Characterisation of the transmissivity field of a fractured and karstic aquifer, Southern France

Xiaoguang Wang¹*, Abderrahim Jardani², Hervé Jourde³, Lidia Lonergan¹, John Cosgrove¹, Olivier Gosselin¹&⁴, and Gérard Massonnat⁴

¹Department of Earth Science and Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
²CNRS UMR 6143, M2C, Morphodynamique Continentale et Cotiere, Université de Rouen, Mont-Saint-Aignan, France
³Laboratoire Hydrosciences, UMR 5569 CNRS-IRD-UM1-UM2, Université Montpellier 2, 34095 Montpellier, France
⁴Total SA, Avenue Larribau, 64018, Pau Cedex, France

*Corresponding author: x.wang12@imperial.ac.uk

E-mails:
Xiaoguang Wang: x.wang12@imperial.ac.uk; Abderrahim Jardani: abderrahim.jardani@univ-rouen.fr; Hervé Jourde: hjourde@univ-montp2.fr; Lidia Lonergan: l.lonergan@imperial.ac.uk; John Cosgrove: j.cosgrove@imperial.ac.uk; Olivier Gosselin: o.gosselin@imperial.ac.uk; Gérard Massonnat: gerard.massonnat@total.com

Abstract

Geological and hydrological data collected at the Terrieu experimental site north of Montpellier, in a confined carbonate aquifer indicates that both fracture clusters and a major bedding plane form the main flow paths of this highly heterogeneous karst aquifer. However, characterising the geometry and spatial location of the main flow channels and estimating their flow properties remain difficult. These challenges can be addressed by solving an inverse problem using the available hydraulic head data recorded during a set of interference pumping tests.
We first constructed a 2D equivalent porous medium model to represent the test site domain and then employed regular zoning parameterisation, on which the inverse modelling was performed. Because we aim to resolve the fine-scale characteristics of the transmissivity field, the problem undertaken is essentially a large-scale inverse model, i.e. the dimension of the unknown parameters is high. In order to deal with the high computational demands in such a large-scale inverse problem, a gradient-based, non-linear algorithm (SNOPT) was used to estimate the transmissivity field on the experimental site scale through the inversion of steady-state, hydraulic head measurements recorded at 22 boreholes during eight sequential cross-hole pumping tests. We used the data from outcrops, borehole fracture measurements and interpretations of inter-well connectivities from interference test responses as initial models to trigger the inversion. Constraints for hydraulic conductivities, based on analytical interpretations of pumping tests, were also added to the inversion models. In addition, the efficiency of the adopted inverse algorithm enables us to increase dramatically the number of unknown parameters to investigate the influence of elementary discretisation on the reconstruction of the transmissivity fields in both synthetic and field studies.

By following the above approach, transmissivity fields that produce similar hydrodynamic behaviours to the real head measurements were obtained. The inverted transmissivity fields show complex, spatial heterogeneities with highly conductive channels embedded in a low transmissivity matrix region. The spatial trend of the main flow channels is in a good agreement with that of the main fracture sets mapped on outcrops in the vicinity of the Terrieu site suggesting that the hydraulic anisotropy is consistent with the structural anisotropy. These results from the inverse modelling
enable the main flow paths to be located and their hydrodynamic properties to be estimated.
1. Introduction

Fractured and karstified limestone aquifers contain an important proportion of the world’s freshwater resources. These aquifers are known to be highly heterogeneous as the main flow paths correspond to various flow features, such as matrix, fracture and karst, with distinct hydraulic properties (White, 2002). Contrasts in hydraulic transmissivity between these flow components can be up to 5~10 orders of magnitude (Younger, 1993; Kuniansky et al., 2012). Secondly, the spatial distribution and organisation of the flow features within the volume of a fractured/karstified limestone aquifer are commonly complex which leads to significant flow anisotropy in the system. Furthermore, due to the strong spatial variability of flow properties, fractured/karstified limestone aquifers often exhibit complex, multi-scale flow behaviours (Adler and Thovert, 1999; Berkowitz, 2002; Neuman, 2005).

In order to quantitatively characterise groundwater flow in fractured/karstified rocks, hydrogeological models are often constructed to model the flow processes. These models broadly fall into two major categories: the discrete fracture network model (DFN) and the equivalent porous medium model (EPM). The DFN approach is the most appropriate for modelling groundwater flow in fractured, tight rocks where the preferential flow path consists of a few intersecting fractures. In these models, discrete fractures (Long et al., 1982; Dershowitz and Einstein, 1988; Matthai and Belayneh, 2004) or pipes (Jourde et al., 2002a) are treated as the basic component for both representing the fractured medium and flow computation. One of the most appealing features of these models is that the connectivity of flow paths is explicitly expressed. In addition, fracture data gathered from outcrops (distributions of fracture length, spacing, orientation, aperture) can be integrated into the model by generating
statistical models for the fracture network. However, the parameterisation and calibration of discrete fracture network models are often challenging as field data describing the location, geometry, spatial distribution and hydraulic properties of each individual fracture and karst feature are often limited. In contrast, the equivalent porous medium models do not explicitly account for the preferential flow paths but they are straightforward and relatively easier to implement and parameterise. Although the EPM models may seem to be oversimplified and less appropriate to conceptually represent fractured rocks, they can still capture the spatial variability of flow properties and the connectivity of preferential flow paths (Gomez-Hernandez et al., 1997; Neuman, 2005). In fact, because of their simplicity in having no pre-assumption about the location and geometry of the fractures, they can be employed and coupled with inversion algorithms to optimise the spatial geometry, connectivity and production properties of the flow paths in fractured systems (Illman, 2014).

