a number of algorithms based on this work. We start by briefly reviewing the classical work. See [18] for a comprehensive introduction to iterated function systems and fractals.

1.1 Iterated Function Systems

An iterated function system (IFS) \(\{X; f_1, f_2, \ldots, f_N\} \) on a topological space \(X \) is given by a finite set of continuous maps \(f_i : X \rightarrow X \) (\(i = 1, \ldots, N \)). If \(X \) is

a complete metric space and the maps \(f_i \) are all contracting, then the IFS is said to be hyperbolic. For a complete metric space \(X \), let \(H X \) be the complete metric space of all non-empty compact subsets of \(X \) with the Hausdorff metric \(d_H \) defined by
\[
d_H(A, B) = \inf \{ \delta \mid B \subseteq A_\delta \text{ and } A \subseteq B_\delta \}
\]
where, for a non-empty compact subset \(C \subseteq X \) and \(\delta \geq 0 \), the set
\[
C_\delta = \{ x \in X \mid \exists y \in C. d(x, y) \leq \delta \}
\]
is the \(\delta \)-parallel body of \(C \).

An hyperbolic IFS induces a map
\[
F : H X \to H X,
\]
defined by \(F(A) = f_1(A) \cup f_2(A) \cup \ldots \cup f_N(A) \). In fact, \(F \) is also contracting with contractivity factor \(s = \max_i s_i \), where \(s_i \) is the contractivity factor of \(f_i \) (\(1 \leq i \leq N \)). The number \(s \) is called the contractivity of the IFS. By the contracting mapping theorem, \(F \) has a unique fixed point \(A^* \) in \(H X \), which is called the attractor of the IFS, and we have
\[
A^* = \lim_{n \to \infty} F^n(A)
\]
for any non-empty compact subset \(A \subseteq X \) [24]. The attractor is also called a self-similar set.

For applications in graphics and image compression [1, 5, 20], it is assumed that \(X \) is the plane \(\mathbb{R}^2 \) and that the maps are contracting affine transformations. Then, the attractor is usually a fractal, i.e., it has fine, complicated and non-smooth local structure, some form of self-similarity and, usually, a non-integral Hausdorff dimension. A finite algorithm to generate a discrete approximation to the attractor was first obtained by Hepting et al in [23]. (See also [13, 32] It is described in Section 2.3.

1.2 IFS with Probabilities

There is also a probabilistic version of the theory that produces invariant probability distributions and, as a result, coloured images in computer graphics. An hyperbolic IFS with probabilities \(\{X; f_1, \ldots, f_N; p_1, \ldots, p_N\} \) is an hyperbolic IFS \(\{X; f_1, f_2, \ldots, f_N\} \), with \(X \) a compact metric space, such that each \(f_i \) (\(1 \leq i \leq N \)) is assigned a probability \(p_i \) with
\[
0 < p_i < 1 \quad \text{and} \quad \sum_{i=1}^{N} p_i = 1.
\]

Then, the Markov operator is defined by
\[
T : M^1 X \to M^1 X
\]
on the set \(M^1 X \) of normalised Borel measures on \(X \). It takes a Borel measure \(\mu \in M^1 X \) to a Borel measure \(T(\mu) \in M^1 X \) given by
\[
T(\mu)(B) = \sum_{i=1}^{N} p_i \mu(f_i^{-1}(B))
\]
for any Borel subset \(B \subseteq X \). When \(X \) is compact, the Hutchinson metric \(r_H \),
can be defined on M^1X as follows [2]:

$$r_H(\mu, \nu) = \sup \left\{ \int_X f \, d\mu - \int_X f \, d\nu \mid f : X \to \mathbb{R}, \|f(x) - f(y)\| \leq d(x, y), \forall x, y \in X \right\}.$$

Then, using some Banach space theory, including Alaoglu’s theorem, it is shown that the weak* topology and the Hutchinson metric topology on M^1X coincide, thereby making (M^1X, r_H) a compact metric space. If the IFS is hyperbolic, T will be a contracting map. The unique fixed point μ^* of T then defines a probability distribution on X whose support is the attractor of $\{X; f_1, \ldots, f_N\}$ [24]. The measure μ^* is also called a self-similar measure or a multifractal. When $X \subseteq \mathbb{R}^n$, this invariant distribution gives different point densities in different regions of the attractor, and using a colouring scheme, one can colour the attractor accordingly. A finite algorithm to generate a discrete approximation to this invariant measure and a formula for the value of the integral of a continuous function with respect to this measure were also obtained in [23]; they are described in Sections 3.3 and 5 respectively.

The random iteration algorithm for an IFS with probabilities [12, 1] is based on the following ergodic theorem of Elton [17]. Let $\{X; f_1, \ldots, f_N, p_1, \ldots, p_N\}$ be an IFS with probabilities on the compact metric space X and let $x_0 \in X$ be any initial point. Put $\Sigma = \{1, \ldots, N\}$ with the discrete topology. Choose $i_0 \in \Sigma$ at random such that i is chosen with probability p_i. Let $x_1 = f_{i_0}(x_0)$. Repeat to obtain i_1 and $x_2 = f_{i_1}(x_1) = f_{i_1}(f_{i_0}(x_0))$. In this way, construct the sequence $(x_n)_{n \geq 0}$. Suppose B is a Borel subset of X such that $\mu^*(\gamma(B)) = 0$, where μ^* is the invariant measure of the IFS and $\gamma(B)$ is the boundary of B. Let $L(n, B)$ be the number of points in the set $\{x_0, x_1, \ldots, x_n\} \cap B$. Then, Elton’s Theorem says that, with probability one (i.e. for almost all sequences $(x_n)_{n \geq 0} \in \Sigma^\infty$), we have,

$$\mu^*(B) = \lim_{n \to \infty} \frac{L(n, B)}{n + 1}.$$

Moreover, for all continuous functions $g : X \to \mathbb{R}$, we have the following convergence with probability one,

$$\int g \, d\mu^* = \lim_{n \to \infty} \frac{\sum_{i=0}^n g(x_i)}{n + 1},$$

which gives the expected value of g.

1.3 Recurrent IFS

Recurrent iterated function systems generalise IFSs with probabilities as follows [3]. Let X be a compact metric space and $\{X; f_1, f_2, \ldots, f_N\}$ an (hyperbolic) IFS. Let (p_{ij}) be an indecomposable $N \times N$ row-stochastic matrix, i.e.

- $\sum_{j=1}^N p_{ij} = 1$ for all i,
- $p_{ij} \geq 0$ for all i, j, and
- for all i, j there exist i_1, i_2, \ldots, i_N with $i_1 = i$ and $i_N = j$ such that $P_{i_1i_2}P_{i_2i_3}\cdots P_{i_{N-1}i_N} > 0$.

Then $\{X; f_j; p_{ij}; i, j = 1, 2, \ldots, N\}$ is called an (hyperbolic) recurrent IFS. For an hyperbolic recurrent IFS, consider a random walk on X as follows. Specify a starting point $x_0 \in X$ and a starting code $i_0 \in \Sigma$. Pick a number $i_1 \in \Sigma$.
such that p_{ij} is the conditional probability that j is chosen, and define $x_1 = f_i(x_0)$. Then pick $i_2 \in \Sigma$ such that $p_{i_2,j}$ is the conditional probability that j, and put $x_2 = f_{i_2}(x_1) = f_{i_2}(f_i(x_1))$. Continue to obtain the sequence $(x_n)_{n \geq 0}$. The distribution of this sequence converges with probability one to a measure on X called the stationary distribution of the hyperbolic recurrent IFS. This generalises the theory of hyperbolic IFSs with probabilities. In fact, if $p_{ij} = p_i$ is independent of i then we obtain an hyperbolic IFS with probabilities; the stationary distribution is then just the invariant measure and the random walk above reduces to the random iteration algorithm. The first practical software system for fractal image compression, Barnsley’s VRIFS (Vector Recurrent Iterated Function System), which is an interactive image modelling system, is based on hyperbolic recurrent IFSs [5].

1.4 Weakly hyperbolic IFS

In [14], power domains were used to construct domain-theoretic models for IFSs and IFSs with probabilities. It was shown that the attractor of an hyperbolic IFS on a compact metric space is obtained as the unique fixed point of a continuous function on the Plotkin power domain of the upper space. Similarly, the invariant measure of an hyperbolic IFS with probabilities on a compact metric space is the fixed point of a continuous function on the probabilistic power domain of the upper space.

We will here introduce the notion of a weakly hyperbolic IFS. Our definition is motivated by a number of applications, for example in neural nets [22, 8, 16], where one encounters IFSs which are not hyperbolic. This situation can arise for example in a compact interval $X \subseteq \mathbb{R}$ if the IFS contains a smooth map $f : X \to X$ satisfying $|f'(x)| \leq 1$ but not $|f'(x)| < 1$.

Let (X, d) be a compact metric space; we denote the diameter of any set $a \subseteq X$ by $|a| = \sup \{d(x, y) \mid x, y \in a\}$. As before, let $\Sigma = \{1, 2, \ldots, N\}$ with the discrete topology and let Σ^ω be the set of all infinite sequences $i_1i_2\ldots$ $(i_n \in \Sigma$ for $n \geq 1)$ with the product topology.

Definition 1.1 An IFS $\{X; f_1, f_2, \ldots, f_N\}$ is weakly hyperbolic if for all infinite sequences $i_1i_2\ldots \in \Sigma^\omega$ we have $\lim_{n \to \infty} |f_1f_2\ldots f_nX| = 0$.

Weakly hyperbolic IFSs generalise hyperbolic IFSs since clearly a hyperbolic IFS is weakly hyperbolic. One similarly defines a weakly hyperbolic IFS with probabilities and a weakly hyperbolic recurrent IFS.

Example 1.2 The IFS $\{[-1, 1]; f_1, f_2\}$ with $f_1, f_2 : [0, 1] \to [0, 1]$ defined by

$$f_1(x) = -\frac{x^2}{4} + \frac{x}{2} + \frac{3}{4}$$

and $f_2(x) = -f_1(-x)$ is not hyperbolic, since $f_1(-1) = f_2(1) = 1$, but can be shown to be weakly hyperbolic.

