Light-activated control of protein channel assembly mediated by membrane mechanics

David M Millera,b, Heather E Findlayc, Oscar Cesd, Richard H Templerd, and Paula J Boothc

Photochemical processes provide versatile triggers of chemical reactions. Here, we use a photoactivated lipid switch to modulate the folding and assembly of a protein channel within a model biological membrane. In contrast to the information rich field of water-soluble protein folding, there is only a limited understanding of the assembly of proteins that are integral to biological membranes. It is however possible to exploit the foreboding hydrophobic lipid environment and control membrane protein folding via lipid bilayer mechanics. Mechanical properties such as lipid chain lateral pressure influence the insertion and folding of proteins in membranes, with different stages of folding having contrasting sensitivities to the bilayer properties. Studies to date have relied on altering bilayer properties through lipid compositional changes made at equilibrium, and thus can only be made before or after folding. We show that light-activation of photosomerisable di-(5-[(4-(4-butylphenyl)azo)phenoxy]pentyl)phosphate (4-Azo-5P) lipids influences the folding and assembly of the pentameric bacterial mechanosensitive channel MscL. The use of a photochemical reaction enables the bilayer properties to be altered during folding, which is unprecedented. This mechanical manipulation during folding, allows for optimisation of different stages of the component insertion, folding and assembly steps within the same lipid system. The photochemical approach offers the potential to control channel assembly when generating synthetic devices that exploit the mechanosensitive protein as a nanovale.

Introduction

Protein folding is fundamental to protein function but the precise nature of this essential reaction, in which the linear amino sequence folds to the singular active three-dimensional structure, remains to be fully understood. The mechanisms of folding and assembly of oligomeric, integral membrane proteins are particularly obscure as attention has been focussed on water-soluble proteins. However, despite the innate difficulties in working with membrane proteins their lipid neighbours offer an advantage over an aqueous surrounding, with the chance to manipulate the solvent in a controlled manner to modulate membrane protein folding. Here, we exploit the mechanical properties of the lipid bilayer to trigger membrane assembly reactions using lipid photoisomerisation to modulate the physical attributes of the lipid membrane. This provides a generic triggering method, targeting the common bilayer that surrounds integral membrane proteins.

Biological lipids regulate many natural processes. The interaction of an integral membrane protein with lipids is complex and consists of direct interactions, as well as non-specific interactions arising from the physical and mechanical properties of the bilayer1,2. Many membrane proteins, including a number of transmembrane α-helical channels, function as homooligomers. There is evidence to suggest some of these proteins may change oligomeric state as a result of movement through different membrane systems within the cell8,9. The intricacy of cell membranes that contain many different lipids and proteins makes it challenging to elucidate the roles of non-specific, collective membrane properties. Nonetheless, such properties can be readily exploited in synthetic systems, for which knowledge of lipid phase and mechanical properties enables protein reactions to be controlled and correlated with lipid parameters. Bilayer mechanics have been shown to influence the folding of membrane proteins3,4,10-12. In particular, the lateral pressure exerted on the protein by the lipids in the x-y plane of the bilayer has been linked directly to helix insertion, packing and protein stability. Lipid lateral pressure depends on depth in the monolayer; thus there are usually outward positive pressures in the lipid headgroup and chain regions that are offset by a sharp inward negative pressure at the interfacial
region. Lipid chain pressure can be significant and increases with increasing unsaturation in the lipid chain. A high outward chain pressure in the centre of the bilayer increases the activation energy for transmembrane helix insertion, which results in a reduction in the amount of inserted, functional protein. Previous studies on lipid effects on folding have focussed on bacteriorhodopsin, Escherichia coli diacylglycerol kinase, lactose permease and the potassium channel KcsA. Here, we add the pentameric mechanosensitive channel, MscL, to this currently rather limited list.

MscL is a membrane channel that functions as a valve in bacteria responding to changes in membrane tension and preventing lysis under osmotic shock. The response to membrane tension of MscL channel opening has been studied in synthetic lipid mixtures and a direct dependence was found for the free energy of the open state on lipid monolayer spontaneous curvature. The functional state of MscL is thought to be a homopentamer with each monomer having two transmembrane helices and a third cytoplasmic helix (Fig 1). There is evidence for multiple oligomeric states of the channel, ranging from tetramers to hexamers, partly depending on the C-terminal domain and solubilisation conditions in vitro. The published homologous Mycobacterium tuberculosis crystal structure of MscL is a pentamer; a pentamer was observed by electron microscopy and atomic force microscopy and work involving tandem repeat constructs of MscL showed the functional oligomer to be the pentamer. A structure of a C-terminal truncated form of Staphylococcus aureus MscL revealed a tetramer in a partially opened form. This MscL was found to be pentameric in vivo, with the C-terminal domain playing a role in the oligomeric state when solubilised in detergent.