In hydrogeology, pumping tests provide an important data source for aquifer characterisation. The traditional use of the pumping test technique is restricted to a single pumping well and is used to derive averaged hydraulic parameters corresponding to a large region between the pumping and observation wells (Theis, 1935; Cooper and Jacob, 1946; Gringarten 1984; Butler and Liu, 1993). Recently, hydraulic tomography techniques have been applied to reconstruct the spatial variability of the hydraulic properties of aquifers (Neuman, 1987; Butler et al., 1999). Hydraulic tomography is based on a joint analysis of multiple sets of hydraulic head measurements that correspond to pumping and monitoring in different locations in the aquifer (Gottlieb and Dietrich, 1995; Li et al., 2007). Although it has inherent limitations, as discussed in Bohling and Butler (2010), hydraulic tomography has
been shown to be a capable and effective method for characterising the
spatial variability of hydraulic transmissivity in heterogeneous porous media through
synthetic, numerical studies (e.g. Yeh and Liu, 2000, Liu et al. 2002; Bohling et al.,
2002; Cardiff and Kitanidis, 2008; Hao et al., 2008; Liu and Kitanidis, 2011);
laboratory experiments (e.g. Liu et al., 2002; Brauchler et al. 2003; Liu et al., 2007;
Illman et al., 2007, 2008) and field experiments (Bohling et al., 2007; Straface et al.,
2007; Cardiff et al., 2009; Illman et al. 2009; Berg and Illman, 2011; Brauchler et al.
2011; Huang et al., 2011). In particular, Yeh and Liu (2000), Liu et al. (2002), Hao et
al. (2008) and Cardiff et al. (2009) have shown the effectiveness of hydraulic
tomography in characterising a heterogeneous field of hydraulic conductivity using
only a limited number of steady-state head measurements. In their synthetic study,
Hao et al. (2008) have shown that, when multiple series of pumping test data
are available in fractured rocks, the highly conductive zones and their connectivity
can be successfully imaged using the hydraulic tomography technique. Illman et al.
(2009) recently applied a similar approach to a fractured granite in Japan and they
obtained high-resolution distributions of both the hydraulic conductivity and
storativity by using transient data from two, large-scale, cross-hole pumping
tests. Day-Lewis et al. (2000) proposed an approach for characterising high
conductive zones in a fractured aquifer in 3D using the simulated-annealing method.
Apart from these studies, most of the previous work focuses on characterisation of
hydraulic conductivity fields using hydraulic tomography techniques in relatively
homogeneous alluvial or fluvial aquifers. To the best of our knowledge, hydraulic
tomography techniques have not previously been applied to karstified, fractured
aquifers. In these types of aquifers, due to the low intergranular conductivity of the
background rock matrix, flow is strongly restricted within a limited number of
interconnecting fractures (Tsang and Tsang et al., 1987). In addition, with the
circulation of soluble groundwater through the interconnecting fractures, the original
fracture apertures can be further enlarged to generate high-conductivity flow
pathways which, in turn, further constrain the flow in the fractured medium (Bodin et
al., 2012). Therefore, in order to predict the hydrodynamic behaviour in these systems,
it is crucial to accurately characterise the location, distribution and connectivity of the
fracture and karstic pathways.

In this work, we focus on characterising the two-dimensional, highly spatially-
dependent transmissivity field of the Terrieu hydrogeological experimental site in a
fractured and karstified limestone aquifer located to the north of
Montpellier, Southern France. Because we aim to resolve the fine-scale characteristics
of the transmissivity field, the problem undertaken is essentially a large-scale inverse
modelling task, i.e. the dimension of the parameter space is high, which has rarely
been addressed in previous hydraulic tomography applications. To handle the high
computational demands in the large-scale inverse problem, a sparse nonlinear
optimizer (SNOPT; Gill et al., 2008) is applied to 8 sets of steady-state hydraulic head
data recorded in 22 observation boreholes during a sequential aquifer test (sequential
cross-hole pumping test conducted at various locations) for hydraulic tomography.
The inverted transmissivity fields are compared to the statistical fracture data mapped
on the outcrops in the vicinity of the test site to check the consistency between the
structural anisotropy and flow anisotropy in the fractured and karstified groundwater
system at the local scale.