Since for a weakly hyperbolic IFS, the map $F : HX \to HX$ is not necessarily contracting, one needs a different approach to prove the existence and uniqueness of the attractor in this more general setting. In this paper, we will use the domain-theoretic model to extend the results of Hutchinson, those of Hepting et al and those in [14] mentioned above to weakly hyperbolic IFSs and weakly hyperbolic IFSs with probabilities. We will then prove the existence and uniqueness of the invariant distribution of a weakly hyperbolic recurrent IFS and obtain a finite algorithm to generate this invariant distribution on a digitised screen. We also deduce a formula for the expected value of an
almost continuous function with respect to this distribution and also a simple expression for the expected value of any Lipschitz map, up to any given threshold of accuracy, with respect to the invariant distribution of a hyperbolic recurrent IFS.

The domain-theoretic framework of IFS, we will show, has the unifying feature that several aspects of the theory of IFS, namely (a) the proof of existence and uniqueness of the attractor of a weakly hyperbolic IFS and that of the invariant measure of a weakly hyperbolic IFS with probabilities or recurrent IFS, (b) the finite algorithms to approximate the attractor and the invariant measures (c) the complexity analyses of these algorithms, and (d) the computation of the expected value of almost everywhere continuous functions (or Lipschitz functions) with respect to these invariant measures, are all integrated uniformly within the domain-theoretic model.

1.5 Notation and Terminology

We recall the basic definitions in the theory of continuous posets (poset=partially ordered set).

A non-empty subset $A \subseteq P$ of a poset (P, \sqsubseteq) is directed if for any pair of elements $x, y \in A$ there is $z \in A$ with $x \sqsubseteq z$ and $y \sqsubseteq z$. A directed complete partial order (dcpo) is a partial order in which every directed subset A has a least upper bound (lub), denoted by $\bigsqcup A$.

An open set $O \subseteq D$ of the Scott topology of a dcpo is a set which is upward closed (i.e. $x \in O \land x \sqsubseteq y \Rightarrow y \in O$) and is inaccessible by lubs of directed sets (i.e. $\bigsqcup A \in O \Rightarrow \exists x \in A. x \in O$). It can be shown that a function $f : D \rightarrow E$ from a dcpo D to another one E is continuous with respect to the Scott topology if it is monotone, i.e. $x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$, and preserves lubs of directed sets, i.e. $\bigsqcup_{i \in I} f(x_i) = f(\bigsqcup_{i \in I} x_i)$, where $\{x_i \mid i \in I\}$ is any directed subset of D. From this it follows that a continuous function $f : D \rightarrow D$ on a dcpo D with least element (or bottom) \bot has a least fixed point given by $\bigsqcup_{n \geq 0} f^n(\bot)$.

Given two elements x, y in a dcpo D, we say x is way-below y, denoted by $x \ll y$, if whenever $y \in \bigsqcup A$ for a directed set A, then there is $a \in A$ with $x \sqsubseteq a$. We say that a subset $B \subseteq D$ is a basis for D if for each $d \in D$ the set A of elements of B way-below d is directed and $d = \bigsqcup A$. We say D is continuous if it has a basis; it is ω-continuous if it has a countable basis. The product of (finite) dcpo’s is an (finite) dcpo in which the Scott topology and the product topology coincide. An ω-algebraic dcpo is an (finite) dcpo with a (countable) basis B satisfying $b \ll b$ for all $b \in B$.

For any map $f : D \rightarrow E$, any point $x \in D$, any subset $A \subseteq D$ and any subset $B \subseteq E$, we denote, whenever more convenient, the image of x by $f(x)$ instead of $f(x)$, the forward image of A by fA instead of $f(A)$ and the pre-image of B by $f^{-1}B$ instead of $f^{-1}(B)$. The lattice of open sets of a topological space X is denoted by $\Omega(X)$. For a compact metric space X, we denote by M^cX, $0 \leq c \leq 1$, the set of all Borel measures μ on X with $\mu(X) = c$.

2 A Domain-theoretic Model

We start by presenting the domain-theoretic framework for studying IFSs.
2.1 The Upper Space

Let X be a compact space. The upper space (UX, \supseteq) of X consists of all non-empty compact subsets of X ordered by reverse inclusion. We recall the following properties of the upper space, for example from [14]. The partial order (UX, \supseteq) is a continuous depo with a bottom element, namely X, in which the least upper bound (lub) of a directed set of compact subsets is their intersection. The way-below relation $B \ll C$ holds if and only if B contains a neighbourhood of C. The Scott topology on UX has a basis given by the collections $\Delta a = \{ C \in UX \mid C \subseteq a \} \ (a \in \Omega(X))$. The singleton map

$$s : X \rightarrow UX$$

$$x \mapsto \{ x \}$$

embeds X onto the set $s(X)$ of maximal elements of UX. Any continuous map $f : X \rightarrow Y$ of compact metric spaces induces a Scott-continuous map $Uf : UX \rightarrow UY$ defined by $Uf(C) = f(C)$; to keep the notations simple we will write Uf simply as f. If X is in fact a compact metric space, then (UX, \supseteq) is an ω-continuous depo and has a countable basis consisting of finite unions of closures of relatively compact open sets of X. Note that the two topological spaces (UX, \supseteq) and (HX, d_H) have the same elements (the non-empty compact subsets) but different topologies.

Hayashi used the upper space to note the following result.

Proposition 2.1 [24] If $\{ X ; f_1 , f_2 , \ldots , f_N \}$ is an IFS on a compact space X, then the map

$$F : UX \rightarrow UX$$

$$A \rightarrow f_1(A) \cup f_2(A) \cup \ldots \cup f_N(A)$$

is Scott-continuous and has therefore a least fixed point, namely,

$$A^* = \bigsqcup_n F^n(X) = \bigcap_n F^n(X).$$

For convenience, we use the same notation for the map $F : UX \rightarrow UX$ as in Equation (1) and the map $F : UX \rightarrow UX$ above, as they are defined in exactly the same way. Since the ordering in UX is reverse inclusion, A^* is the largest compact subset of X with $F(A^*) = A^*$. However, in order to obtain a satisfactory result on the uniqueness of this fixed point and in order to formulate a suitable theory of IFS with probabilities, we need to assume that X is a metric space.

On the other hand if X is a locally compact, complete metric space and $\{ X ; f_1 , f_2 , \ldots , f_N \}$ an hyperbolic IFS, then there exists a non-empty regular compact set A such that $F(A) = f_1(A) \cup f_2(A) \cup \ldots \cup f_N(A) \subseteq A^*$, where A^* is the interior of A (see [14, Lemma 3.10]). The unique attractor of the IFS will then lie in A and, therefore, we can simply work with the IFS $\{ A ; f_1 , \ldots , f_N \}$. In particular, if $X = \mathbb{R}^n$ with the Euclidean metric and s_i, $0 \leq s_i < 1$, is the contractivity factor of f_i ($1 \leq i \leq N$), then it is easy to check that we have $F(A) \subseteq A$, where A is any closed ball of radius R centred at the origin O with

$$R \geq \max_i \frac{d(O, f_i(O))}{1 - s_i},$$

where d is the Euclidean metric. Therefore, as far as an hyperbolic IFS on a locally compact, complete metric space is concerned, there is no loss of generality if we assume that the underlying space X is a compact metric space. We will make this assumption from now on.

1 A regular closed set is one which is equal to the closure of its interior.
Let X be a compact metric space and let $\{X; f_1, \ldots, f_N\}$ be an IFS. The IFS generates a finitely branching tree as in Figure 1, which we call the IFS tree. Note that each node is a subset of its parent node and therefore the diameters of the nodes decrease along each infinite branch of the tree. The IFS tree plays a fundamental role in the domain-theoretic framework for IFSs: As we will see, all the results in this paper are based on various properties of this tree; these include the existence and uniqueness of the attractor of a weakly hyperbolic IFS, the algorithm to obtain a discrete approximation to the attractor, the existence and uniqueness of the invariant measure of a weakly hyperbolic IFS with probabilities, the algorithm to generate this measure on a digitised screen, the corresponding results for the recurrent IFSs and the formula for the expected value of an almost everywhere continuous function with respect to the invariant distribution of a weakly hyperbolic recurrent IFS.

![IFS Tree Diagram](image)

Figure 1. The IFS tree.

We will now use this tree to obtain some equivalent characterisations of a weakly hyperbolic IFS as defined in Definition 1.1.

Proposition 2.2 For an IFS $\{X; f_1, \ldots, f_N\}$ on a compact metric space X, the following are equivalent.

(i) The IFS is weakly hyperbolic.

(ii) For each infinite sequence $i_1 i_2 \ldots \in \Sigma^\omega$, the intersection $\bigcap_{n \geq 1} f_{i_1} f_{i_2} \ldots f_{i_n} X$ is a singleton set.

(iii) For all $\epsilon > 0$, there exists $n \geq 0$ such that $|f_{i_1} f_{i_2} \ldots f_{i_n} X| < \epsilon$ for all finite sequences $i_1 i_2 \ldots i_n \in \Sigma^n$ of length n.

Proof The implications (i) \iff (ii) and also (iii) \Rightarrow (i) are all straightforward. It remains to show (i) \Rightarrow (iii). Assume that the IFS does not satisfy (iii). Then there exists $\epsilon > 0$ such that for all $n \geq 0$ there is a node on level n of the IFS tree with diameter at least ϵ. Since the parent of any such node will also have diameter at least ϵ, we obtain a finitely branching infinite subtree all whose nodes have diameter at least ϵ. By König's lemma this subtree will have an infinite branch $(f_{i_1} f_{i_2} \ldots f_{i_n} X)_{n \geq 0}$. Therefore, the sequence $(|f_{i_1} f_{i_2} \ldots f_{i_n} X|)_{n \geq 0}$ does not converge to zero as $n \to \infty$ and the IFS is not weakly hyperbolic. \square
Corollary 2.3 If the IFS is weakly hyperbolic, then for any sequence \(i_1 i_2 \ldots \in \Sigma^\omega\), the sequence \(\langle f_{i_1} f_{i_2} \ldots f_{i_n} x \rangle_{n \geq 0}\) converges for any \(x \in X\) and the limit is independent of \(x\). Moreover, the mapping
\[
\pi : \Sigma^\omega \rightarrow X,
\]
\[
\pi(i_1 i_2 \ldots) \mapsto \lim_{n \to \infty} f_{i_1} f_{i_2} \ldots f_{i_n} x
\]
is continuous and its image is \(A^* = \bigcap_{b \geq 0} F^n X\).