The work here demonstrates that not only does channel function respond to changes in bilayer mechanics, but channel assembly is also mechanosensitive. In vivo the E. coli MscL channel is thought to insert without the involvement of the translocon but possibly with the assistance of another membrane protein, YidC. MscL can, however, insert spontaneously into bilayers without YidC in vitro. We have utilised this spontaneous insertion ability to develop a method to fold partly denatured MscL into a lipid bilayer and instigate the use of photoactive lipids to modulate channel assembly. Protein Tryptophan (Trp) fluorescence is used to follow refolding, together with inter-monomer fluorescence energy transfer (i.e. Förster resonance energy transfer, FRET) and fluorescence quenching to monitor monomer association. Photoisomerisation of 4-azo-5P lipids (see Fig S1) is used to initiate changes in bilayer properties. Complete isomerisation of these azo lipids is readily determined by changes in the absorbance spectrum of the azo lipids (see Fig S2). Previously, channel gating has been shown to be modulated by this photoisomerisation, with isomerisation from trans to cis azo lipids activating MscL. The activation results from the changes induced in the membrane bilayer physico-chemical properties upon lipid isomerisation. The trans and cis forms of the lipids adopt different conformations in bilayers and converting between the two isomers alters bilayer properties. It has previously been shown that isomerisation from the trans to cis state of these azo lipids in phosphatidylcholine (PC) vesicles results in an increase in chain disorder for the cis state and a significant disturbance in chain packing that affects the ordering of the neighbouring PC lipids. There is no change in bilayer thickness, nor to vesicular shape when the azo lipid concentrations are <16mol%, whereas at concentrations >50mol% isomerisation to the cis state results in sheet structures. Such changes in chain disorder are consistent with an increase in chain lateral pressure when the cis state of the azo lipids is present. This state reverts to the more stable trans state over time at room temperature.

Here, we show control of channel assembly by altering the lipid bilayer physical properties, during the folding reaction, through azo lipid photoisomerisation. Channel gating of MscL has also been manipulated by attachment of a photochemical group to the protein, as well as the introduction of charged amino acids. Taken together this provides a useful synthetic system, whereby a protein channel valve can be controlled directly or indirectly via the lipid bilayer, with both assembly and channel gating being modulated by a photochemical switch.

Results

Refolding MscL into detergent micelles and lipid vesicles

MscL was initially refolded into dodecylmaltoside (DDM) detergent micelles. MscL was purified in DDM and denatured in mixed DDM/SDS micelles, containing up to 8 mM SDS. The channel was subsequently re-assembled from this sodium dodecylsulfate (SDS)-denatured state (referred to as MscL-SDS). SDS dissociated the intact, DDM-solubilized MscL pentamer and induced partial unfolding. Far UV circular dichroism (CD) studies showed a reduction in α helical content from ~66 % in the pentamer to ~55 % in 0.87 mole fraction SDS (see Fig 2a-c), which is equivalent to approximately 16 residues per monomer losing helical structure (compared to a total of ~81 residues forming helices in each monomer in the closed structure; Fig 1). SDS-polyacrylamide gel electrophoresis (PAGE) and analytical ultracentrifugation (AUC) showed that the MscL pentamer was dissociated in SDS (see Fig S3 and Table S1; experimental conditions for measurements in this work are shown in table S2 for clarity and comparison).

The SDS-MscL state was refolded by dilution into DDM micelles, to a final SDS concentration of 3mM, just below the critical micelle concentration. Fig 2 b and c shows that the original secondary structure was fully recovered upon refolding into DDM, as determined from the characteristic α helical band at 222 nm.

FRET was used to follow pentamer dissociation and re-assembly (see Fig 2d). MscL monomers with a single Cys introduced at position 42 on the periplasmic loop localised between transmembrane helix 1 and 2 were labelled with either the
fluorophore Alexa-488 (donor) or Alexa-568 (acceptor) 40 (see Fig 1). No FRET was observed at high SDS (>8 mM), when SDS-PAGE and AUC showed that MscL was monomeric and thus dissociated. Thus, this loss of FRET is consistent with complete dissociation of the pentamer into isolated monomers. In contrast, FRET was observed after re-assembly, by dilution of SDS into DDM. Thus, the CD and FRET data for SDS-MscL refolded by dilution into DDM micelles indicate that there is complete recovery of helical structure and FRET. It also shows that the Alexa-labelled M42C mutant of MscL re-folds to the pentamer.

The SDS-MscL was also refolded, by dilution, into lipid vesicles consisting of 50 mol% L-α-1,2-dioleoyl-sn-glycero-3-phosphoglycerol (DOPG) and 50 mol% L-α-1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). This lipid mixture was chosen since MscL activity is dependent upon lipid composition and this mixture gives optimal activity when compared to other DOPC/DOPG compositions. FRET was used to follow the refolding and assembly from SDS into PC/PG vesicles. The FRET spectrum of the folded and assembled MscL(M42C-Alexa) in PC/PG vesicles (Fig S4a) was determined by reconstitution of intact, purified MscL(M42C-Alexa) in DDM into the vesicles (ie the MscL was not denatured). Refolding of the SDS-induced monomeric MscL(M42C-Alexa) into PC/PG vesicles resulted in recovery of this original FRET spectrum. This suggests that refolding occurs to the pentameric starting complex. The FRET measurements in vesicles were made at equilibrium, of the final assembled state, after a sucrose flotation assay to separate the re-assembled MscL associated with the vesicles from any protein aggregates that influence the FRET spectra. The observed assembly of MscL in vesicles was concentration dependent, consistent with more efficient assembly of the pentameric state at higher concentrations of MscL. If the FRET spectrum in lipid vesicles is solely due to a re-assembled pentamer, this would indicate that 72 ± 5 % of MscL assembled as a pentamer after refolding with an MscL mole fraction of 0.0016 (625 lipids per MscL monomer or 28 pentamers per lipid vesicle; see Fig S5a).