2. Description of the test site and available datasets
The Terrieu experimental site, which is situated approximately 15 km north of the city of Montpellier (France), has been set up to investigate the hydrodynamic behaviour in the Lez aquifer which has served as the major water supply for the Montpellier urban area since the mid-19th century. The Lez aquifer is a fractured and karstic reservoir and consists of massive Late Jurassic and Early Cretaceous limestones (Leonardi et al., 2011, Jourde et al., 2014). The hydraulic properties of this aquifer are dominated by the fault system in the area and are complex (Fig.1; Roure et al., 1992; Petit and Mattauer, 1995; Watkinson et al., 2006). The Terrieu site is located between two major faults in the Lez aquifer (Fig. 1). This experimental site is about 1500 m² (30 m x 50 m) in size (Fig. 2) and it lies on a local NE-SW trending monocline, with the inclined limb dipping at 15 to 20 degrees toward NW (Jazayeri Noushabadi et al., 2011). The boreholes at the site are vertical and only intersect the upper part of the aquifer consisting of marly limestones of Cretaceous age. The geology at the site comprises two major rock units: the upper unit is composed of inter-bedded, low-permeability marls and marly limestone layers. It has a vertical extension of 30-40 metres and acts as an upper boundary that confines the aquifer. The lithology in the lower unit is more uniform and more massive limestone beds. The total thickness of the unit is unknown because of the maximum drilled depth (60 m) of the boreholes.

Twenty-two vertical boreholes have been drilled into the aquifer. These boreholes are relatively evenly spaced over the test site area with an average spacing of about 5 m (Fig. 2). This allows detailed investigation of groundwater flow on a fine scale. All of the boreholes are uncased with a diameter of either 0.22 m or 0.33 m.

2.1 Fracture mapping
Detailed fracture mapping on the test site pavement rocks has been conducted by Jazayeri Noushabadi (2009) and later completed by Wang et al. (2014, Fig. 2). Their results indicate that two major fracture sets are present: one oriented ENE-WSW and the other NW-SE. New fracture data collected by the present authors from the areas up- and down-stream of the test site along the Terrieu River are in agreement with the Terrieu pavement fracture database. This work confirms the presence of the two major fracture sets in the local region. The rose diagrams for both the fracture frequency and cumulative length based on the mapped fracture data at all stations have been plotted in the Fig. 3. These diagrams clearly reveal the structural anisotropy at the field site scale. This fracture pattern will be compared to the inverted transmissivity fields in later sections.

2.2 Well logging and packer tests

During last two decades, extensive hydrogeophysical studies have been conducted at the Terrieu site using temperature, electrical conductivity, borehole video loggings and straddle packer tests (Fig. 4 and Fig. 5b). Temperature and conductivity logs were recorded in all the boreholes; videos were recorded in 10 boreholes; and packer tests were performed in 5 boreholes. The borehole video data show that the fractures are generally steep and stop preferentially at bedding surfaces. The fractures are oriented in two major directions which are similar to the fracture patterns observed in outcrop on the test site pavement (Fig. 3). This justifies the use of surface fracture data to characterise the fracture network within the underlying unit. In addition, intense karstification has been observed either along major fractures and bedding planes or at the intersections between fracture and bedding planes. When borehole video data are used in conjunction with the temperature and conductivity logs, it is found that the preferential flow paths are strongly restricted within a limited
member of karstified fractures and karst conduits developed along an important, gently tilted, bedding plane. Its depth varies between 25 and 40 m from the site surface in different boreholes (Jazayeri Noushabadi et al., 2011; Fig. 5b). Straddle packer tests further indicate that this open bedding plane (Fig. 4a and Figs. 5b&c) is the most conductive feature which intersects the boreholes over the entire penetrated interval and its transmissivity is found to be more than 3 orders of magnitude higher than that of the other tested intervals. During the tests, injection of water into the intervals that are made up of only matrix was almost impossible confirming that flow in the matrix is negligible. In addition, no evidence of vertical flow has been found on the borehole videos and during packer tests. Similar phenomenon regarding the development of main flow pathways in limestone aquifers have been previously reported by Filipponi et al. (2009), Castagna et al. (2011), Bodin et al. (2012) and many others in the karst community. The observations from the well logging and packer test data form the basis for this work which aims to model the main conduit network in 2D (Fig. 5c).

2.3 Sequential cross-hole pumping tests

Eight cross-hole pumping tests have been performed at the Terrieu site and the pumping rate for each test ranges from 0.2 to 53 m³/h depending on the well diameter, productivity of the well and pump power limits (Jazayeri Noushabadi et al., 2011). We assume the measurement errors in all the tests are independent and identically distributed by considering a value of 0.01m to include all the measurement errors from equipment, operation and any other unpredictable error sources in nature.

The steady-state head data clearly reveal the highly heterogeneous nature of the study area (Fig. 6). Firstly, pumping in one borehole does not generate drawdowns
in all other observation boreholes even at high pumping rate. For instance, the registered pumping rate in P0 was 53 m^3/h; however, no obvious drawdown was recorded in other boreholes such as P1, P6, P7, P18 and P19. The recorded drawdowns during a pumping test are not evenly distributed with respect to the distance between the pumping and observation wells. For example, although P2 and P7 are located approximately at the same distance to P0, their hydrodynamic response differs greatly: a large drawdown was recorded in P2 (2.2m) but no drawdown was monitored in P7. Moreover, it is also found that pumping in different boreholes, i.e. at different locations in the aquifer, generates significantly different drawdown distributions. In particular, when pumping in P0, many boreholes exhibit large drawdown, regardless of the distance from the pumping well. However, when pumping in P10, the water table drawdown is only observed in a few boreholes close to the pumping well. All of these observations reflect the complex interconnection of the fracture and karst system and highlight the challenges in the prediction of groundwater flow in a fractured and karstic aquifer.