An IFS \(\{X; f_1, \ldots, f_N\}\) also generates another finitely branching tree as in Figure 2, which we call the action tree. Here, a child of a node is the image of the node under the action of some \(f_i\).

Note that the IFS tree and the action tree have the same set of nodes on any level \(n \geq 0\).

Corollary 2.4 If the IFS is weakly hyperbolic, \(\lim_{n \to \infty} |f_{i_n} f_{i_{n-1}} \ldots f_{i_1} X| = 0\) for all infinite sequences \(i_1 i_2 \ldots \in \Sigma^\omega\).

Conversely, we have the following.

Proposition 2.5 If each mapping \(f_i\) in an IFS is non-expansive and \(\lim_{n \to \infty} |f_{i_n} f_{i_{n-1}} \ldots f_{i_1} X| = 0\) for all infinite sequences \(i_1 i_2 \ldots \in \Sigma^\omega\), then the IFS is weakly hyperbolic.

Proof Assume that that the IFS is not weakly hyperbolic. Then, by condition (iii) of Proposition 2.2, there exists \(\epsilon > 0\) such that for each \(n \geq 0\) there is a node \(f_{i_n} f_{i_{n-1}} \ldots f_{i_1} X\) on level \(n\) of the action tree with diameter at least \(\epsilon\). Since, by assumption, \(f_{i_n}\) is non-expansive, it follows that the parent node \(f_{i_{n+1}} \ldots f_{i_1} X\) has diameter at least \(\epsilon\). We then have a finitely branching infinite subtree with nodes of diameter at least \(\epsilon\). Therefore, by König's lemma, the action tree has an infinite branch with nodes of diameter at least \(\epsilon\), which gives a contradiction. \(\square\)

By Proposition 2.1, we already know that a weakly hyperbolic IFS has a fixed point given by \(A^* = \bigcup_{b \geq 0} F^n X = \bigcap_{b \geq 0} F^n X\). Note that \(F^n X\) is the union of the nodes of the IFS tree on level \(n\), and that \(A^*\) is the set of leafs of all infinite branches of this tree. Such a set is an example of a finitely generable
subset of the ω-continuous dcpo UX as it is obtained from a finitely branching tree of elements of UX. This gives us the motivation to study the Plotkin power domain of UX which can be presented precisely by the set of finitely generable subsets of UX. We will then use the Plotkin power domain to prove the uniqueness of the fixed point of a weakly hyperbolic IFS and deduce its other properties.

2.2 Finitely Generable Sets

The following construction of the Plotkin power domain of an ω-continuous dcpo and the subsequent properties are a straightforward generalisation of those for an ω-algebraic dcpo presented in [34, 35]. Suppose (D, \sqsubseteq) is any ω-continuous dcpo and $B \subseteq D$ a countable basis for it. Consider any finitely branching tree, whose branches are all infinite and whose nodes are elements of D and each child y of any parent node x satisfies $x \sqsubseteq y$. The set of lub's of all branches of the tree is called an \textit{finitely generable subset} of D. It can be shown that any finitely generable subset of D can also be generated in the above way by a finitely branching tree of elements of the basis B, such that each node is way-below its parents. We denote the set of finitely generable subsets of D by $F(D)$. It is easily seen that $P_f(B) \subseteq P_f(D) \subseteq F(D)$, where $P_f(S)$ denotes the set of all finite subsets of the set S. For $A \in P_f(B)$ and $C \in F(D)$, the Egli-Milner order \sqsubseteq_{EM} is defined by $A \sqsubseteq_{EM} C$ iff

$$\forall a \in A \exists c \in C. a \sqsubset c \quad \land \quad \forall c \in C \exists a \in A. a \sqsubset c.$$

It is easily seen that \sqsubseteq_{EM} is a pre-order (reflexive and transitive but not necessarily anti-symmetric). It can be extended to a pre-order on $F(D)$ by defining $C_1 \sqsubseteq_{EM} C_2$ iff for all $A \in P_f(B)$ whenever $A \sqsubseteq_{EM} C_1$ holds we have $A \sqsubseteq_{EM} C_2$. Then $(F(D), \sqsubseteq_{EM})$ becomes an ω-continuous dcpo except that \sqsubseteq_{EM} is a pre-order rather than a partial order. A basis is given by $(P_f(D), \sqsubseteq_{EM})$ and a countable basis by $(P_f(B), \sqsubseteq_{EM})$. The Plotkin power domain or the convex power domain CD of D is then defined to be the quotient $(F(D)/\sqsubseteq_{EM}, \sqsubseteq_{EM}/\sqsubseteq)$, where the equivalence relation \equiv on $F(D)$ is given by $C_1 \equiv C_2$ iff $C_1 \sqsubseteq_{EM} C_2$ and $C_2 \sqsubseteq_{EM} C_1$. If $A \in F(D)$ and A consists of maximal elements of D, then A will be a maximal element of $(F(D), \sqsubseteq_{EM})$ and its equivalence class will consist of A only. If D has a bottom element \bot, then $(F(D), \sqsubseteq_{EM})$ has a bottom element, namely $\{ \bot \}$, and its equivalence class consists of itself only. Finally, we note that, for any dcpo E, any monotone map $g : P_f(D) \to E$ has a unique extension to a Scott-continuous map $g : CD \to E$ which, for convenience, we denote by g.

Now let D be UX where X is, as before, a compact metric space and $\{X; f_1, \ldots, f_N\}$ an IFS. Let $F : UX \to UX$ be as before and consider the Scott-continuous map $f : CUX \to CUX$ which is defined on the basis $P_f(UX)$ by the monotone map

$$f : P_f(UX) \to CUX$$

$$\{A_j \mid 1 \leq j \leq M\} \mapsto \{f_i(A_j) \mid 1 \leq j \leq M, 1 \leq i \leq N\}.$$

The set of nodes at level n of the IFS tree is then represented by $f^n\{X\}$. We also consider the Scott-continuous map $U : CUX \to UX$, defined on the above basis by the monotone map

$$U : P_f(UX) \to CUX$$

$$\{A_j \mid 1 \leq j \leq M\} \mapsto \bigcup_{1 \leq i \leq N} A_j.$$

The following properties were shown in [14]; for the sake of completeness, we reiterate them here in the context of our presentation of the Plotkin power
domain in terms of finitely generable subsets. The diagram

\[
\begin{array}{c}
X \\ \downarrow F \\ U \xrightarrow{f} CUX
\end{array}
\]

commutes, which can be easily seen by considering the restriction to the basis \(\mathcal{P}_f(UX) \). It follows that \(U \) maps any fixed point of \(f \) to a fixed point of \(F \). Moreover, it maps the least fixed point of \(f \) to the least fixed point of \(F \), since for each \(n \geq 0 \), \(UF^nX = F^nU \{ X \} = F^nX \), and, therefore,

\[
U \bigsqcup_{n \geq 0} F^n \{ X \} = \bigsqcup_{n \geq 0} UF^n \{ X \} = \bigsqcup_{n \geq 0} F^nX.
\]

On the other hand, for \(A \in UX \), let

\[
S(A) = \{ s(x) \mid x \in A \} = \{ \{ x \} \mid x \in A \} \subseteq UX.
\]

It is easy to see that \(S(A) \) is a finitely generable subset of \(UX \). This can be shown for example by constructing a finitely branching tree such that the set of nodes at level \(n \geq 0 \) consists of the closure of open subsets with diameters less than \(1/2^n \). It follows that \(S(A) \) is an element of \(CUX \) and, by the above remark, it is a maximal element. Furthermore, the Scott-continuity of \(f \) implies that the following diagram commutes:

\[
\begin{array}{c}
UX \\ \downarrow F \\ S \xrightarrow{f} CUX
\end{array}
\]

Therefore, \(S \) maps any fixed point of \(F \) to a fixed point of \(f \). Note also that \(S \) is one-to-one.

Proposition 2.6 If the IFS \(\{ X; f_1, \ldots, f_N \} \) is weakly hyperbolic, then the two maps \(F : UX \to UX \) and \(f : CUX \to CUX \) have unique fixed points \(A^* = \bigcap_{n \geq 0} F^nX \) and \(SA^* \) respectively.

Proof For each \(n \geq 0 \), we have

\[
f^n \{ X \} = \{ f_{i_1}f_{i_2} \ldots f_{i_n}X \mid i_1i_2 \ldots i_n \in \Sigma^n \} = SF^nX.
\]

It follows that the least fixed point of \(f \) is given by \(\bigsqcup_{n \geq 0} f^n \{ X \} = \{ \lim_{n \to \infty} f_{i_1}f_{i_2} \ldots f_{i_n}X \mid i_1i_2 \ldots i_n \in \Sigma^n \} \). Since the IFS is weakly hyperbolic, this set consists of singleton sets; in fact we have \(\bigsqcup_{n \geq 0} f^n \{ X \} = S \bigcap_{n \geq 0} F^nX = SA^* \). But \(SA^* \) is maximal in \(CUX \), so this least fixed point is indeed the unique fixed point of \(f \). On the other hand, since \(S \) is one-to-one and takes any fixed point of \(F \) to a fixed point of \(f \), it follows that \(A^* \) is the unique fixed point of \(F \). \(\square \)

In order to get the generalisation of Equation (2), we need the following lemma whose straightforward proof is omitted.
Lemma 2.7 Let \(\{B_i \mid 1 \leq i \leq M\} \), \(\{C_i \mid 1 \leq i \leq M\} \), \(\{D_i \mid 1 \leq i \leq M\} \) be three finite collections of non-empty compact subset of the metric space \(X \). If \(C_i, D_i \subseteq B_i \) and \(|B_i| < \epsilon \) for \(1 \leq i \leq M \), then \(d_H(\bigcup_i C_i, \bigcup_i D_i) < \epsilon \). \(\Box \)

Theorem 2.8 If the IFS \(\{X; f_1, \ldots, f_N\} \) is weakly hyperbolic, then the map \(F : HX \rightarrow HX \) has a unique fixed point \(A^* \), the attractor of the IFS. Moreover, for any \(A \in HX \), we have \(F^nA \rightarrow A^* \) in the Hausdorff metric as \(n \rightarrow \infty \).