MscL function was monitored with a previously well-characterised assay 41, 42 in which chemical modification of a G22C MscL mutant with trimethylammonium ethyl methanethiosulfonate (MTSET) results in spontaneous channel opening. This assay has previously been shown to report high activity of MscL in PC/PG lipid mixtures, with the presence of PG increasing activity over purely zwitterionic pentamers 42. In this activity assay, channel opening releases calcein dye from within the vesicles, which is measured as an increase in calcein fluorescence due to the reduction in calcein self-quenching within the vesicles 42, 43. Importantly, this assay enables channel opening to be studied under the same conditions as used for the MscL folding experiments. Calcein dye release was monitored for MscL(G22C) refolded from SDS into PC/PG vesicles. Fig 3 shows that more calcein is released as the concentration of MscL(G22C) is increased, with ~21 % calcein released from lipid vesicles when ~72% of MscL re-assembles as pentamer (determined by FRET as described above). This degree of channel opening is in line with previous work on reconstituted active MscL giving approximately 25 % calcein release 42. This is consistent with the majority of the MscL being re-assembled correctly into a functional state similar to that for purified, reconstituted channels and that the FRET is a reasonable measure of MscL re-assembly. The calcein assay showed, as expected, that more functional channels were observed when more MscL was folded into lipid vesicles (Fig S5b). Moreover, the observed activity directly correlated with the amount of functional channels observed by FRET (Fig S5c), again suggesting FRET is measuring functional MscL. Refolding in PC/PG vesicles as reported by FRET was similar for MscL (M42C-Alexa) and (M42C-Alexa G22C) mutants.

Refolding MscL into azolipid vesicles

SDS-denatured MscL was re-assembled by dilution into lipid vesicles containing azolipids; with the vesicles consisting of 40% DOPC, 50% DOPG and 10% azolipid (with a consistent 50% proportion of PG, unless otherwise stated). Two measures were used to follow the changes occurring upon refolding; Trp fluorescence quenching as well as FRET. MscL has no native Trp residues, so a non-native single Trp mutant, F93W, of MscL was used that has a Trp incorporated in the middle of the transmembrane helix 2 (see Fig 1). F93W MscL exhibits channel activity similar to the native protein 41. Changes in the fluorescence of this Trp upon refolding report upon the association of MscL with 4-Azo-5P containing lipid vesicles; the azo groups quench Trp fluorescence, as the absorption band of the azo group at 330-350 nm overlaps with the Trp emission band (see Fig 4).

MscL(F93W) was refolded from SDS into PC/PG vesicles containing either cis or trans azo lipids. The F93W fluorescence completely quenched upon folding SDS-MscL(F93W) into vesicles containing 2.5 % trans azo lipids (and 47.5 % DOPC and 50 % DOPG; see Fig 4a). The trans state of the azo lipids is the lower energy state at room temperature and the cis lipids revert back to the trans state over time (slowly, >30 min). The magnitude of Trp fluorescence quenching in vesicles containing cis or trans lipids was also determined from kinetic data (reported in the following section), since steady-state spectra cannot be obtained for vesicles with cis lipids due to the partial re-isomerisation back to trans during the measurement. The time-resolved data circumstances this reversion to trans and showed that the F93W Trp fluorescence was completely quenched in both azo isomers. The quenching was determined to be complete; 103.8 ± 1.8 % and 106.6 ± 1.9 % for 50:50 PC/PG lipid vesicles containing 10 % trans and cis azo lipids, respectively. This is consistent with complete association or insertion of MscL with the 4-Azo-5P containing vesicles.

FRET was used to assess monomer association into an assembled oligomeric state, after refolding SDS-MscL(M42C-Alexa) into lipid vesicles containing 10 % 4-azo-5P in either cis or trans conformations. As previously, FRET spectra of the re-assembled state were recorded at equilibrium, after a sucrose...
flotation assay to separate re-assembled MscL from protein aggregates. The cis azo isomer will partially revert to the more stable trans state during this sucrose flotation assay (but after refolding has occurred). Thus, although MscL was originally folded into vesicles containing either the cis or trans state, the final FRET measurement was recorded when the lipids had fully reverted back to trans to ensure consistency in measurements. The FRET spectra of re-assembled MscL in PC/PG/azo lipids were the same as that in PC/PG lipids (see Fig S4) consistent with functional pentaemeric MscL being recovered in vesicles with azolipids. A larger FRET signal was observed after folding SDS-MscL(M42CAlexa) into vesicles containing 10 % trans, as opposed to 10 % cis, 4-azo-5P, suggesting greater monomer, monomer association and pentamer formation with trans azolipids present during the refolding reaction (see Fig 5a).

Fig S4 shows control measurements that indicate the azo-lipid isomerization state does not influence the final conformation state of MscL, as reported by these FRET spectra. FRET was measured for MscL that has been reconstituted into lipid vesicles (ie already folded when transferred to the vesicle; there is no refolding). Fig S4 shows FRET spectra for DOPC/DOPG vesicles containing azo-lipid in 3 conditions: i) MscL reconstituted into vesicles containing trans lipids; ii) MscL reconstituted into trans lipids, which are then photoisomerised to cis and then back to trans for measurement and iii) MscL reconstituted into cis, which are photo-isomerised to trans for measurement. All spectra are the same, and are identical to the FRET spectrum for MscL reconstituted in DOPC/DOPG vesicles without any azo-lipid present. This indicates that there is no influence of switching the lipid isomerisation on the FRET spectra when MscL is always correctly assembled. Thus, the changes seen in the FRET (Fig. 5a) when MscL is folded into trans lipids as opposed to cis lipids are due to the azo-lipid isomerisation state affecting folding.

The activity of MscL in vesicles with azo lipid was verified after refolding into cis or trans 4-azo-5P containing lipid vesicles by calcein dye release. In this case, flotation assays were not used since aggregated protein does not affect the dye release. Hence, the determined activities are for MscL folded, and measured, in vesicles containing cis lipids, or MscL folded into and subsequently measured in trans lipids. The final resultant activity was similar, ~17-18%, for both trans and cis azolipids (Fig 5b). This is despite the apparent decrease in the amount of MscL activity was found to be greater in the presence of the cis as opposed to trans azo lipid isomer 36.