3. Hydraulic tomography

3.1 Forward model

In two-dimension, steady state groundwater flow in an isotropic, heterogeneous and confined aquifer is governed by the following simple continuity and constitutive equations:

$$\nabla \cdot \mathbf{u} = Q_s$$ \hspace{1cm} (1)

$$\mathbf{u} = -T \nabla h$$ \hspace{1cm} (2)

that are subject to the following boundary conditions:
\[h = h_D \quad \text{on } \Gamma_D \]
\[-\mathbf{n} \cdot T \nabla h = 0 \quad \text{on } \Gamma_N \]

where \(u \) represents the Darcy velocity (flux, in \(\text{m s}^{-1} \)); \(Q_s \) (\(\text{m s}^{-1} \)) represents the hydraulic sources/sinks due to pumping events; \(T \) (\(\text{m}^2 \text{s}^{-1} \)) represents transmissivity; \(h \) (m) represents hydraulic head; \(\mathbf{n} \) denotes the unit vector normal to the boundary, \(\Gamma_N \). Equations (3) and (4) represent the Dirichlet condition imposed on boundary \(\Gamma_D \) and the Neumann boundary condition applied at boundary \(\Gamma_N \), respectively. The specific boundary conditions used in the models described here will be discussed in detail in the next section.

3.2 Inverse problem

The main objective of inverse modelling in this work is the reconstruction of the spatially distributed hydraulic transmissivity field by matching the simulated hydraulic responses recorded in each borehole with the observations in the corresponding borehole during a set of sequential pumping tests. In order to achieve this goal, we minimise the following objective function with bounds constraints imposed on the transmissivity field:

\[
\min_{l \leq s \leq u} \Gamma(h_t, s) = (h_t - F(s))^T R^{-1} (h_t - F(s))
\]

Subject for \(l \leq s \leq u \)

where \(h_f \) denotes the \(n \times 1 \) vector of real measurements; \(s \) represents the \(m \times 1 \) vector containing the unknown values of the logarithm of the hydraulic transmissivity, \(\log_{10} T \); \(F(s) \) represents the forward problem operator taking a log hydraulic transmissivity field \(s \) as input while predicting the \(n \times 1 \) hydraulic head values; \(R \)
denotes the \(n \times n \) covariance matrix of the measurements errors. \(l \) and \(u \) are the lower and upper bound vectors respectively for the constraint of the transmissivity field.

Even though some \textit{a priori} information derived from the aquifer tests has been used to define the initial conditions at the initiation of the inversion process, there is no spatial penalty matrix or variogram used to regularise the inversion model. The reason for this is that the inherent extreme heterogeneity and anisotropy of the bedrocks at the field site induced by the fractures and karstic features pose significant uncertainties in estimating the structural parameters such as the variances and correlation lengths of the variogram. Such data are generally easier to define in less heterogeneous and isotropic geological media as described by Cardiff et al. (2009), Cardiff et al., (2012) and Jardani et al. (2012). It is known that the hydraulic inverse problems have non-unique solutions. In order to filter out the reliable solutions, upper and lower limits are often employed to constrain the inversion model and to exclude the undesirable values in the parameter field. These bounds for hydraulic properties are strongly depend on the inherent nature of the heterogeneous geological medium. Consequently, we choose to deal with a bound-constrained problem. The inversion algorithm adopted in this study is the Sparse Nonlinear Optimizer (SNOPT; Gill et al., 2002). This algorithm is a proven gradient-based routine in optimisation and especially effective for solving large-scale, nonlinear problems whose functions and gradients are expensive to evaluate (Jockenhovel et al., 2003; Gill et al., 2005; Cardiff and Kitanidis, 2008; Fowler, 2010). The SNOPT algorithm is efficient for models with a large number of constraints and a moderate number of degrees of freedoms. It computes the exact analytic derivative of the objective and constraint functions using the adjoint method (Gill \textit{et al}., 2008). These advantages make it suitable for solving distributed hydraulic inverse problems of the type being addressed in this paper,
which are nonlinear, ill-posed and underestimated. We note that even in the coarsest
model used in this work, the number of hydraulic unknowns reaches to 2160. In such
a large-scale inverse problem, the computational costs in computing the Jacobian
(sensitivity) matrix and in minimising the objective function are prohibitive and
cannot be handled by the classical methods. Therefore the results of our work are of
value for the hydraulic characterisation of fractured and karstic aquifers using field
data and of revenue to workers in the field of hydraulic characterisation of such
aquifers.

3.3 Inversion model setup and convergence performance criteria

The Terrieu site is modelled as a 2D rectangular domain (60m × 36m; Fig. 7). The domain is regularly discretized into square grids. This local model is enclosed by
a large buffer region of 1.2 km by 1.2 km in order to reduce the influence of the
hydraulic boundaries on the local inverse problem. Geologically, this region also
corresponds to the block area between the two major faults running through the Lez
aquifer (Fig. 1). Constant hydraulic properties are considered in the buffer region. A
no flow boundary condition is applied to the faults and constant head condition is set
for the other two boundaries. The initial condition is set in the entire model by
assuming a static water table level (30m) prior to each pumping tests.