Proof Since the set of fixed points of \(F : HX \rightarrow HX \) is precisely the set of fixed points of \(F : UX \rightarrow UX \), the first part follows immediately from Proposition 2.6 and \(A^* = \bigcap_{n \geq 0} F^nX \) is indeed the unique fixed point of \(F : HX \rightarrow HX \). Let \(A \subseteq X \) be any non-empty compact subset, and let \(\epsilon > 0 \) be given. By Proposition 2.2(iii), there exists \(m \geq 0 \) such that for all \(n \geq m \) the diameters of all the subsets in the collection \(F^m\{X\} = \{f_{i_1}f_{i_2} \cdots f_{i_n}X \mid i_1, i_2, \ldots, i_n \in \Sigma^n\} \) are less that \(\epsilon \). Clearly, \(f_{i_1}f_{i_2} \cdots f_{i_n}A \subseteq f_{i_1}f_{i_2} \cdots f_{i_{n-1}}X \) and \(A^* \cap f_{i_1}f_{i_2} \cdots f_{i_n}X \subseteq f_{i_1}f_{i_2} \cdots f_{i_n}X \) for all \(i_1, i_2, \ldots, i_n \in \Sigma^n \). Therefore, by the lemma, \(d_H(F^nA, A^*) < \epsilon \). \(\Box \)

2.3 Plotkin Power Domain Algorithm

Given a weakly hyperbolic IFS \(\{X; f_1, \ldots, f_N\} \), we want to formulate an algorithm to obtain a finite subset \(A_r \) of \(X \) which approximates the attractor \(A^* \) of the IFS up to a given threshold \(\epsilon > 0 \) with respect to the Hausdorff metric.

We will make the assumption that for each node of the IFS tree it is decidable whether or not the diameter of the node is less than \(\epsilon \). For an hyperbolic IFS we have

\[
|f_{i_1}f_{i_2} \cdots f_{i_n}[0, 1]^n| \leq s_1 s_2 \cdots s_n |X|
\]

where \(s_i \) is the contractivity factor of \(f_i \), and, therefore, the above relation is clearly decidable. However, there are other interesting cases in applications where this relation is also decidable. For example, if \(X = [0, 1]^m \subseteq \mathbb{R}^m \) and if, for every \(i \in \Sigma \), each of the co-ordinates of the map \(f_i : [0, 1]^m \rightarrow [0, 1]^m \) is, say, monotonically increasing in each of its arguments, then the diameter of any node is easily computed as

\[
|f_{i_1} \cdots f_{i_n}[0, 1]^m| = d(f_{i_1} \cdots f_{i_n}(0, \ldots, 0), f_{i_1} \cdots f_{i_n}(1, \ldots, 1))
\]

where \(d \) is the Euclidean distance. It is then clear that the above relation is decidable in this case.

Let \(\epsilon > 0 \) be given and fix \(x_0 \in X \). We construct a finite subtree of the IFS tree as follows. For any infinite sequence \(i_1i_2 \cdots \in \Sigma^\infty \), the sequence \(\{f_{i_1}f_{i_2} \cdots f_{i_n}X\}_{n \geq 0} \) is decreasing and tends to zero, and, therefore, there is a least integer \(m \geq 0 \) such that \(|f_{i_1}f_{i_2} \cdots f_{i_m}X| \leq \epsilon \). We truncate the infinite branch \(\{f_{i_1}f_{i_2} \cdots f_{i_n}X\}_{n \geq 0} \) of the IFS tree at the node \(f_{i_1}f_{i_2} \cdots f_{i_m}X \) which is then a leaf of the truncated tree as depicted in Figure 3, and which contains the distinguished point \(f_{i_1}f_{i_2} \cdots f_{i_m}x_0 \in f_{i_1}f_{i_2} \cdots f_{i_m}X \).
While traversing the tree, the algorithm recursively computes then this number is strictly less than one and is the contractivity of where is obtained as follows. We have is the contractivity of the IFS. Therefore the least integer is at most arithmetic computations at each node. Therefore, the total number of computations is at most $9(N + N^2 + N^3 + \ldots + N^h) = 9(N^{h+1} - 1)/(N - 1)$, which is $O(N^h)$.

Figure 3. A branch of the truncated IFS tree.

By Proposition 2.2, the truncated tree will have finite depth. Let L_t denote the set of all leaves of this finite tree and let $A_t \subseteq X$ be the set of all distinguished points of the leaves. For each leaf $l \in L_t$, the attractor satisfies \(l \supseteq A_t \neq \emptyset \) and \(A_t = \bigcup_{l \in L_t} l \cap A^* \). On the other hand, for each leaf $l \in L_t$, we have \(l \cap A_t \neq \emptyset \) and \(A_t = \bigcup_{l \in L_t} l \cap A_t \). It follows, by Lemma 2.7, that $d_H(A_t, A^*) \leq \epsilon$. The algorithm therefore traverses the IFS tree in some specific order to obtain the set of leaves L_t and hence the finite set A_t which is the required discrete approximation.

For an hyperbolic IFS and for $X = A^*$, this algorithm reduces to that of Hepting et al [23]. We will here obtain an upper bound for the complexity of the algorithm when the maps f_i are contracting affine transformations as this is always the case in image compression. First, we note that there is a simple formula for the contractivity of an affine map. In fact, suppose the map $f : \mathbb{R}^2 \to \mathbb{R}^2$ is given at the point $z \in \mathbb{R}^2$ in matrix notation by $z \mapsto Wz + t$, where the 2×2 matrix W is the linear part and $t \in \mathbb{R}^2$ is the translation part of f. Then, the infimum of numbers ϵ with

\[
|f(z) - f(z')| \leq \epsilon |z - z'|
\]

is the greatest eigenvalue (in absolute value) of the matrix W^tW, where W^t is the transpose of W [11]. This greatest eigenvalue is easily calculated for the matrix,

\[
W = \begin{pmatrix} a & b \\ c & d \end{pmatrix},
\]

to be given by

\[
\sqrt{a + b + \sqrt{(a - b)^2 + c^2}},
\]

where $a = (a^2 + c^2)/2$, $b = (b^2 + d^2)/2$, and $c = ab + cd$. If f is contracting then this number is strictly less than one and is the contractivity of f. While traversing the tree, the algorithm recursively computes $f_i f_{i_2} \ldots f_{i_n} x_0$ and $s_{i_1} s_{i_2} \ldots s_{i_n} |X|$, and if $s_{i_1} s_{i_2} \ldots s_{i_n} |X| \leq \epsilon$, then the point $f_i f_{i_2} \ldots f_{i_n} x_0$ is taken to belong to A_t. An upper bound for the height of the truncated tree is obtained as follows. We have $s_{i_1} s_{i_2} \ldots s_{i_n} \leq s^h$, where $s = \max_{1 \leq i \leq N} s_i < 1$ is the contractivity of the IFS. Therefore the least integer h with $s^h |X| \leq \epsilon$ is an upper bound i.e. $h = \lceil \log(\epsilon/|X|)/\log s \rceil$, where $\lceil a \rceil$ is the least non-negative integer greater than or equal to a. A simple counting shows that there are at most 9 arithmetic computations at each node. Therefore, the total number of computations is at most $9(N + N^2 + N^3 + \ldots + N^h) = 9(N^{h+1} - 1)/(N - 1)$, which is $O(N^h)$.

12
Next we consider the problem of plotting, on the computer screen, the discrete approximation to the attractor of a weakly hyperbolic IFS in \mathbb{R}^2. The digitisation of the discrete approximation A_ϵ inevitably produces a further error in approximating the attractor A^ϵ. We will obtain a bound for this error. Suppose we have a weakly hyperbolic IFS $\{X; f_1, \ldots, f_N\}$ with $X \subseteq \mathbb{R}^2$. By a translation of origin and rescaling if necessary, we can assume that $X \subseteq [0, 1] \times [0, 1]$. Suppose, furthermore, that the computer screen, with resolution $r \times r$, is represented by the unit square $[0, 1] \times [0, 1]$ digitised into a two-dimensional array of $r \times r$ pixels. We regard each pixel as a point so that the distance between nearest pixels is given by $\delta = 1/(r-1)$. We assume that for each point in A_ϵ the nearest pixel is plotted on the screen. Let A_ϵ^δ be the set of pixels plotted. Since any point in $[0, 1] \times [0, 1]$ is at most $\sqrt{2}\delta/2$ from its nearest pixel, it is easy to see that $d_H(A_\epsilon^\delta, A_\epsilon) \leq \sqrt{2}\delta/2$. It follows that

$$d_H(A_\epsilon^\delta, A^\epsilon) \leq d_H(A_\epsilon^\delta, A_\epsilon) + d_H(A_\epsilon, A^\epsilon) \leq \sqrt{2}\delta + \epsilon.$$

In the worst case, the error in the digitisation process, for a given resolution $r \times r$ of the screen, is at least $\sqrt{2}\delta/2$ whatever the value of the discrete threshold $\epsilon > 0$. On the other hand, even in the case of an hyperbolic IFS, the complexity of the algorithm grows as $N^{-\log_2 \epsilon}$ as $\epsilon \to 0$. In practice, the optimal balance between accuracy and complexity is reached by taking ϵ to be of the order of $\delta = 1/(r-1)$.