Kinetics of MscL refolding into azo lipids

SDS-MscL was refolded into DOPC/DOPG lipid vesicles containing 10% azo lipid in the cis or trans conformation. The associated refolding kinetics were monitored upon stopped-flow mixing of SDS-MscL with vesicles, by time-resolving changes in: i) the fluorescence quenching of F93W (see Fig 1 and 4b), which reports primarily on association and insertion of MscL with vesicles (as the azo lipid quenches Trp fluorescence), as well as self-quenching of the F93W residues during monomer association; ii) azolipid quenching and self-quenching of rhodamine attached to M42C, which being in a loop region and in the aqueous phase reports mainly on monomer, monomer interactions of MscL and iii) FRET, which reports primarily on MscL monomer, monomer interactions and pentamer formation. The Trp fluorescence decays of MscL F93W that were observed upon refolding, fit well to the sum of two or three first order exponential components for cis or trans 4-azo-5P lipids, respectively (see Fig 4b and Table 1). These observed kinetic phases are referred to as k_{obs}-1. The fastest rate k_{obs} of ~7 s$^{-1}$ was similar in both trans and cis 4-azo-5P, suggesting the same reaction event is occurring in both lipid states. This rate increased with increasing lipid (or vesicle) concentration and could be fit to a second order protein, lipid process (see Fig S6), thus indicating a reaction between MscL and lipid vesicles. k_{obs}-1 thus likely represents the association of MscL with lipid vesicles. The amplitude of k_{obs}-1 was over 10-fold greater for cis lipids, as opposed to trans. Since the amplitude is proportional to the amount of Trp, and thus protein, involved in the reaction event, this suggests that the initial association with vesicles is favoured by cis azo lipids.

k_{obs}-2 was approximately an order of magnitude slower than k_{obs}-1, being 0.1 s$^{-1}$ and 0.03 s$^{-1}$, for trans and cis lipids, respectively. This k_{obs}-2 rate is likely associated with monomer, monomer interactions and insertion into the vesicle bilayer. The amplitude of k_{obs}-2 was 5-fold larger in trans lipids. A third very slow rate of small amplitude could be resolved for trans but not cis lipids.

The MscL(M42C-rhodamine) quenching kinetic data and increase in FRET associated with MscL(M42C-Alexa) assembly, were best fit by the sum of 3 phases; 2 first-order exponentials and an additional second-order rate constant (with respect to protein). The fastest exponential phase, k_{obs}-1, agreed well with the MscL F93W data. This phase was observed for both rhodamine and FRET data with a higher amplitude in cis lipids, consistent with the MscL F93W data. The observation of FRET during k_{obs}-1 suggests that monomer, monomer interactions occurs upon association with the vesicles, which could arise from an increase in monomer concentration at the vesicle surface. The rates resolved for k_{obs}-2 are slightly different for the rhodamine and FRET measurements, being slower for the rhodamine data. This may represent the different sensitivities of the attached fluorescence tracers. The amplitude of k_{obs}-2 is similar in cis and trans lipids for the rhodamine data, and ~2-fold larger for cis, than trans, lipids in the FRET data. Since both
these fluorescent tracers report primarily on monomer, monomer association, there seems to be a slightly greater association reported by FRET in cis rather than trans azo lipids. However, it is hard to use the kinetic data in a directly quantitative fashion. A much larger difference is observed in the k_{obs}2 amplitude in the F93W data, where the Trp fluorescence is significantly more quenched in trans rather than cis lipids. This is presumably because the F93W k_{obs}2 data is dominated by azo lipid quenching of the Trp during insertion into the lipids, as opposed to Trp self-quenching during monomer association. Thus we assign k_{obs}2 primarily to insertion of MscL into and across the lipid bilayer. This event is favoured by trans azo lipids. Further monomer, monomer association may also occur during k_{obs}2.

The third rate observed in the rhodamine and FRET data, k_{obs}3, exhibited pseudo second-order dependence on MscL monomer concentration, suggesting it is dominated by monomer, monomer association. Any higher order oligomerisation reactions will also be represented by this second order protein, protein reaction. The actual pentamer formation reaction mechanism may be complex. A pentamer is unlikely to form by 5 monomers reacting at once, but more likely to result from bimolecular reactions of lower order oligomers (e.g. a dimer and trimer). The amplitude of k_{obs}3 is greater in trans lipids as opposed to cis, in agreement with the increased FRET intensity observed in trans lipids (see Fig 5a). We suggest that k_{obs}3 reflects oligomerisation and formation of MscL oligomers, including functional pentamers, in the bilayer and that this process is favoured by trans lipids.

Overall, the kinetic experiments using the three different reporters, reveal three observed phases: k_{obs}1 correlates with initial association of SDS-MscL monomers with lipid vesicles and the data suggest that MscL associates more efficiently in lipid vesicles containing cis 4-azo-5P than trans. The observed kinetic rates, k_{obs}2 and k_{obs}3, primarily reflect insertion across the bilayer and formation of the pentamer, respectively. The associated amplitudes indicate that this insertion across and oligomerisation within the bilayer occurs more efficiently with trans 4-azo-5P present.

Photoisomerisation of azo lipids during re-assembly of MscL

Photoisomerisation of azo lipids was used to alter the bilayer properties during the MscL refolding reaction. The overall re-assembly of MscL occurs in approximately 8 mins in vesicles containing 10 % cis azo and >17 min with 10 % trans as determined by stopped flow measurements of folding kinitics. MscL(G22C) refolding was initiated by addition of SDS unfolded MscL at time, t=0. The azo lipids were isomerized at time intervals (t1) of 0.5, 1, 2, 4, 6, 8, 12 and 15 min, after the initiation of MscL refolding. Thus the isomerisation state of the lipids was changed during MscL folding, after MscL had been allowed to fold for t1 min (see experimental scheme Fig S7). Isomerisation from trans to cis at time, t2, was induced by illumination at 450 nm for 30 s, and cis to trans at 355 nm for 30 s (see Fig S2 for example spectra of 4-azo-5P after isomerisation). The folding reaction was left to reach completion in the absence of any additional illumination for a total of 60 min, after the initiation of folding. After this time, correctly folded, active channels, and thus successful refolding and assembly, were determined by the calcein dye release assay.