Case tests are designed to investigate the influences of the initial local
transmissivity model, local and regional transmissivity bounds, grid sizes, and
inversion strategies on the inversion of local transmissivity field. To quantify the
inversion performance and monitor the convergence for each inversion model, we
calculate both the objective function value at the beginning and the end of the
inversion, \(J_{\text{start}} \) and \(J_{\text{end}} \), and the root mean square, \(RMS = \sqrt{\frac{J_{\text{end}}}{N}} \), where \(N \) is the
number of measurements used in the inversion model. Generally, if the condition $0 < RMS < 1$ holds, the inversion converges while if $RMS > 1$ holds, the inversion is not converge.

3.4 Validation of the inversion methodology: a synthetic case study

Prior to field application, synthetic experiments were set up to test the feasibility and effectiveness of applying the proposed methodology for detecting the highly conductive zones and their quantifying their connectivity. We generated three sets of discrete fractures restricted to the regions around the borehole using the mapped Terrieu fracture data. A karstic conduit, which passes through the test domain, was placed manually in the model. The real locations of the Terrieu boreholes were used for positioning the boreholes in the DFN model. This created three types of borehole-network connectivity (Fig. 8a), and the model was used to perform synthetic pumping tests. In the synthetic experiments, the matrix flow is simulated by using Darcy’s law (Eq. 2), whereas the fluid velocity through the discrete fractures and the karst channel is calculated using the cubic law (Witherspoon et al., 1980; Jourde et al., 2002b):

$$u_d = \frac{a_p^2 \rho g}{12 \mu} \nabla h$$

where u_d (m s$^{-1}$) is the Darcy velocity (flux) through each discrete feature (a fracture or a karst conduit); h is the hydraulic head (in m); a_p (m$^{-1}$) denotes the aperture of individual fractures or karst channel; ρ (kg m$^{-3}$) denotes the fluid density; μ (kg m$^{-1}$ s$^{-1}$) denotes the fluid dynamic viscosity; g (m s$^{-2}$) is the acceleration of gravity. Values of 1 mm, 20 mm, 10^{-8} m2s$^{-1}$ and 10^{-5} m2s$^{-1}$ were set for the apertures of discrete fractures and
karst conduit, and the transmissivities of matrices in the local and regional areas, respectively. Real pumping rates was used to conduct the synthetic studies.

Inversion of these tests was performed on two regularly discretised models with grid sizes of 1m by 1m and 0.5m by 0.5m, respectively (Fig. 8b and Fig. 8c). As expected, both models achieved good convergence (Fig. 9) and it can be seen that, in general, the hypothetical fracture pattern was successfully resolved by the inversion: the connectivities between the karst channel and the fracture clusters, and between the boreholes and different flow regions (i.e. karst, fracture or matrix) were all preserved. For instance, boreholes P0, P2, P8, P12, P15, P11 and P20 were assumed to sit on the karstic channel, and similar connections were captured in the inverted transmissivity fields (Fig. 8b and Fig. 8c). Good agreement was also found when the boreholes were connected to the fractures or the matrix. In addition, a comparison between Fig. 8b and Fig. 8c indicates that a more reliable transmissivity distribution was obtained by using a finer grid. These results confirm the capability of the proposed hydraulic tomography method to determine the distribution of the main conductive conduits and characterise their connectivity.

4. Application: inversion of Terrieu site pumping test data

4.1 Case 1: Influence of initial model on the inversion results

Fig. 10 shows two resulting transmissivity fields reconstructed using the same hydraulic head measurements but with different initial models. In the first inversion model (Fig. 10a), a constant transmissivity value of \((10^{-4} \text{ m}^2 \text{s}^{-1})\) was set for both the regional and local areas. We use this value because it is a typical transmissivity for fractured and karstified aquifers and it is also consistent with the interpretation of single-hole test data given by Jazayeri Noushabadi (2011). However, in the second
inversion model (Fig. 10b), an initial transmissivity field as shown in Fig. 7 was adopted for the local region and the same constant transmissivity value as in the first inversion model (Fig. 10a) was applied to the regional area. This initial model was derived from the connectivity interpretations based on the cross-hole pumping tests at the site. Both tests were realised with the same grid size of 1 m by 1 m and the same range of \([10^{-8}, 10^{-1}] (m^2 s^{-1})\) for constraining the local transmissivity values.

As it can be seen, both models converged and, even though slightly different, good fitness of the inverted and measured hydraulic data was obtained for both models (Fig. 11). Despite the fact that highly heterogeneous transmissivity fields were predicted by both the inversion models, the spatial patterns of the resulting transmissivity fields are significantly different. Using a constant initial transmissivity in the entire inversion model, the vast majority of cells within the imaged local transmissivity field tend to be filled with extremely high or low values of the given local transmissivity range. Only a few cells, which are primarily located around the boreholes, have moderate transmissivity values (Fig. 10a). In other words, the resulting transmissivity field in this case tends to be binary with high and low values. In contrast, a more diffused, heterogeneous pattern of transmissivities is calculated when the initial transmissivity field (Fig. 7) was used in the inversion (Fig. 10b). It is also noted that, when this initial transmissivity field is considered, the inversion resolved more continuous NE-SW trending and relatively less NW-SE trending conductive structures, which is more consistent with the fracture statistics shown in the Fig. 3.