3 Invariant Measure of an IFS with Probabilities

We prove the existence and uniqueness of the invariant measure of a weakly hyperbolic IFS with probabilities by generalising the corresponding result for an hyperbolic IFS in [14] which is based on the normalised probabilistic power domain. We first recall the basic definitions.

3.1 Probabilistic power domain

A valuation on a topological space Y is a map $\nu : \Omega(Y) \to [0, \infty)$ which satisfies:

(i) $\nu(a) + \nu(b) = \nu(a \cup b) + \nu(a \cap b)$,

(ii) $\nu(\emptyset) = 0$, and

(iii) $a \subseteq b \Rightarrow \nu(a) \leq \nu(b)$.

A continuous valuation [30, 26, 25] is a valuation such that whenever $A \subseteq \Omega(Y)$ is a directed set (wrt \subseteq) of open sets of Y, then

$$\nu\left(\bigcup_{O \in A} O \right) = \sup_{O \in A} \nu(O).$$

For any $b \in Y$, the point valuation based at b is the valuation $\delta_b : \Omega(Y) \to [0, \infty)$ defined by

$$\delta_b(O) = \begin{cases} 1 & \text{if } b \in O \\ 0 & \text{otherwise.} \end{cases}$$

Any finite linear combination

$$\sum_{i=1}^{n} r_i \delta_{b_i}$$

do point valuations δ_{b_i} with constant coefficients $r_i \in [0, \infty)$, $(1 \leq i \leq n)$, is a continuous valuation on Y; we call it a simple valuation.
The normalised probabilistic power domain, \(P^1Y \), of a topological space \(Y \) consists of the set of continuous valuations \(\nu \) on \(Y \) with \(\nu(Y) = 1 \) and is ordered as follows:

\[
\mu \subseteq \nu \text{ iff for all open sets } O \text{ of } Y, \mu(O) \leq \nu(O).
\]

The partial order \((P^1Y, \subseteq) \) is a dcpo with bottom in which the lub of a directed set \(\langle \mu_i \rangle_{i \in I} \) is given by \(\bigcup \mu_i = \nu \), where for \(O \in \Omega(Y) \) we have,

\[
\nu(O) = \sup_{i \in I} \mu_i(O).
\]

Moreover, if \(Y \) is an \(\omega \)-continuous dcpo with a bottom element \(\perp \), then \(P^1Y \) is also an \(\omega \)-continuous dcpo with a bottom element \(\delta \perp \) and has a basis consisting of simple valuations [25, 26, 15]. Therefore, any \(\mu \in P^1Y \) is the lub of an \(\omega \)-chain of normalised simple valuations and, hence by a lemma of Saheb-Djahromi [33] can be uniquely extended to a Borel measure on \(Y \) which we denote for convenience by \(\mu \) as well [33, page 24]. For \(0 \leq c \leq 1 \), let \(P^cY \) denote the dcpo of valuations with total mass \(c \), i.e. \(P^cY = \{ \mu \in PY | \mu(Y) = c \} \). Since \(P^cY \) is obtained from \(P^1Y \) by a simple rescaling, it shares the above properties of \(P^1Y \); the case \(c = 0 \) is of course trivial.

For two simple valuations

\[
\mu_1 = \sum_{b \in B} r_b \delta_b \quad \mu_2 = \sum_{c \in C} s_c \delta_c
\]

in \(P^1Y \), where \(B, C \subseteq P_f(Y) \), we have by the splitting lemma [26, 15]: \(\mu_1 \subseteq \mu_2 \) iff, for all \(b \in B \) and all \(c \in C \), there exists a nonnegative number \(t_{b,c} \) such that

\[
\sum_{c \in C} t_{b,c} = r_b \quad \sum_{b \in B} t_{b,c} = s_c
\]

and \(t_{b,c} \neq 0 \) implies \(b \subseteq c \). We can consider any \(b \in B \) as a source with mass \(r_b \), any \(c \in C \) as a sink with mass \(s_c \), and the number \(t_{b,c} \) as the flow of mass from \(b \) to \(c \). Then, the above property can be regarded as conservation of total mass.

3.2 Model for IFS with probabilities

Now let \(X \) be a compact metric space so that \((UX, \subseteq) \) is an \(\omega \)-continuous dcpo with bottom \(X \). Therefore, \(P^1UX \) is an \(\omega \)-continuous dcpo with bottom \(\delta_X \). Recall that the singleton map \(s : X \rightarrow UX \) with \(s(x) = \{ x \} \) embeds \(X \) onto the set \(s(X) \) of maximal elements of \(UX \). For any open subset \(a \subseteq X \), the set \(s(a) = \{ \{ x \} | x \in a \} \subseteq UX \) is a \(G_\delta \) subset and, hence, a Borel subset [14, Corollary 5.9]. A valuation \(\mu \in P^1UX \) is said to be supported in \(s(X) \) if \(\mu(UX \setminus s(X)) = 0 \). If \(\mu \) is supported in \(s(X) \), then the support of \(\mu \) is the set of points \(y \in s(X) \) such that \(\mu(O) > 0 \) for any Scott-neighbourhood \(O \subseteq UX \) of \(y \). Any element of \(P^1UX \) which is supported in \(s(X) \) is a maximal element of \(P^1UX \) [14, Proposition 5.18]; we denote the set of all valuations which are supported in \(s(X) \) by \(S^1X \). We can identify \(S^1X \) with the set \(M^1X \) of normalised Borel measures on \(X \) as follows. Let

\[
\epsilon : M^1X \rightarrow S^1X \quad \mu \mapsto \mu \circ s^{-1}
\]

and

\[
j : S^1X \rightarrow M^1X \quad \nu \mapsto \nu \circ s.
\]
\textbf{Theorem 3.1} [14, Theorem 5.21] The maps e and j are well-defined and induce an isomorphism between S^1X and M^1X. \square

For $\mu \in M^1X$ and an open subset $a \subseteq X$,
\[\mu(a) = e(\mu)(s(a)) = e(\mu)(\Box a). \] (6)

Let \{\(X; f_1, \ldots, f_N; p_1, \ldots, p_N\)\} be an IFS with probabilities on the compact metric space X. Define
\[H : P^1UX \to P^1UX \]
\[\mu \mapsto H(\mu) \]
by $H(\mu)(O) = \sum_{i=1}^{N} p_i \mu(f_i^{-1}(O))$. Note that H is defined in the same way as the Markov operator T in Equation (3). Then, H is Scott-continuous and has, therefore, a least fixed point given by $\nu^* = \bigcup_{m} H^m \delta_X$, where
\[H^m \delta_X = \sum_{n=1}^{N} p_{i_1} p_{i_2} \cdots p_{i_m} \delta_{f_{i_1} f_{i_2} \cdots f_{i_m} X}. \] (7)

Furthermore, we have:

\textbf{Theorem 3.2} For a weakly hyperbolic IFS, the least fixed point ν^* of H is in S^1X. Hence, it is a maximal element of P^1UX and therefore the unique fixed point of H. The support of ν^* is given by $SA^* = \{x \mid x \in A^*\}$ where $A^* \subseteq X$ is the attractor of the IFS. \square

\textbf{Proof} To show that $\nu^* \in S^1X$, it is sufficient to show that $\nu^*(s(X)) = 1$. For each integer $k \geq 1$, let \{\(b_i\)\}_{i \in I_k}\ be the collection of all open balls \(b_i \subseteq X\) of radius less than $\frac{1}{k}$. Let $O_k = \bigcup_{i \in I_k} \Box b_i$. Then \(\{O_k\}_{k \geq 1}\) is a decreasing sequence of open subsets of UX and \(s(X) = \bigcap_{k \geq 1} O_k\). Therefore, $\nu^*(s(X)) = \inf_{k \geq 1} \nu^*(O_k)$. By Proposition 2.2(iii), for each $k \geq 1$ there exists some integer $n \geq 0$ such that all the nodes of the IFS tree on level n have diameter strictly less than $1/k$. Hence, for all finite sequences $i_1 \ldots i_m \in \Sigma^n$ with $m \geq n$, we have $f_{i_1} f_{i_2} \ldots f_{i_m} X \in O_k$. Therefore, for all $m \geq n$,
\[(H^m \delta_X)(O_k) = \sum_{j_1, j_2 \ldots j_m X \in O_k} p_{i_1} p_{i_2} \cdots p_{i_m} = 1 \]

It follows that $\nu^*(O_k) = \sup_{m \geq 0} (H^m \delta_X)(O_k) = 1$, and, therefore, $\nu^*(s(X)) = \inf_{k \geq 1} \nu^*(O_k) = 1$, as required. To show that SA^* is the support of ν^*, let $x \in A^*$ and, for any integer $k \geq 1$, let $B_k(x) \subseteq X$ be the open ball of radius $1/k$ centred at x. Then \{\(\{x\}\)\} is the lub of some infinite branch of the IFS tree: \{\(x\)\} = $\bigcap_{n \geq 0} f_{i_1} \ldots f_{i_n} X$ for some $i_1 i_2 \ldots \in \Sigma^n$. In the above, let $n \geq 0$ be such that the diameters of all nodes of the IFS tree on level n are strictly less than $1/k$. Then,
\[\nu^*(\Box B_k(x)) = \sup_{m \geq 0} (H^m \delta_X)(\Box B_k(x)) \geq (H^0 \delta_X)(\Box B_k(x)) \geq p_{i_1} \ldots p_{i_n} > 0. \]

Since \(\Box B_k(x)\) is a neighbourhood of \{\(x\)\} in UX, it follows that \{\(x\)\} is in the support of ν^*. On the other hand, if $x \notin A^*$, then there is an open ball $B_k(x) \subseteq X$ which does not intersect A^*. Let $n \geq 0$ be such that the nodes on level n of the IFS tree have diameters strictly less than $1/k$. Then, for all $m \geq n$, we have $(H^m \delta_X)(B_k(x)) = 0$ and it follows that
\[\nu^*(B_k(x)) = \sup_{m \geq 0} (B_k(x)) = 0, \]
and \{\(x\)\} is not in the support of ν^*. \square

\textbf{Corollary 3.3} For a weakly hyperbolic IFS, the normalised measure $\mu^* = j(\nu^*) \in M^1X$ is the unique fixed point of the Markov operator $T : M^1X \to M^1X$. Its support is the unique attractor A^* of the IFS. \square
Probabilistic power domain algorithm

Since the Plotkin power domain algorithm in Section 2.3 provides a digitised discrete approximation \(A^\delta \) to the attractor \(A^* \), the question is how to render the pixels in \(A^\delta \) to obtain an approximation to the invariant measure \(\mu^* \). We now describe an algorithm to do this, which extends that of Hepting et al for an hyperbolic IFS with probabilities [23]. Assume again that the unit square represents the digitised screen with \(r \times r \) pixels. Suppose \(\{ X; f_1, \ldots, f_N, p_1, \ldots, p_N \} \) is a weakly hyperbolic IFS with \(X \subseteq [0, 1] \times [0, 1] \) and \(\epsilon > 0 \) is the discrete threshold. Fix \(x_0 \in X \). The simple valuation \(H^m X \) of Equation (7) can be depicted by the \(m^{th} \) level of the IFS tree labelled with transitional probabilities as in Figure 4.