Final MscL activity, after completion of refolding, was similar for folding into vesicles with azo lipids in the cis state throughout the experiment, as for those with the trans state throughout; i.e. with no isomerization at t_1 during folding in either case (as observed in Fig 5b). However, changes were observed if the azo isomerisation state was altered during folding. After initially refolding SDS-MscL into vesicles with cis lipids, an increase in the amount of dye release was observed when cis lipids were isomerized to trans at time t_2 of 0.5 min after the initiation of folding, (an increase from the starting value in cis lipids of 16.9 ± 2.7 % to a value of 23.7 ± 2.5 % after isomerization to trans; see Fig 5c and d). This increase in dye release is consistent with an increase in the amount of re-assembled, functional channels. However, cis to trans isomerisation at t_2 times >3 min after folding had little effect on the amount of dye release. Starting from the trans azo lipid state, isomerisation from trans to cis after t_2 of 0.5 min of folding had the opposite effect and reduced the activity of MscL channels (to 9.9 ± 0.5 % from the starting value in trans lipids of 18.3 ± 0.6 %). This reduction was observed for trans to cis isomerization at all times during folding; t_1 = 0.5 to 15 mins after the initiation of folding. The experimental protocols utilised for functional assays and FRET assembly measurements in azo lipids are outlined in Figure S7.

Discussion

The pentameric channel MscL can be partially unfolded and refolded in vitro. Refolding MscL from a non-functional SDS-solubilised monomeric state into lipid vesicles results in recovery of native helical structure, oligomerisation and regain of functional channels, as shown by CD, FRET and calcein dye release. Kinetic studies with a variety of fluorescence tracers, suggest that this folding involves rapid association with lipid, followed by insertion across the bilayer together with oligomerisation and formation of active channels. The different stages of folding, and notably the efficiency of recovery of functional channels, can be manipulated by altering the surrounding lipid bilayer in a time-dependent manner.

The influence of lipid bilayers on membrane protein folding can be interpreted as arising from the differential lateral pressures exerted on the protein by the neighbouring lipids. These lipid forces are a consequence of the elastic properties of the lipid membrane. Monolayers of biological lipids exhibit different tendencies to curve towards water, depending on lipid headgroup and chain composition. Lipids such as phosphatidylcholine have a large radius of spontaneous curvature giving fairly flat monolayers that readily form the fluid lamellar, bilayer structure of the membrane. Lipids with smaller headgroups or increased chain unsaturation have smaller radii
of curvature and tend to form highly curved monolayers and thus non-bilayer, hexagonal phases. Incorporating such non-bilayer lipids into a bilayer lipid membrane increases the tendency for monolayer curvature. The monolayers, however, are forced flat in the bilayer, leading to an increase in stored curvature energy and alterations in the lateral pressure profile with an increase in the outward liquid lipid pressure and a decrease in the headgroup region. Previous studies have shown that under such conditions the association of proteins into the headgroup locale is favoured, whilst the energy for inserting across the bilayer is greater due to the high chain pressure \(2, 10, 11, 14, 17\). Here, we use photoisomserisable 4-azo-5P lipids to alter the lipid bilayer in situ, whilst maintaining a constant lipid composition. The more stable trans form of the azolipids readily incorporates into a lipid bilayer, but isomerisation to the cis form is likely to have a similar effect to increasing chain unsaturation by increasing monolayer curvature and chain lateral pressure, whilst decreasing headgroup pressures. Indeed previous reports indicate an increase in chain disorder with cis azolipids present as compared to trans, consistent with an increase in outward chain lateral pressure for cis lipids \(37, 38\). We would thus predict that during folding, MscL would associate initially more favourably with cis azolipid bilayers (low headgroup pressure/high chain pressure), but that subsequent transmembrane insertion would be favoured by trans azolipids (low chain pressure) (see Fig 6). The observed folding kinetics support these predictions.

Three fluorescence probes were used, each reporting on different aspects of folding. Trp fluorescence reports mainly on the change in local environment and is dominated by quenching by the lipid azo group as the protein associates and inserts into the bilayer. Self-quenching between the individual Trps present on each monomer can also occur. Rhodamine fluorescence changes are dominated by self-quenching as monomers associate with each other and FRET reports primarily on monomer, monomer association and pentamer formation. For each kinetic tracer, the same rate constants are observed for bilayers containing either cis or trans lipids. Since rate constants are fingerprints for specific reactions, this shows that by maintaining the same chemical composition of the bilayer, the particular reactions reported by the fluorescence tracers are not altered by lipid isomerisation state and thus nor by the ensuing alterations in the bilayer forces. However, the amplitudes associated with each rate are dependent on lipid isomerisation. Amplitudes reflect the amount of protein undergoing the particular folding step. Table 1 shows that all 3 tracers resolve an increased amplitude for \(k_{\text{obs1}}\) in cis lipids. \(k_{\text{obs1}}\) is assigned to association of protein with the lipid bilayer. The Trp and rhodamine tracers report a greater than 10-fold increase in this amplitude, suggesting that more protein associates favourably with the lipid bilayer vesicles when the azo lipids are in the cis state. The observation of rhodamine and FRET during this phase also shows that some monomer association occurs, with more observed in cis than trans lipids. The amplitude of \(k_{\text{obs2}}\) is significantly greater for Trp fluorescence kinetics in trans rather than cis lipids. We therefore suggest that this rate reports predominantly on transmembrane insertion across the bilayer, which will be favoured in trans lipids with their lower chain pressure, in line with previous kinetic observations on transmembrane helix insertion. Rhodamine fluorescence resolves similar amplitudes for this second kinetic phase in cis and trans lipids, whilst FRET reports a 2-fold larger amplitude in cis lipids. This suggests that monomer association which occurs as MscL inserts across the bilayer is largely independent of lateral pressure. The final second order rate, \(k_{\text{obs3}}\), reflects mainly MscL monomer, monomer association with the FRET results suggesting that the MscL pentamer forms. This process is barely observed in Trp fluorescence, and is poorly resolved from \(k_{\text{obs2}}\) in rhodamine fluorescence. More FRET is observed with trans lipids relative to cis (table 1 and Fig 5a) implying that the lower lateral chain pressure facilitates correct monomer, monomer association.