Unlike many previous geostatistical studies in which \textit{a priori} knowledge derived from hydrogeological or hydrogeophysical measurements were integrated into the objective function as a penalty criteria to regularise the parameter field, in this
work, the inter-well connection information was used only as an initial condition to trigger the inverse modelling. We note that the well connection data were integrated in the initial models (Fig. 7) merely through subjective interpretations. More rational integration of connectivity data can be achieved by applying the simulated annealing method proposed by Day-Lewis (2000) or the method of Carle and Fogg (1997) which is based on transition probability geostatistics. Applications of these methods require the use of a considerably large number of field measurements to condition the geostatistical simulations. Nevertheless, even in these relatively simple models (Fig. 7), the comparison of the calculated transmissivity fields in Fig. 10 still reveals the influence of the use of the inter-well connection information in guiding the gradient-inverse modelling in fractured media. Adopting the a priori connection information as an initial condition in the inversion produces transmissivity patterns which are more consistent with the fracture data. Accordingly, we believe the results obtained from this approach are more realistic and reliable. In the remaining discussion, the same initial transmissivity field presented in Fig. 7 is used in the inversion simulations.

4.2 Case 2: Influence of transmissivity bounds for the regional and local regions on the inversion results

4.2.1 Bounds for the regional bulk transmissivity

The reconstruction of the hydraulic transmissivity field of the local domain is affected by regional transmissivity because the interconnecting fractures and karst channels have developed beyond the studied domain, which is demonstrated by the high productivity of the P0 borehole. We considered a range of \([-5, -2]\) to represent the range of the logarithm of the transmissivity, \(\log_{10} T (m^2 s^{-1})\), in the regional buffer area which encloses the local model. Within the local region, the same
transmissivity range of \([10^{-8}, 10^{-1}](m^2s^{-1})\), was set as in previous inversion models discussed.

It is found that over the range of \([-4, -2]\) for the log regional transmissivity, there is a good correlation of the hydraulic head data, and in addition, good convergence performances have been achieved (Fig. 13; Table 1). The inverted local T patterns in these models are generally similar (Fig. 12a, Fig. 12b and Fig. 12c). However, outside the range, both the convergence performance and fitting of head data becomes much worse (Fig. 13d; Table 1). Notice that when the value -2 is used, although the inversion model still converged, the value of the objective function at the end of the inversion for this model is about 10 times higher than that when a value in the range of \([-4, -3]\) is adopted. This indicates that this value \((T = 10^{-2} \ m^2s^{-1})\) is not the best value to be considered for the large-scale regional transmissivity. The analysis done by Jazayeri Noushabadi et al. (2011) on the regional pulse test data indicates that the highest estimated permeability value is around 50000 mD at the kilometre scale. This permeability corresponds to a transmissivity value of \(10^{-2}(m^2s^{-1})\), if it is assumed that the effective height for flow is 20 m. However, the true effective height for flow in the Terrieu site is far smaller, i.e. the major groundwater flow is found to be strongly constrained within the intensely karstified bedding plane with a largest opening of only about 20 cm. The flow through the intergranular matrix is very limited because of the extremely low permeability of the tight limestones in the Terrieu field site area. All of the former hydrogeological investigations, now supported by the inversion result, lead us to believe that the upper bound for the regional bulk transmissivity is less than \(10^{-2}(m^2s^{-1})\). However, as can be seen from the inversion results (Fig. 13d), the regional transmissivity value cannot be as low as \(10^{-5}(m^2s^{-1})\). When this low value was used to represent the
transmissivity in the buffer region, the inversion model did not converge and in addition, the fit between inverted and measured, steady-state, head data was much worse. Therefore, in our opinion, the small range of [-4, -3] for the log regional transmissivity is appropriate and probably gives a good estimate of the regional scale equivalent transmissivity.

It can be seen from Fig. 13d that, among all the test data, the use of low regional transmissivity exerts more impact on the head data of the P0 test and the inverted hydraulic heads are systematically lower than the measured heads. This suggests that P0 well may connect to the main flow path existing on the regional scale and pumping in this well reflects regional hydrodynamic properties. When the regional bulk transmissivity is given a much lower value than the real averaged transmissivity, there is not enough water supply from the regional area. This results in larger drawdowns in most of the observation boreholes in the inversion model.

4.2.2 Bounds for the local, spatially varying transmissivities

It is also known that changing the constraining bounds of local transmissivity values may also affect the inversion results. To investigate this issue, we considered five different sets of bounds, i.e. [-10, -1], [-8, -1], [-7, -2], [-6, -3] and [-5, -4], for the log transmissivity values in the local system. In all the five inversion models, a constant value of $10^{-4} (m^2 s^{-1})$ was assigned to the transmissivity in the buffer region.

It can be seen that good data-fits are obtained for the large ranges of [-10, -1] and [-8, -1] (Fig. 15 and Table 2). However, as the range becomes smaller, which means the local transmissivity field is forced to be more homogeneous, both the correlation of inverted and measured head data and the inversion convergence become progressively worse (Table 2). Thus, if it is assumed that the heterogeneity of the
transmissivity field is low in a region where it is in fact high (for example at the
Terrieu site as has been shown from former hydrodynamic and geological
investigations), a misfit would be expected between the predicted and observed values
of hydraulic head. In addition, the inverted transmissivity fields show significantly
different flow patterns (Fig. 14 and Fig. 10b). In general, as the range applied to
constrain the spatial variability of local transmissivities becomes smaller, the resolved
flow features become larger, and more randomly oriented, deviating from the
observational data. It is also noted that, on the transmissivity maps shown in Fig. 14b
and Fig. 14c, more conductive features were depicted in the areas that are not
constrained by any borehole measurements, e.g. the massive conductive zones
resolved in the lower-middle and lower-right areas of Fig. 14b and the upper-left area
of Fig. 14c. All of these results confirm the extremely heterogeneous nature of the
fractured and karstified limestones of the field site. It is clear that when the local
domain is assumed to be more homogeneous, we obtained poor representations of the
transmissivity fields with high uncertainties.