The root \(X \) of the tree has mass one and represents \(\delta X \). Any edge going from a node \(t(X) \), where \(t = f_{i_1} \circ f_{i_2} \circ \ldots \circ f_{i_m} \) is a finite composition of the maps \(f_i \), to its child \(t(f_i(X)) \) is labelled with transitional probability \(p_i \) for \(i = 1, \ldots, N \). The transitional probability label on each edge gives the flow of mass from the parent node (source) to the child node (sink) in the sense of Equation (5) in the splitting lemma. The total mass of the node \(f_{i_1} f_{i_2} \ldots f_{i_m} X \) on level \(m \) is, therefore, the product \(p_{i_1} p_{i_2} \ldots p_{i_m} \) of the labels of all the edges leading from the root to the node, in agreement with the expansion of \(H^m \delta X \) in Equation (7). We again make the assumption that it is decidable that the diameter of any node is less than \(\epsilon \) or not. The algorithm then proceeds, as in the deterministic case, to find all the leaves of the IFS tree and, this time, computes the mass of each leaf. The set of all weighted leaves of the truncated IFS tree represents a simple valuation which is a discrete approximation to the invariant measure \(\mu^* \). Then the total mass given to each pixel in \(A^\delta \) is the sum of the masses of all leaves corresponding to that pixel.

In the hyperbolic case, the probabilistic algorithm traverses the finite tree and recursively computes \(f_{i_1} f_{i_2} \ldots f_{i_m} x_0, p_{i_1} p_{i_2} \ldots p_{i_m} \) and \(s_{i_1} s_{i_2} \ldots s_{i_m} |X| \), and if \(s_{i_1} s_{i_2} \ldots s_{i_m} |X| \leq \epsilon \), then the weight of the pixel for \(f_{i_1} f_{i_2} \ldots f_{i_m} x_0 \) is incremented by \(p_{i_1} p_{i_2} \ldots p_{i_m} \). A simple counting shows that this takes at most 10 arithmetic computations at each node. Therefore, the total number of computations is at most \(10(N + N^2 + N^3 + \ldots + N^h) \), which is \(O(N^h) \) as before.
4 A Model for Recurrent IFSs

In this section, we will construct a domain-theoretic model for weakly hyperbolic recurrent IFSs. Assume that \(\{X; f_1, \ldots, f_N \} \) is an IFS and \((p_{ij}) \) \((1 \leq i, j \leq N) \) is an indecomposable row-stochastic matrix. Then \(\{X; f_j; p_{ij}; i, j = 1, 2, \ldots, N \} \) is a recurrent IFS. We will see below that this gives rise to a Markov chain on the coproduct of \(N \) copies of \(X \). (See [19] for an introduction to Markov chains.)

For a topological space \(Y \), we let \(\bar{X} = \sum_{j=1}^{N} Y \times \{j\} \) denote the coproduct (disjoint sum) of \(N \) copies of \(Y \) [36], i.e.

\[
\bar{X} = \sum_{j=1}^{N} Y \times \{j\} = \{(y, j) \mid y \in Y, 1 \leq j \leq N \}
\]

with its frame of open sets given by \(\Omega(\bar{X}) = (\Omega(Y))^N \), and its Borel subsets by \(\mathcal{B}(\bar{X}) = (\mathcal{B}(Y))^N \), where \(\mathcal{B}(Y) \) is the set of Borel subsets of \(Y \).

Any normalised Borel measure \(\mu \in \mathcal{M}^1\bar{X} \) is a mapping

\[
\mu : \mathcal{B}(Y)^N \to [0, 1]
\]

which can be written as \(\mu = (\mu_j)_j = (\mu_1, \mu_2, \ldots, \mu_N) \) with \(\mu_j \in \mathcal{M}^1 Y \) for some \(c_j \), \((0 \leq c_j \leq 1 \) and \(\sum_{j=1}^{N} c_j = 1) \), such that for \(\bar{B} = (B_j)_j = (B_1, B_2, \ldots, B_N) \in (\mathcal{B}(Y))^N \) we have \(\mu(\bar{B}) = \sum_{j=1}^{N} \mu_j(B_j) \).

4.1 The Generalised Markov Operator

A recurrent IFS induces a Markov process on \(\bar{X} = \sum_{j=1}^{N} X \times \{j\} \) as follows [3]. Let \(i_0, i_1, i_2, \ldots \) be a Markov chain on \(\{1, 2, \ldots, N\} \) with transition probability matrix \((p_{ij}) \). Let \(x_0 \in X \) and consider the process

\[
Z_0 = x_0 \quad Z_n = f_{i_n}Z_{n-1}
\]

which gives us the random walk described in Subsection 1.3. Then \((Z_n, i_n) \) is a Markov process on \(\bar{X} = \sum_{j=1}^{N} X \times \{j\} \) with the Markov transition probability function

\[
K((x, i), \bar{B}) = \sum_{j=1}^{N} p_{ij} \chi_B(f_j x, j)
\]

which is the probability of transition from \((x, i)\) into the Borel set \(\bar{B} \subseteq \bar{X} \) (here \(\chi_B \) is the characteristic function of the set \(B \)). This transitional probability induces the generalised Markov operator defined by

\[
\mathcal{T} : \mathcal{M}^1\bar{X} \to \mathcal{M}^1\bar{X}
\]

\[
\mathcal{T} = \mathcal{T}(\mu)
\]

with

\[
\mathcal{T}(\mu)(\bar{B}) = \int_{\bar{X}} K((x, i), \bar{B}) d\mu = \int_{\bar{X}} \sum_{j=1}^{N} p_{ij} \chi_B(f_j x, j) d\mu
\]

\[
= \sum_{i=1}^{N} \int_{\bar{X}} \sum_{j=1}^{N} p_{ij} \chi_B(f_j x) d\mu_i = \sum_{i=1}^{N} \sum_{j=1}^{N} p_{ij} \int \chi_B(f_j x) d\mu_i
\]

\[
= \sum_{j=1}^{N} \sum_{i=1}^{N} p_{ij} \mu_i(f_j^{-1} B_j).
\]
In other words,

\[(\mathcal{T}(\mu))_j = \sum_{i=1}^{N} p_{ij} \mu_i \circ f_j^{-1}.\] (8)

Note that \(\mathcal{T}\) is well-defined since

\[\mathcal{T}(\mu)X = \sum_{j=1}^{N} \sum_{i=1}^{N} p_{ij} \mu_i(f_j^{-1}X) = \sum_{i=1}^{N} \sum_{j=1}^{N} p_{ij} \mu_i(X) = \sum_{i=1}^{N} \mu_i(X) = 1\]

since \(\sum_{j=1}^{N} p_{ij} = 1\) for \(1 \leq i \leq N\). For an hyperbolic recurrent IFS, Barnsley defines the generalised Hutchinson metric \(\tau_H\) on \(\mathbb{M}^1\) by

\[\tau_H(\mu, \nu) = \sup \left\{ \sum_{i=1}^{N} \left(\int_X f_i d\mu_i - \int_X f_i d\nu_i \right) \mid f_i : X \to \mathbb{R}, |f_i(x) - f_i(y)| \leq d(x, y), 1 \leq i \leq N \right\}\]

and then states in [1, page 406] that one expects the generalised Markov operator to be a contracting map and therefore to have a unique fixed point. But he notes that the contractivity factor will depend not only on the contractivity of the IFS but also on the matrix \((p_{ij})\). However, no proof is given that \(\mathcal{T}\) is indeed contracting for a given \((p_{ij})\); subsequently, the existence and uniqueness of a fixed point is not verified. On the other hand, it is shown in [3, Theorem 2.1] by proving the convergence in distribution of the expected value of real-valued functions on \(X\) that a hyperbolic recurrent IFS does have a unique stationary distribution. We will show here more generally that for a weakly hyperbolic recurrent IFS the generalised Markov operator has indeed a unique fixed point.

4.2 The Unique Fixed Point of the Markov Operator

We will achieve the above task, without any need for a metric, by extending the generalised Markov operator to \(P^1UX\) where \(UX = \sum_{j=1}^{N}(UX) \times \{j\}\) is the coproduct of \(N\) copies of \(UX\).

If \(Y\) is a topological space, a valuation \(\mu \in P^1Y\) is a mapping

\[\varphi : \Omega(Y) \to [0, 1]\]

which can be written as \(\varphi = (\nu_j)_j = (\nu_1, \ldots, \nu_N)\) with \(\nu_j \in P^0Y\) for some \(c_j \geq 0\), \(0 \leq c_j \leq 1\) and \(\sum_{j=1}^{N} c_j = 1\), such that for \(O) = (O_1, O_2, \ldots, O_N) \in \Omega(Y)^N\) we have \(\varphi(O) = \sum_{j=1}^{N} \nu_j(O_j)\) [25, page 90]. We will work in a subdcpo of \(P^1UX\) which is defined below.