A model emerges for MscL folding where the relaxed headgroup pressure (and concomitant high chain pressure) of cis azo lipids favours initial association in the headgroup region of the bilayer. The later stages of transmembrane insertion and pentamer association, however, are favoured by the more relaxed chain pressure of trans lipids (see Fig 6). This confirms earlier suggestions that different stages of membrane protein folding and assembly are favoured by differing lateral pressures and bilayer mechanical properties \(13, 44\). It also leads to a further prediction that can be tested due to the use of photoisomerizable lipids, which allow the bilayer properties to be changed during the folding process. We envisage that more active MscL channels will be recovered if the bilayer initially has the azolipids in the cis state that favours MscL association, with the lipids being subsequently altered to the trans state to favour the remaining insertion and assembly stages (see Fig 6). Fig 5d shows this to be the case; isomerisation from the favourable cis association state to the favourable trans insertion state after \(k_{\text{obs1}}\) (i.e. after 0.5 mins) increases the number of active MscL channels. Conversely starting with the trans state and isomerising to cis after \(k_{\text{obs1}}\), reduces MscL, bilayer association, insertion and assembly and thus the final number of active channels. In this latter scenario, it does not matter when the isomerisation to the cis state occurs (0.5 to 15 mins post folding initiation), since in all cases the initial, disfavoured association event is over and presumably competing aggregation and misfolding pathways dominate. In the case of the favourable cis to trans isomerisation during refolding, the increase in active channels only occurs when isomerisation is enacted between 0.5 and 3 mins after folding has started. This shows that after the insertion step \(k_{\text{obs2}}\) is over, it is too late to isomerise and reduce the chain pressure to increase transmembrane insertion.

If there is no isomerisation of the starting lipid state, the same final activity is observed for both cis and trans lipids. However, FRET measurements suggest that more channels are recovered in trans lipids relative to cis (as determined by FRET). These results are consistent with channels in cis azolipid containing membranes being more active; as previously noted \(46\). Thus, in cis lipids, fewer channels re-assemble, due to the increased chain

6 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

©
lateral pressure hindering insertion across the bilayer, but this raised pressure increases the activity of the channels that do reform. This change in activity is consistent with previous studies on alpha-helical membrane proteins that exhibit altered activity as a result of changes in the membranes lateral pressure. Additionally the results here agree with our previous observations that folding yield is dictated by the amount of protein that associates and inserts across the bilayer. Thus, for example, increasing the bilayer chain pressure causes a reduction in the folding yield of bacteriorhodopsin that directly correlates with a decrease in the amount of protein inserting into the bilayer.

Conclusion

It is possible to partially denature Mscl into partly unfolded monomers and recover the assembled channel in vitro. Manipulation of the lipid bilayer properties modulates the re-assembly reaction. The Mscl folding reaction studied involves an initial lipid association followed by transmembrane insertion and oligomerisation, with the efficiency of these processes depending upon different bilayer properties. Association into the headgroup region is energetically favourable in bilayers with high chain but low headgroup pressure, whilst transmembrane insertion is favoured by a lower chain pressure. The dependence of different stages of folding and assembly on contrasting bilayer mechanical forces has implications for in vivo maturation of integral membrane proteins. Proteins often pass through different subcellular compartments with different lipid compositions and overall bilayer properties. Hence, different folded or assembled states may be favoured with the final functional state only forming in the final membrane the protein resides in. The system used here of light activated lipids provide a generic means of manipulating the lipid bilayer during folding and thus altering the mechanical properties at specific stages of folding to afford fine control over different stages of the folding process.

Experimental

Wild type *E. coli* and mutant Mscl were expressed and purified and M42C Mscl was labelled with either Rhodamine Red C2 maleimide, Alexa-488 maleimide, Alexa-568 maleimide or Alexa-647 maleimide (see Supplementary Information). Mscl was electrophoresed on PAGE gels containing 0.2 M TRIS pH 8.45 and either 8 % acrylamide for native SDS-DDM-PAGE or 15 % acrylamide for SDS-PAGE. Mscl was unfolded in low concentrations of SDS (0 mM), and subsequently diluted into lipid vesicles of 100 nm diameter. Mscl containing lipid vesicles were isolated after refolding by flotation in a sucrose step gradient. Fluorescence was monitored for either Trp fluorescence (F93W Mscl), FRET between donor and acceptor labels of M42C, or dye release as a result of channel opening, and using stopped flow mixing for kinetic measurements.

DOPC/DOPG lipid vesicles were prepared and extruded to 100 nm diameter, as described in supplementary information. For azo lipid studies, lipid vesicles contained a maximum of 10% (w/v) of 4-azo-5P lipids, which were isomerised from trans to cis by illumination with an Nd-YAG laser for 30 s. Cis lipids were kept in the dark and isomerisation to trans occurred after 30 s illumination at 455 nm using a 3W LED light source. Isomerisation was verified by monitoring the absorbance of the lipid sample.