In summary, in order for the inversion model to represent the observed
hydraulic behaviour of the fractured and karstified system in the Terrieu site, a large
range of transmissivities, \([10^{-8}, 10^{-1}] (m^2 s^{-1})\), is required within the local system
and a smaller range of \([10^{-4}, 10^{-3}] (m^2 s^{-1})\) is needed for the bulk transmissivity in
the buffer region. Having determined the range of transmissivity over which a good
correlation exist between the measured hydraulic head and that predicted by the
model, the uncertainties in quantification of the flow properties in the study area are
dramatically reduced. The difference in the transmissivity ranges on the local and
regional scales may also reflect the scaling of the flow properties of the studied flow
network. As can be seen from Fig. 13 and Fig. 15, on a regional scale, the range of
transmissivity is smaller compared with the range of transmissivity for the local scale.

In other words, the flow is highly heterogeneous on the local scale while the flow appears to be more homogeneous as the scale increases and reaches the REV of the studied flow network. If this relationship is persistent in the study area, it should be possible to determine a support scale of the REV for the multi-scale fractured system.

4.3 Influence of the grid size on the inversion results

Fig. 16 presents two transmissivity fields reconstructed by using different grid sizes: 0.5m by 0.5m and 0.25m by 0.25m. These transmissivity fields can be further compared to the Fig. 10b, which uses a grid size of 1m by 1m. A local transmissivity range of \([10^{-8}, 10^{-1}](m^2s^{-1})\) and a regional transmissivity value of \(10^{-4}(m^2s^{-1})\) are considered in these models.

When the transmissivity patterns of Fig. 10b and Fig.16a are compared it can be seen that the use of a smaller grid allows more fine-scale flow structures to be resolved by the inversion using the same set of field data. The flow pattern inferred from the transmissivity field predicted on the finer scale is apparently more localised and restricted to few conductive conduits. Even though, at a first glance, the transmissivity field shown in the Fig. 10b looks different to that presented in the Fig. 16, many high-conductivity paths can be seen on both transmissivity fields at similar locations. For instance, the large continuous path between the P21 and P8 wells, as well as some local, smaller conduits in the triangular region defined by wells P8, P16 and P19 are common features shared by the two transmissivity fields. In addition, a similar connectivity pattern between some boreholes, e.g. P2-P9, P4-P10, P6-P7, P8-P21, is also captured by both grid sizes. These consistencies between the resulting transmissivity fields on different scales show that even with a limited number of
steady-state field measurements, the highly parameterised inversion models are still capable of providing reliable and realistic results.

Regarding the inversion performance and computational efforts, the inversion model using a grid size of 1m by 1m ran for about 1 hour and converged. The inversion model with a grid size of 0.5m by 0.5m ran for about 8 hours and also converged. However, the last inversion model in this series, with a grid size of 0.25m by 0.25m, ran for two days, until the pre-defined maximum number of objective function evaluations was reached but the inversion did not converge. An additional inversion run was performed for this last model and a higher value for the number of objective function evaluations was set. The inversion model ran for about three and half days but unfortunately it still did not converge. Generally, it is found that as the grid size becomes smaller, a major mismatch between the prediction and the observed behaviour occurs (Fig. 11b and Fig. 17). Two possible reasons for this are: firstly, from the geological point view, it may reflect the fact that the grid size, i.e. 0.25m, is close to or falls below the scale of the major features (these are as large as 0.2-0.3m as can be seen in the borehole video data; see Fig. 4 for reference) controlling the groundwater flow. Alternatively, from the point of view of numerical calculation, this reduction of grid size from 1m by 1m to 0.25m by 0.25m may have led the model being over-discretised thereby reaching the limit of the SNOPT algorithm in solving the overestimated nonlinear inverse problem. In addition when a finer grid size is used, the complexity of the inverse problem may overwhelm the sparse database employed to constrain the problem. It follows that when limited field data are available it is important to determine the appropriate parameterisation when modelling highly heterogeneous fractured/karstified aquifers.

6. Conclusions
Modelling of the groundwater flow in the fractured and karstified aquifers is inherently a challenge because of the nature of the extremely high heterogeneity and anisotropy of the systems and the scarcity of field measurements. However, by careful selection of the modelling approach and coupling inversion techniques, we can still obtain reliable results with the available data set. We applied hydraulic tomography to jointly analyse eight sets of cross-hole pumping tests based on a simple, regularly-parameterised equivalent porous medium model and demonstrated the ability of this method to estimate the transmissivity field of a test site located within a real fractured and karstified aquifer. We note that the modelling task undertaken in this paper involved solving a large-scale inverse problem where the computational demands are heavy. Such large-scale inverse problems have rarely been addressed in the water resources literature, except for some recent work conducted by Kitanidis and co-workers (e.g. Lee and Kitanidis, 2014). However, we recognise that results were achieved by using a dense borehole network in a limited area and an extensive hydraulic dataset, even though the hydraulic data are still apparently sparse compared to the large number of hydraulic unknowns (2160 in the coarsest model) in the large-scale inverse problem addressed in this work. This may imply that based only on this case study it is difficult to claim that the hydraulic tomography technique is a generally applicable method for aquifer characterisation in fractured media and that its applicability need to be further tested using other datasets.

