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1 Simulations checking the algorithm

In this section we present simulations that confirm that the MCMC sampler is sampling from the correct
conditional distribution. For this, we compare the unconditional distribution of (L, θ) (which we can easily
simulate in our models) to the following sampling method that involves the MCMC method:

1. Generate a sample (L̃, θ̃) from the unconditional model (i.e., either model (5)) or model (8)).

2. Compute the observations l = r(L̃) and a = c(L̃).

3. Generate one sample (L, θ) conditional on r(L) = l, c(L) = a using the MCMC sampler.

We will call samples (L, θ) from the above method “MCMC samples”. If the MCMC sampler is sampling
from the correct conditional distribution then the distribution of the MCMC samples must be the same as
the unconditional distribution.

1.1 Basic model

Consider the basic model (5) with pij = 0.3I(i 6= j) and λij = 1/10 for a network with n = 11 banks.
We consider the minimal observation setting, i.e. only row and column sums are observed. We generate
1000 samples from the unconditional distribution as well as 1000 MCMC samples (each of which involves
running the MCMC chain). To ensure that the sample in step 3 is close to the target distribution we perform
a large number of steps of the MCMC chain (1210000 individual updates - 10000 times the number of
elements in L; here 112) before taking the sample.

Figure 1(a) shows the distribution of the mean out-degree of the network over the 1000 simulations, i.e.
the empirical distribution of 1

n

∑n
i=1 ri(A), where A is the adjacency matrix corresponding to the sample

liabilities matrix L.
Figure 1(b) shows the marginal distribution of the out-degrees, i.e. the distribution of ri(A). Finally,

Figure 1(c) shows the marginal distribution of the individual matrix entries, i.e. the distribution of Lij ,
where i, j are independently uniformly chosen in N .

There is good agreement between the distributions, which supports that the MCMC sampler is indeed
sampling from the correct distribution.
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Figure 1: Verification of the MCMC sampler in the basic model: Unconditional distribution and MCMC
samples.
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1.2 Fitness model

Consider the fitness model (8) with parameter choices α = −2.5, β = 0.2, γ = 1 and priors ζ ∼ U(0.5, 2),
η ∼ Exp(1000) for a network with n = 11 banks. Again, we consider the minimal observation setting, i.e.
only row and column sums are observed.

We generate 1000 samples from the unconditional distribution as well as 1000 MCMC samples (each
of which involves running the MCMC chain). To ensure that the sample in step 3 is close to the target
distribution we again perform a large number of steps of the MCMC chain (121000 individual updates -
1000 times the number of elements in L; here 112) before taking the sample.

As for the basic model, Figures 2(a), 2(b), and 2(c) show the distribution of the mean out-degree, the
marginal distribution of the out-degrees and the marginal distribution of the entries of L, respectively. In ad-
dition to that, Figure 2(d) shows the marginal distribution of the fitnessXi, Figure 2(e) shows the distribution
of the shape parameter ζ and Figure 2(f) shows the distribution of the scale parameter η.

Again there is good agreement between the samples from the unconditional distribution and the MCMC
samples, supporting the validity of the implemented algorithm.

2 Convergence diagnostic

Consider the basic setup of Section 5.3.3, i.e. the fitness model (8) with parameter choices α = −2.5,
β = 0.2, γ = 1 and priors ζ ∼ U(0.5, 2), η ∼ Exp(1000). In this section we describe some basic diagnostic
for this situation. All of these are standard diagnostics for MCMC models.

Figure 3 shows traceplots of the first 200 recorded samples (after thinning) of some of the variables
involved in the sampling. We deliberately pick variables involving banks with different levels of interbank
assets/liabilities. The trace plots seem to indicate a reasonable mixing of the chain.

Figure 4 shows, for the same components, autocorrelation plots based on the full 10000 samples. Most
autocorrelation is relatively low, for η it is moderate. These plots support that the chain, with the chosen
amount of thinning, is mixing well.