Note that our assumptions imply that \((p_{ij})\) is the transitional matrix of an ergodic finite Markov chain, and therefore, we have:

Proposition 4.1 [27, page 100] There exists a unique probability vector \((m_j)\) with \(m_j > 0\) \((1 \leq j \leq N)\) and \(\sum_{j=1}^{N} m_j = 1\) which satisfies \(m_j = \sum_{i=1}^{N} m_i p_{ij}\).□

Let \(\mathcal{P} \in P^1UX\) be given by \(\mathcal{P} = (\nu_1, \nu_2, \ldots, \nu_N)\) where \(\nu_j (1 \leq j \leq N)\) is the unique probability vector in Proposition 4.1. Put

\[P^1UX = \{ \mathcal{P} \in P^1UX \mid \mathcal{P} = \varphi \} \]

Note that for \(\mathcal{P} = (\nu_1, \nu_2, \ldots, \nu_N) \in P^1UX\) we have \(\mathcal{P} \in P^1UX\) iff \(\nu_j(UX) = m_j\)
for } 1 \leq j \leq N \text{, since } \mathcal{P}_0 \subseteq \mathcal{P} \text{ iff } m_j \leq \nu_j(UX) \text{ and we have }

\begin{equation}
1 = \sum_{j=1}^{N} m_j \leq \sum_{j=1}^{N} \nu_j(UX) = \mathcal{P}(UX) \leq 1,
\end{equation}

which implies \(\nu_j(UX) = m_j \). It also follows that \(\mathcal{P}^{1}UX = \prod_{j=1}^{N} \mathcal{P}^{m_j} (UX) \). Therefore, \(\mathcal{P}^{1}UX \) is an \(\omega \)-continuous dcpo with bottom \(\mathcal{P}_0 \), and any \((\nu_j) \in \mathcal{P}^{1}UX \) extends uniquely to a Borel measure on \(\mathcal{P}^{1}UX \) as each \(\nu_j \) extends uniquely to a Borel measure on \(\mathcal{P}^{1}_{0}UX \).

Let

\[\pi: \mathcal{X} \rightarrow \mathcal{U} \mathcal{X} \]

\[(x, j) \rightarrow ([x], j) \]

be the embedding of \(\mathcal{X} \) onto the set of maximal elements of \(\mathcal{U} \mathcal{X} \). Any Borel subset \(\overline{B} = (B_j)_j \) of \(\mathcal{X} \) induces a Borel subset \(\pi(\overline{B}) = (s(B_j))_j \) of \(\mathcal{U} \mathcal{X} \) since each \(s(B_j) \) is a Borel subset of \(\mathcal{U} \mathcal{X} \). Let

\[M_{1}^{+}\mathcal{X} = \{ (\nu_j)_j \in M_{1}^{\mathcal{X}} \mid \nu_j(X) = m_j, 1 \leq j \leq N \} \]

and let

\[S_{0}^{1}\mathcal{U} \mathcal{X} = \{ \nu \in P_{0}^{1}\mathcal{U} \mathcal{X} \mid \nu(\pi X) = 1 \} \]

and define the two maps

\[\overline{\pi}: M_{1}^{+}\mathcal{X} \rightarrow S_{0}^{1}\mathcal{U} \mathcal{X} \]

\[\overline{\pi} \rightarrow \pi \circ \overline{\pi}^{-1} \]

\[\pi \rightarrow \overline{\pi} \circ \pi. \]

We then have the following generalisation of Theorem 3.1.

Theorem 4.2 The two maps \(\overline{\pi} \) and \(\pi \) are well-defined and give an isomorphism between \(M_{1}^{+}\mathcal{X} \) and \(S_{0}^{1}\mathcal{U} \mathcal{X} \). \(\square \)

Given a recurrent IFS \(\{ X; f_i; p_{ij}; i, j = 1, \ldots, N \} \) we extend the generalised Markov operator on \(P^{1}UX \) by

\[\overline{H}: P^{1}UX \rightarrow P^{1}\overline{UX} \]

\[\overline{H}(\nu) = \overline{H}(\nu) \]

where \(\overline{H}(\nu)(O) = \sum_{i=1}^{N} \sum_{j=1}^{N} p_{ij} \nu_i(j^{-1}O_j) \); in other words we have,

\((\overline{H}(\nu))_j = \sum_{i=1}^{N} p_{ij} \nu_i \circ j^{-1} \) as in the definition of \(\overline{F} \) in Equation (8).

If \(\nu \in P^{1}UX \), then \(\overline{H}(\nu) \in P^{1}\overline{UX} \), since

\[(\overline{H}(\nu))_j(UX) = \sum_{i=1}^{N} p_{ij} \nu_i \circ j^{-1}(UX) = \sum_{i=1}^{N} p_{ij} \nu_i(UX) = \sum_{i=1}^{N} p_{ij} m_i = m_j. \]

Proposition 4.3 Any fixed point of \(\overline{H} \) (respectively \(\overline{F} \)) is in \(P^{1}UX \) (respectively \(M_{1}^{+}\mathcal{X} \)).

Proof Let \(\nu = (\nu_1, \nu_2, \ldots, \nu_N) \in P^{1}UX \) be a fixed point of \(\overline{H} \). Then, for each \(j \in \{1, 2, \ldots, N\} \) we have

\[\nu_j(UX) = (\overline{H}\nu)_j(UX) \]

\[= \sum_{i=1}^{N} p_{ij} \nu_i(j^{-1}(UX)) \]

\[= \sum_{i=1}^{N} p_{ij} \nu_i(UX). \]

By Proposition 4.1, we have \(\nu_j(UX) = m_j \), as required. The proof for \(\overline{F} \) is similar. \(\square \)
The following lemma shows that, for any recurrent IFS, the generalised Markov operator has a least fixed point.

Lemma 4.4 The mapping \(\overline{H} : \mathcal{P}(\Omega) \to \mathcal{P}(\Omega) \) is Scott-continuous.

Proof It is immediately seen from the definition that \(\overline{H} \) is monotone. Let \((\pi^k)_{k \geq 0} \) be an increasing chain in \(\mathcal{P}(\Omega) \). Then, for any \(\overline{O} = (O_j) \in \Omega \), we have

\[
(\overline{H} \cup_k \pi^k)(\overline{O}) = \sum_{j=1}^{N} \sum_{i=1}^{N} p_{ij} (\bigcup_{k=1}^{N} \pi_i^k)(O_j)
= \sum_{j=1}^{N} \sum_{i=1}^{N} p_{ij} \sup_k \pi_i^k(O_j)
= \sup_k \sum_{j=1}^{N} \sum_{i=1}^{N} p_{ij} \pi_i^k(O_j)
= \sup_k (\overline{H}^{\pi^k})(\overline{O}).
\]

The Scott-continuity of \(\overline{H} \) follows. \(\square \)

Let us find an explicit formula for the least fixed point \(\pi = \bigcup_j (H \pi)^j \) of \(\overline{H} \). It is convenient to use the inverse transitional probability matrix [19, page 414] \((q_{ij}) \) which is defined as follows:

\[
q_{ij} = \frac{m_j}{m_i} p_{ji}.
\]

(9)

Note that by Proposition 4.1, \(m_j > 0 \) for \(1 \leq j \leq N \) and therefore \((q_{ij}) \) is well-defined; it is again row-stochastic, irreducible, and satisfies \(\sum_{j=1}^{N} m_i q_{ij} = m_j \) for \(j = 1, \ldots, N \). We can now show by induction that

\[
(\overline{H}^{\pi^k}) = \sum_{i_1, i_2, \ldots, i_{n-1} = 1}^{N} m_j q_{ij_1} q_{i_1 i_2} \cdots q_{i_{n-2} i_{n-1}} \delta_f j_1 j_2 \cdots j_{n-1} X.
\]

(10)

In fact,

\[
(\overline{H} \pi^k)_j = \sum_{i=1}^{N} p_{ij} \delta_i \circ f_j^{-1}
= \sum_{i=1}^{N} p_{ij} \delta_f i X
= m_j \delta_f j X.
\]

Assuming the result holds for \(n \), we have

\[
(\overline{H}^{\pi^{k+1}})_j = (\overline{H} (\overline{H}^{\pi^k}))_j
= \sum_{i_1, i_2, \ldots, i_{n-1} = 1}^{N} m_j q_{ij_1} q_{i_1 i_2} \cdots q_{i_{n-2} i_{n-1}} (\delta_f j_1 j_2 \cdots j_{n-1} X) \circ f_j^{-1}
= \sum_{i_1, i_2, \ldots, i_{n-1} = 1}^{N} m_j p_{ij} q_{ij_1} q_{i_1 i_2} \cdots q_{i_{n-2} i_{n-1}} \delta_f j_1 j_2 \cdots j_{n-1} X
= \sum_{i_1, i_2, \ldots, i_{n-1} = 1}^{N} m_j q_{ij} q_{ij_1} q_{i_1 i_2} \cdots q_{i_{n-2} i_{n-1}} \delta_f j_1 j_2 \cdots j_{n-1} X
\]

as required.
Theorem 4.5 For a weakly hyperbolic recurrent IFS, the extended generalised Markov operator \(\overline{H} : \mathbf{P}^1 \overline{U}X \rightarrow \mathbf{P}^1 \overline{U}X \) has a unique fixed point \(\overline{\nu} \in \mathbf{S}^1 \overline{U}X \) with support \((S(A^* \cap f_j X))_j \) where \(A^* \) is the unique attractor of the IFS.

Proof We know, by Proposition 4.3 that any fixed point of \(\overline{H} \) is in \(\mathbf{P}^1 \overline{U}X \).
Therefore, it is sufficient to show that the least fixed point \(\overline{\nu}^* \) of \(\overline{H} : \mathbf{P}^1 \overline{U}X \rightarrow \mathbf{P}^1 \overline{U}X \) is unique. Using the explicit form of \(\nu^* \) in Equation (10), we can show as in the corresponding proof for a weakly hyperbolic IFS with probabilities (Theorem 3.2) that \(\overline{\nu}^* \in \mathbf{S}^1 \overline{U}X \). It then follows that \(\overline{\nu}^* \) is maximal in \(\mathbf{P}^1 \overline{U}X \), and hence is the unique fixed point. By Equation (10), the support of \(\overline{\nu}^* \) is indeed \((S(A^* \cap f_j X))_j \).