Acknowledgements

We acknowledge funding from The Leverhulme Trust (Project Grant F/00182/AW and Research Fellowship RF-2011-559 to PJBR) and The Royal Society (for a Wolfson Research Merit Award to PJBR). We also thank Eduardo Perozo for supplying the initial Mscl construct, Andrew Orr-Ewing for use of a Nd-YAG laser and Elizabeth Bromley for assistance with AUC.

Figure and table legends

Figure 1: Mscl structure showing sites of attachment of fluorescence tracers. An Mscl monomer is shown in blue, with sites for introduction of Trp residues at position 93 shown in red and Cys residues for attachment of rhodamine or Alexa FRET dyes at position 42 shown in green, between transmembranes helices 1 and 2. The structure was generated from pdb 20AR using PyMOL (DeLano Scientific).

Figure 2: Recovery of Mscl secondary structure upon refolding from a partly denatured monomeric state in SDS.

- Panel a: CD spectra of Mscl at 10 μM after refolding into 0.21 and 0.87 mole fractions of SDS in DDM. A representative spectrum for fully folded Mscl, i.e. as purified in 100 % DDM is shown in grey. Data are not smoothed.
- Panel b: Increase in the negative 222 nm band at low SDS mole fraction is indicative of refolding and recovery of secondary structure upon removal of SDS. Representative errors are shown at low and high SDS, to 1 standard deviation for n=3. The solid line is the fit to an equilibrium two-state reaction.
- Panel c: calculated α-helical content from data shown in B showing the increase in helicity upon removal of SDS. D: FRET acceptor emission from Mscl M42C labeled with Alexa-488, Alexa-568 (one fluorophore per monomer) showing the increased emission observed in assembled pentameric Mscl (low SDS) and decrease in dissociated monomeric Mscl (high SDS). Error bars are 1 SD (for 3 measurements; n=3). The solid lines are the fit to an equilibrium two-state reaction.

Figure 3: Recovery of activity as determined by release of calcine dye, upon refolding of SDS-denatured Mscl into lipid vesicles. Raw data showing the increase in fluorescence with time after refolded Mscl G22C channel is opened with MTSET. Separate traces show data for separate experiments with different concentrations of Mscl between 0 μM and 40 μM. Raw data are shown in black and single exponential fits as dashed grey. Background fluorescence at t=0 sec is set to 0 % dye release with 100 % determined by detergent solubilisation of lipid vesicles. Data are representative examples from single experiments. Data were repeatable between experiments.
Figure 4: Azobenzene quenching of MscL Trp fluorescence. Quenching of Trp fluorescence emission upon folding MscL into lipid vesicles containing 2.5% (w/w) trans-4-azo-5P lipids. a: fluorescence emission band of MscL F93W in the presence and absence of azo-lipid vesicles of 50 and 100 nm diameter. Maximal Trp fluorescence quenching was observed within ~300 sec after initiation of folding. The example spectra shown are 30 min after initiation of refolding. b: Kinetics of F93W fluorescence quenching upon folding into lipid vesicles containing 10% azo lipid. All Trp fluorescence was observed to be quenched in both cis and trans azo lipid containing lipid vesicles. The dashed grey line shows a fit to the sum of two exponential components, with residuals from the difference between the data and fit shown below.

Figure 5: Influence of trans and cis azolipids on MscL pentamer formation and activity; a and b: measurements after MscL refolding and re-assembly; c and d: measurements during refolding a: FRET of Alexa-568/Alexa-647 MscL M42C refolded into lipid vesicles containing cis or trans conformations of 4-azo-5P. Dashed line: folding into cis 4-azo-5P, solid line: folding into trans 4-azo-5P. b: calcine dye release assay for MscL G22C refolded in lipid vesicles containing trans or cis 4-azo-5P containing lipid vesicles. Data are shown for MscL activity in trans and cis lipids 60 min after the initiation of the folding reaction. Fits to a first order exponential (used for calculating maximum percent release) are shown as black lines. Dashed lines are control measurements in the absence of MscL illustrating no calcine leakage from the vesicles containing azo lipids; c: calcine dye release activity assay for MscL G22C refolded into lipid vesicles containing trans or cis 4-azo-5P containing lipid vesicles followed by isomerisation. Example data are shown for dye release from MscL after refolding into cis 4-azo-5P containing lipid vesicles followed by isomerisation to trans 4-azo-5P 30 sec after initiation of refolding (open circles) and trans 4-azo-5P followed by isomerisation to cis 30 sec after initiation of refolding (open diamonds). The folding reaction is left to continue until completion for a total of 60 min followed by measurement of channel activity by calcine dye release. The experimental scheme is shown in Fig S7. Fits to a first order exponential (used for calculating maximum percent release) are shown as black lines; d: Effect of azo-lipid isomerisation during MscL refolding on MscL activity. The x-axis is the time after initiation of folding, t (MscL is added to lipid at t=0), at which lipid isomerisation is initiated. Open circles (cis-trans); MscL initially refolded into cis azolipids with subsequent isomerisation to the trans form at the time points indicated. Open diamonds (trans-cis); MscL initially refolded into trans azolipids with subsequent isomerisation to cis. The MscL folding reaction proceeds for 60 min total at which point activity is determined by a calcine dye release assay. The y-axis is the maximum percent release determined from a first-order exponential fit to the calcine dye release curve over time (as for example in fig 5b). MscL-G22C channels are opened by addition of MTSET. Controls in the absence of MscL, but with MTSET are shown for trans and cis lipids without isomerisation as open squares and open diamonds respectively to show the absence of dye release without MscL channel opening. Errors are 1 SEM for n=3.