Other convergence diagnostics from the CODA package (Plummer et al., 2006) (e.g. Geweke’s conver-
gence diagnostic) did not point towards problems with the convergence of the thinned chain.

3 MCMC updates in the hierarchical model

We iterate between updating L|θ and θ|L. For the updates of L|θ we use the cycle updates of the basic
model. As every cycle update of L only updates a small part of L, we perform a large number of updates
for L for every update of θ. We have chosen to perform n2 randomly chosen cycle updates of L (where n is
the number of rows/columns of L) for every update of θ.

In the fitness model, θ = (x1, . . . , xn, η, ζ) consists of two parts, the n-dimensional vector x containing
the fitness and the shape and scale parameter for the weights (η, ζ). We update the fitness x and parameters
(η, ζ) sequentially.

To update the fitness x we use a multiplicative Metropolis Hastings step, where the new proposed fitness
x∗ = (x∗1, . . . , xn) is given by

x∗i = xi exp(εi),

where εi ∼ N(0, σ2) independently, and the variance σ2 is tuned to give good acceptance rates. The
new fitness is then accepted or rejected with the usual acceptance probabilities of the Metropolis Hastings
algorithm.
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Figure 2: Verification of the MCMC sampler in a fitness model: Unconditional distribution and MCMC
samples.
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Figure 3: Trace plot for selected components of the model in the setup for the fitness plots with α = −2.5,
β = 0.2, γ = 1.
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Figure 4: Estimated autocorrelation functions for selected components of the model in the setup for the
fitness plots with α = −2.5, β = 0.2, γ = 1.
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To update the scale and shape parameter (η, ζ) we again use a Metropolis Hasting step. We propose a
new (η∗, ζ∗) via

η∗ =η exp(εη), εη ∼ N(0, σ2
η),

ζ∗ =ζ + εζ , εζ ∼ N(0, σ2
ζ ).

Again, σ2
η and σ2

ζ are tuned to give desirable acceptance probabilities. We accept or reject the new (η∗, ζ∗)
with the acceptance probabilities derived through standard calculations for the MCMC step.

4 Generating power laws using a fitness model

In the following we show how a power law degree distribution can be obtained with the fitness model
introduced in Subsection 3.3.2. The parts of the model concerning the adjacency matrix were developed by
Servedio et al. (2004) (for undirected, non-weighted networks) and they derived specific formulae for the
case α = −2. We use their methodology and adapt it to the directed/weighted network case in the following.

4.1 Power law for the out- and in-degree distributions

Assuming that a bank cannot have liabilities to itself but only to the n − 1 remaining banks in the system,
the expected out-degree dout(x) of a node with fitness x is given by

dout(x) = (n− 1)

∫ ∞
0

f(x, z)ρ(z)dz. (1)

We focus on the expected out-degree, since the calculations for the in-degree and the degree are analogous.
Since the fitness X has pdf ρ it follows from the transformation theorem of probability densities that the
random variable Y := dout(X) has pdf

fY (y) =
∣∣∂(dout)−1(y)

∂y

∣∣ρ((dout(y))−1).

Using the result on differentiation of the inverse function we can simplify this expression to

fY (dout(x)) =
∣∣ 1

dout′(x)

∣∣ρ(x) =
ρ(x)

dout′(x)
.

If we now want this pdf to be a power law with parameter α on the finite range [d0, d∞], where dz =
limx→z d

out(x), we require that

fY (dout(x)) =
ρ(x)

dout′(x)

!
= cdout(x)

α

⇔ ρ(x) = cdout′(x)dout(x)
α
, (2)

and c is the constant such that
∫ d∞
d0

cyαdy = 1. In particular,

c =


(

log
(
d∞
d0

))−1
, if α = −1,

α+1
dα+1
∞ −dα+1

0

, if α 6= −1.