It then follows, similar to the case of an IFS with probabilities, that \(\overline{\nu}(\overline{\nu}^*) \) is the unique stationary distribution \(\overline{\nu}^* \) of the generalised Markov operator \(\overline{T} : \mathcal{M}^1 \overline{X} \rightarrow \mathcal{M}^1 \overline{X} \) of Subsection 4.1, and that the support of \(\overline{\nu}^* \) is \((A^* \cap f_j X)_j \).

4.3 The Recurrent Probabilistic Power Domain Algorithm

Theorem 4.5 provides us with the recurrent algorithm to generate the stationary distribution of a recurrent IFS on the digitised screen. Given the recurrent IFS \(\{X; f_j; p_{ij}; i, j = 1, 2, \ldots, N\} \), where \(X \) is contained in the the unit square, consider the recurrent IFS tree with transitional probabilities in Figure 5. Let \(\epsilon > 0 \) be the discrete threshold.

\[\begin{aligned} &X \quad \bullet \quad \bullet \quad \bullet \quad X \\ &m_1 \quad m_2 \quad \cdots \quad m_N \\ &fX_1 \quad fX_2 \quad \cdots \quad fX_N \\ &q_{11} \quad q_{IN} \quad q_{N1} \quad q_{NN} \\ &ffX_1 \quad ffX_N \quad \cdots \quad \cdots \quad ffX_N \end{aligned} \]

Figure 5. The recurrent IFS tree with transitional probabilities.

Initially, the set \(X \times \{j\} \) is given mass \(m_j \), which is then distributed amongst the nodes of the tree according to the inverse transitional probability matrix \((q_{ij}) \).
The algorithm first computes the unique stationary initial distribution \((m_j) \) by solving the equations \(m_j = \sum_{i=1}^{N} m_ip_{ij} \) for \(m_j \) \((1 \leq j \leq N)\) with the Gaussian elimination method, and determines the inverse transition probability matrix \((q_{ij}) \) given by Equation (9). The number of arithmetic computations for this is \(O(N^3) \). Then the algorithm proceeds, exactly as the probabilistic algorithm, to compute, for each pixel, the sum of the weights \(m_i q_{i1} q_{i2} \cdots q_{in} \) of the
leaves \(f_{i_1}f_{i_2} \ldots f_{i_n} X \) of the IFS tree which occupy that pixel. The number of computations for the latter is \(O(N^h) \) as before, where \(h = [\log(a|X|)/\log s] \). Therefore, the complexity of the algorithm is \(O(N^{h'}) \) where \(h' = \max(h, 3) \).

5 The Expected Value of Continuous Functions

In this section, we will use the theory of generalised Riemann integration, developed in [15], to obtain the expected value of a continuous real-valued function with respect to the stationary distribution of a recurrent IFS. We first recall the basic notions from the above work.

Let \(X \) be a compact metric space and \(g : X \to \mathbb{R} \) be a bounded real-valued function which is continuous almost everywhere with respect to a given normalised Borel measure \(\mu \) on \(X \). By [15, Theorem 6.5], \(g \) will be R-integrable, and by [15, Theorem 7.2], its R-integral \(\int g d\mu \) coincides with its Lebesgue integral \(L \int g d\mu \). The R-integral can be computed as follows. We know that \(\mu \) corresponds to a unique valuation \(e(\mu) = \mu \circ s^{-1} \in S^1 X \subseteq \mathcal{P}^1 UX \), which is supported in \(s(X) \). For any simple valuation \(\nu = \sum_{b \in \mathcal{B}} r_b \delta_b \in \mathcal{P}^1 UX \), the lower sum of \(g \) with respect to \(\nu \) is

\[
S^l(g, \nu) = \sum_{b \in \mathcal{B}} r_b \inf g(b).
\]

Similarly, the upper sum of \(g \) with respect to \(\nu \) is

\[
S^u(g, \nu) = \sum_{b \in \mathcal{B}} r_b \sup g(b).
\]

Let \(\{\nu_n\}_{n \geq 0} \) be an \(\omega \)-chain of simple valuations in \(\mathcal{P}^1 UX \) with \(e(\mu) = \bigcup_n \nu_n \). Then it follows from [15, Corollary 4.9] that \(S^l_X(g, \nu_n) \) is an increasing sequence of \(n \geq 0 \) with limit \(\mathbb{R} \int g d\nu \) and \(S^u_X(g, \nu_n) \) is a decreasing sequence with limit \(\mathbb{R} \int g d\nu \). We can also compute the R-integral by generalised Riemann sums as follows. For each \(n \geq 0 \), assume \(B_n \) is a finite subset of \(UX \) and, for each \(b \in B_n \), \(r_{n, b} > 0 \) with \(\sum_{b \in B_n} r_{n, b} = 1 \). Let

\[
\nu_n = \sum_{b \in B_n} r_{n, b} \delta_b
\]

and \(\xi_{n, b} \in b \) for \(b \in B_n \) and \(n \geq 0 \). Put

\[
S(g, \nu_n) = \sum_{b \in B_n} r_{n, b} g(\xi_{n, b}).
\]

Then, we have \(S^l(g, \nu_n) \leq S(g, \nu_n) \leq S^u(g, \nu_n) \) and therefore

\[
\lim_{n \to \infty} S(g, \nu_n) = \mathbb{R} \int g d\nu. \tag{11}
\]

Now consider a weakly hyperbolic recurrent IFS \(\{X; f_j; p_{ij}; i, j = 1, 2, \ldots, N\} \). We would like to compute

\[
\int g d\mu = \sum_{j=1}^N \int g d\mu_j^*, \tag{12}
\]

where \(\mu^* = (\mu_j^*)_i \) is the unique stationary distribution and \(g : X \to \mathbb{R} \) is a bounded real-valued function which is continuous almost everywhere with
respect to each component μ^*_j. We know that $\bar{\mu} = \mathbb{E} \circ F = \bigcup_{\mu^*_j} \overline{\mu^*_j}$, where $\overline{\mu^*_j} = \overline{\bigcap_{\mu^*_j} \mu^*_j}$ and each component $(\overline{\bigcap_{\mu^*_j} \mu^*_j})_j$ is given by Equation (10). Fix an arbitrary point $x_0 \in X$ and for each component $j = 1, \ldots, N$, select $f_j f_1 \cdots f_{n-1} x_0 \in f_j f_1 \cdots f_{n-1} X$ and define the Riemann sum for the j component by

$$S_j(g, \overline{\mu^*_j}) = \sum_{i_1, i_2, \ldots, i_{n-1} = 1}^N m_j q_{i_1} q_{i_2} \cdots q_{i_{n-2}} q_{i_{n-1}} g(f_j f_1 \cdots f_{n-1} x_0)$$

Put $S(g, \overline{\mu^*_j}) = \sum_{j=1}^N S_j(g, \overline{\mu^*_j})$. Then by Equations (11) and (12), we have

$$\mathcal{R} \int g \, d\overline{\mu^*_j} = \lim_{n \to \infty} S(g, \overline{\mu^*_j}).$$

For an IFS with probabilities we have $p_{ij} = p_j$ for $1 \leq i, j \leq N$, which implies $m_j = p_j$ and $q_{ij} = p_j$ for all i, j; the invariant measure μ^* of the IFS with probabilities can be expressed in terms of the stationary distribution $\overline{\mu^*_j}$ of the recurrent IFS by $\mu^* = \sum_{j=1}^N \mu^*_j$ and we obtain

$$\mathcal{R} \int g \, d\mu^* = \lim_{n \to \infty} \sum_{i_1, i_2, \ldots, i_{n-1} = 1}^N p_{i_1} \cdots p_{i_{n-1}} g(f_{i_1} \cdots f_{i_{n-1}} x_0).$$

Compare this formula with Elton’s ergodic formula in Equation (4), which converges with probability one. For a hyperbolic IFS and a continuous function g, the above formula reduces to that of Hepting et al in [23].

For a hyperbolic recurrent IFS and a Lipschitz map g, we can do better; we can obtain a polynomial algorithm to calculate the integral to any given accuracy. Suppose there exist $k > 0$ and $c > 0$ such that g satisfies

$$|g(x) - g(y)| \leq c(d(x, y))^k$$

for all $x, y \in X$. Let $c > 0$ be given. Then we have $|g(x) - g(y)| \leq \epsilon$ if $d(x, y) \leq \epsilon^k$. Put $n = [\log(\epsilon / c)^{1/k}] / |X| / \log s$, where s is the contraction of the IFS. Then, the diameter of the subset $f_{i_1} \cdots f_{i_n} X$ is at most $\epsilon s^k |X| \leq (\epsilon / c)^{1/k}$ for all sequences $i_1 i_2 \cdots i_n \in \sigma^n$, and hence the variation of g on this subset is at most ϵ. This implies that

$$S^N(g, \overline{\mu^*_j}) - S^l(g, \overline{\mu^*_j}) = \sum_{i_1, \ldots, i_n = 1}^N m_{i_1} q_{i_1} \cdots q_{i_{n-1}} \epsilon (\sup g(f_{i_1} \cdots f_{i_n} X) - \inf g(f_{i_1} \cdots f_{i_n} X))$$

$$\leq \epsilon \sum_{i_1, \ldots, i_n = 1}^N m_{i_1} q_{i_1} \cdots q_{i_{n-1}} i_n$$

$$= \epsilon.$$

Since $S(g, \overline{\mu^*_j})$ and $\int g \, d\mu^*$ both lie between $S^N(g, \overline{\mu^*_j})$ and $S^l(g, \overline{\mu^*_j})$, we conclude that

$$|S(g, \overline{\mu^*_j}) - \int g \, d\mu^*| \leq \epsilon.$$

Therefore, $S(g, \overline{\mu^*_j})$ with $n = [\log(\epsilon / c)^{1/k}] / |X| / \log s$ is the required approximation and the complexity is $O(N^n)$.
References