Figure 6: Schematic showing favourable MscL folding conditions by isomerisation of azolipids during folding. The low headgroup pressure of bilayers containing cis azo lipids favours initial association of the protein. Subsequent isomerisation of trans lipids decreases the lateral chain pressure which favours transmembrane insertion. MscL is shown as black rectangles to represent the α helices. High lipid lateral pressure is indicated by red shading and low pressure in grey. MscL is folded from a dentured monomeric state in SDS (not shown). The association event of SDS-MscL with the vesicles (reported by kobs1) is also not shown. The reactions reflected in the observed kinetic rates kobs2 and kobs3 are indicated; kobs2 reflects insertion of MscL across the bilayer together with some monomer formation and kobs3 monomer, monomer association to form higher order MscL oligomers and pentamer.

Table 1: Folding kinetics of MscL in azolipid vesicles. Vesicles comprised 40% DOPC, 50% DOPG and 10% cis or trans 4-azo-5P lipids (w/w). Trp fluorescence data were fit to the sum of 2 or 3 first order rate constants (thus kobs3 has units of s⁻¹). Rhodamine and FRET data were fit to the sum of 2 first order rates one 2nd order (kobs3). Amplitudes are shown in parenthesis and are raw data values in V, with a positive amplitude indicating a decrease in Trp and rhodamine fluorescence and a negative amplitude for the increase in FRET. These are comparable with the same measurement, but not directly comparable between the different tracers, although the same protein and lipid concentrations were used in each case. Similarly, the units for kobs3 are V⁻¹s⁻¹, to avoid assumptions in conversion of the signal amplitude in V to concentration of MscL. First standard deviation errors from at least 3 measurements for Trp and rhodamine fluorescence are <±5 % and <±10% of the magnitudes of the rate constant and amplitude, respectively. Errors for FRET are <±10% and <±20% of the magnitudes of the rate constant and amplitude, respectively.

Abbreviations. AUC, analytical ultracentrifugation; 4-Azo-5P, 1-(5-[4-(4-butylphenyl)azo]phenoxy)pentyl)phosphate; CD, circular dichroism; CMC, Critical micellar concentration; DDM, dodecylmaltoside; DGK, Diacylglycerol kinase; DOPC, L-α,β-1,2-dioleoyl-sn-glycero-3-phosphocholine; DOPG, L-β,γ-1,2-dioleoyl-sn-glycero-3-phosphoglycerol; FRET, Förster resonance energy transfer; MscL, mechanosensitive channel of large conductance; MTSET, trimethylammonium ethyl methanethiosulfonate; PAGE, polyacrylamide gel electrophoresis; PC, phosphatidylcholine; SDS, sodium dodecylsulfate; SEM, standard error of the mean.
References

Figure 2

(a) Circular dichroism

(b) Mean Residue Ellipticity

(c) % calculated -helix

(d) FRET

-2×10^4 to 4×10^4 MRE (deg cm^2 dmol^-1)

-2.3×10^4 to -2.0×10^4 MRE (deg cm^2 dmol^-1)

0.00 to 0.75 mol. fr. SDS

0.00 to 0.75 mol. fr. SDS

0.0 to 250 acceptor emission at 600nm (AU)

0.0 to 2000 fluorescence (AU)

Wavelength (nm)

Wavelength (nm)
Figure 3
Figure 5

(a) Relative fluorescence (AU) vs. emission wavelength (nm) showing cis to trans isomerization at 15 min.
(b) Calculin release (%) vs. time (sec) with trans and cis isomerization.
(c) Calculin release (%) vs. time (sec) for cis to trans isomerization at 30 sec and trans to cis isomerization at 30 sec.
(d) Calculin release (%) vs. time at initiation of isomerization (min) with different conditions including cis-trans + MTSET, trans-cis + MTSET, trans no MscL, and cis no MscL.
Figure 6

cis azo lipids

HIGH membrane pressure
LOW membrane pressure
low headgroup pressure
high chain pressure
favours headgroup association

trans azo lipids

HIGH
LOW
inserting
high headgroup pressure
low chain pressure
favours transmembrane insertion

kobs2

kobs3

trans azo lipids

HIGH
LOW
active
MscL
high headgroup pressure
low chain pressure
favours helix packing to form active channel
Table 1

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Azolipid isomerisation state</th>
<th>Observed kinetic phases</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(k_{\text{obs}}^1) (s(^{-1}))</td>
<td>(k_{\text{obs}}^2) (s(^{-1}))</td>
</tr>
<tr>
<td>Trp fluorescence</td>
<td>cis</td>
<td>7.7 (1.48 V)</td>
<td>0.028 (0.05 V)</td>
</tr>
<tr>
<td></td>
<td>trans</td>
<td>7.2 (0.13 V)</td>
<td>0.10 (0.26 V)</td>
</tr>
<tr>
<td>Rhodamine fluorescence</td>
<td>cis</td>
<td>6.6 (1.2 V)</td>
<td>0.045 (0.14 V)</td>
</tr>
<tr>
<td></td>
<td>trans</td>
<td>1.6 (0.11 V)</td>
<td>0.078 (0.18 V)</td>
</tr>
<tr>
<td>FRET</td>
<td>cis</td>
<td>14 (-1.5 V)</td>
<td>0.24 (-1.0 V)</td>
</tr>
<tr>
<td></td>
<td>trans</td>
<td>9.6 (-0.64 V)</td>
<td>0.17 (-0.47 V)</td>
</tr>
</tbody>
</table>

Assignment of kinetic phase

- Association of MscL with lipid vesicles together with MscL monomer, monomer association
- Insertion of MscL into and across bilayer
- MscL oligomer/pentamer formation