From (1) we see that d0 = β(n− 1) and d∞ = γ(n− 1) for some 0 < β < γ ≤ 1.
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Integrating both sides in (2) from 0 to x gives

R(x) :=

∫ x

0
ρ(y)dy = c

∫ x

0
cdout′(y)dout(y)

α
dy =

{
c(log(dout(x))− log(dout(0))), if α = −1,

1
α+1(dout(x)− dout(0)), if α 6= −1.

Solving for dout(x) yields

dout(x) =

{
dout(0) exp(R(x)/c), if α = −1,

(dout(0)α+1 + α+1
c R(x))

1
α+1 , if α 6= −1.

(3)

In the following we derive the particular form for the link function f assuming that f(x, y) = f̃(x+ y)
for a function f̃ that we determine in the following. We assume that the fitness has exponential distribution
with parameter 1. Therefore,

dout(x) = (n− 1)

∫ ∞
0

f(x, y)ρ(y)dy =

∫ ∞
0

f̃(x+ y)e−ydy.

Setting z := x+ y gives∫ ∞
x

f̃(z)e−(z−x)dz =
dout(x)

n− 1
⇔
∫ ∞
x

f̃(z)e−zdz = e−x
dout(x)

n− 1
.

Differentiating wrt x yields

f̃(x) =
dout(x)− dout′(x)

n− 1
.

in particular,

f(x, y) = f̃(x+ y) =
dout(x+ y)− dout′(x+ y)

n− 1
, (4)

where dout is given by (3). Using the expression in (3) together with its derivative and formula (4) yields
formula (9).

Since we consider the link function f(x, y) = f̃(x + y), which only depends on the two fitnesses via
their sum, the corresponding results for the in-degree distribution are exactly the same as for the out-degree
distribution. Hence, the in-degree distribution also follows a power law.

4.2 Power law from exponential mixture model

In our model for the parameter matrix λ we assume that λij is the sum of two independent Gamma dis-
tributed random variables with shape parameter ζ > 0 and scale parameter η > 0. Hence (conditional on
ζ, η), this sum follows again a Gamma distribution with shape parameter 2ζ and scale parameter η. Harris
(1968) has shown that exponential mixture models in which the rate parameter of the exponential distri-
bution follows a Gamma distribution have a Pareto II (Lomax) distribution. This is the statement of the
following lemma.

Lemma 4.1. Let λ be a random variable with Gamma distribution with shape parameter ζ > 0 and scale
parameter η > 0. Let X be a random variable such that X|λ has exponential distribution with parameter
λ. Then, X follows a Pareto II (Lomax) distribution with scale parameter 1/η and shape parameter ζ.

Proof. For y > 0 the pdf of λ is given by fλ(λ) = 1
Γ(ζ)ηζ

λζ−1 exp(−λ
η ). Let x > 0, then

P(X > x) =

∫ ∞
0

P(X > x|λ)fλ(λ)dλ =

∫ ∞
0

e−λxfλ(λ)dλ =
1

Γ(ζ)ηζ

∫ ∞
0

λζ−1 exp(−λ(x+
1

η
))dλ

=
(x+ 1

η )−ζ+1

Γ(ζ)ηζ

∫ ∞
0

((x+
1

η
)λ)ζ−1 exp(−λ(x+

1

η
))dλ = (1 + ηx)−ζ .
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5 Data used in simulation study in Subsection 5.3

Table 1: Balance sheet data (in million Euros) from banks in the EBA 2011 stress test used in Section 5.3:
Bank code Bank a(e) + a a w

DE017 DEUTSCHE BANK AG 1,905,630 47,102 30,361
DE018 COMMERZBANK AG 771,201 49,871 26,728
DE019 LANDESBANK BADEN-WURTTEMBERG 374,413 91,201 9,838
DE020 DZ BANK AG 323,578 100,099 7,299
DE021 BAYERISCHE LANDESBANK 316,354 66,535 11,501
DE022 NORDDEUTSCHE LANDESBANK -GZ- 228,586 54,921 3,974
DE023 HYPO REAL ESTATE HOLDING AG 328,119 7,956 5,539
DE024 WESTLB AG, DUSSELDORF 191,523 24,007 4,218
DE025 HSH NORDBANK AG, HAMBURG 150,930 4,645 4,434
DE027 LANDESBANK BERLIN AG 133,861 27,707 5,162
DE028 DEKABANK DEUTSCHE GIROZENTRALE 130,304 30,937 3,359

6 Empirical evidence of the missing data problem

Typical data sets available on interbank exposures fall essentially into three categories: “data from large
exposures, payment systems and credit registers”, (Langfield et al., 2014, p. 302). (Langfield et al., 2014,
Appendix A) contains an overview of these data sets and the literature that analyses them.

The 2007/2008 financial crisis lead to several new initiatives to collect more financial data both on
national and international level. As part of these initiatives collection of data on financial networks has also
been considered and partially improved. In the following we provide some brief examples which show that
missing data are still a major concern to regulators and policy makers.

As one example where new data have been collected in a national initiative, we look at the UK and
the recent description of data available to Bank of England, see Langfield et al. (2014). The new data
set that is available to Bank of England contains far more information than most of the existing data sets.
“UK banks report their exposures to other banks and broker dealers by financial instruments, including
lending (unsecured, secured and undrawn); holdings of equity and fixed-income securities issued by banks;
credit default swaps bought and sold; securities lending and borrowing (gross and net of collateral); and
derivatives exposures (with breakdown by asset class). Moreover, banks report exposures with breakdown
by maturity of the instruments. Banks’ internal risk management limits with respect to counterparties and
instruments are also supplied. Each bank reports exposures by instruments to their top-20 bank and broker-
dealer counterparties”, (Langfield et al., 2014, Section 2).

The new data set still has two major limitations: There are jurisdictional data constraints: “Banks in
the UK which are subsidiaries of a foreign parent - comprising 43% of all UK banks - only report their
UK subsidiaries’ interbank exposures, not those of the foreign group. Nevertheless, these UK subsidiaries
account for a sizable share (41%) of their groups’ global assets. In addition, we do not observe interbank
positions held by banks with no regulated subsidiary in the UK”, (Langfield et al., 2014, Appendix A).
In addition there are limitations on the number of reported counterparties: “UK banks report exposures to
their top 20 bank and broker-dealer counterparties. Exposures to counterparties beyond the top 20 are not
observed”, (Langfield et al., 2014, Appendix A).
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The jurisdictional constraints will likely remain a problem in the future. Some exceptions will arise
due to the G-20 Data Gaps Initiative which contains recommendations by the International Monetary Fund
(IMF) and the Financial Stability Board (FSB) to enhance data collection on an international level. A partic-
ular focus is on global systemically important banks (G-SIBs): “Since 2009, a new conceptual framework
has been built to assess global network connections of G-SIBs and their linkages with financial systems.
[...] Recommendation I.8 of DGI-1 is considered completed with the collection of consistent institution to
institution (I-I) data through a template that identifies bilateral credit exposures and funding liabilities of
G-SIBs, combined with the launching of the BIS International Data Hub to host the database (Phase 1 in
March 2013 and Phase 2 in June 2015). Recommendation I.9 of DGI-1 is close to completion pending the
FSB Plenary approval of the Phase 3 template which focuses on the granular institution to aggregate (I-A)
exposure on funding data”, (Financial Stability Board & International Monetary Fund, 2015, p. 25). The
second phase of the G-20 Data Gaps Initiative contains a recommendation (Financial Stability Board &
International Monetary Fund, 2015, Recommendation II.4, p. 26) to ensure the regular collection and shar-
ing of data on G-SIBs and to possibly extend the data collection to global systemically important non-bank
financial institutions (e.g. insurance companies).

Hence we see that despite significant changes and improvements on data collection missing data are still
a concern to regulators as of 2015.
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