Results have shown that the use of the initial connectivity information derived from pumping tests significantly improves the inversion results. It was also found that in order for the inversion models to represent the observed behaviour of the system, a large range of transmissivities, $[10^{-8}, 10^{-1}] (m^2s^{-1})$, is required within the local system and a smaller range of $[10^{-4}, 10^{-3}] (m^2s^{-1})$ is needed for the bulk
transmissivity in the buffer region. A series of spatially distributed transmissivity fields that produce similar hydraulic behaviours to the real pumping tests were obtained. These transmissivity fields allow the identification of the preferential flow paths that are complexly organised within the low-permeability background matrix. A predominate NE-SW flow direction was identified. These inverted transmissivity fields are believed to be reliable and representative for the Terrieu site since they are consistent with the hydrodynamic and geological measurements gathered there. However, since solute transport data is not integrated in the model condition practise we acknowledge that the inverted heterogeneous field can only be used for pressure and flow predictions. It may completely fail for predicting tracer concentrations. Obtaining a more plausible characterisation of the site heterogeneity may require joint inversion of piezometric data and other data such as solute concentration, electrical and geophysical data. The methodology of joint inversion of piezometric and solute concentration data collected at the Terrieu site is currently being conceived and will be addressed in the future work.

Even though the regularly parameterised model used in this study is seemingly oversimplified and might not be considered appropriate for modelling the complex flow path network in the intensely fractured and karstified system observed at the field site scale, it possesses the flexibility to characterise the spatial location and connectivity of the main flow paths. In future work, it will be useful to apply derivative-free methods such as the Markov chain Monte Carlo (McMC) approach to take into account the non-uniqueness solution and the uncertainties of the inverse modelling. The inversion results and effectiveness of both the gradient-based and derivative-free approaches could then be compared. Furthermore, as the fracture network at the Terrieu site has been mapped and statistically characterised, it would
be worth constructing a set of DFN/DFM models and to apply the hydrodynamic
datasets used in this work to condition them to invert the distribution of aperture for
fractures in the network. Such approaches would not only allow the major controls of
the geometry and connectivity of the main flow paths to be determined, but would
also enable the complex channelling behaviour of multiphase flow that may have a
major impact in fractured oil/gas reservoirs on the fluid exchange between the
conductive flow paths and the bulk fracture rock, to be captured.

Acknowledgements

This work was performed within the framework of the MEDYCYSS
observation site, part of the KARST observatory network (www.sokarst.org) initiated
by the INSU/CNRS, which aims to strengthen knowledge-sharing and to promote
cross-disciplinary research on karst systems. We acknowledge funding from Total for
the PhD project of the first author. We thank the reviewers for providing useful
comments which improve this paper.

References

Bodin, J., Ackerer, P., Bosisson, A., Bourbiaux, B., Bruel, D., de Dreúzy, J., Delay, F., Porel,

Cardiff, M., W. Barrash, P. K. Kitanidis, B. Malama, A. Revil, S. Straface, and E. Rizzo

Rotterdam, Netherlands.

Theis, C. V. (1935), The relation between lowering the piezometric surface and the rate and duration of discharge of a well using ground water stor- age, *Eos Trans. AGU*, 16, 519–524.

Table 1. Inversion performance of regional transmissivity bounds tests

<table>
<thead>
<tr>
<th>log(T)</th>
<th>J_end</th>
<th>Root mean square (RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>102.9</td>
<td>0.97</td>
</tr>
<tr>
<td>-3</td>
<td>24.8</td>
<td>0.47</td>
</tr>
<tr>
<td>-4</td>
<td>16.9</td>
<td>0.39</td>
</tr>
<tr>
<td>-5</td>
<td>3530.5</td>
<td>5.67</td>
</tr>
</tbody>
</table>

Note: all the tests used the initial transmissivity field shown in Figure 6 as initial condition thus in all cases, J_start = 4099336

Table 1. Inversion performance of regional transmissivity bounds tests

<table>
<thead>
<tr>
<th>log(T)</th>
<th>J_end</th>
<th>Root mean square (RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>102.9</td>
<td>0.97</td>
</tr>
<tr>
<td>-3</td>
<td>24.8</td>
<td>0.47</td>
</tr>
<tr>
<td>-4</td>
<td>16.9</td>
<td>0.39</td>
</tr>
<tr>
<td>-5</td>
<td>3530.5</td>
<td>5.67</td>
</tr>
</tbody>
</table>

Note: all the tests used the initial transmissivity field shown in Figure 6 as initial condition thus in all cases, J_start = 4099336

2 column fitting table
Table 2. Inversion performance of local transmissivity bounds tests

<table>
<thead>
<tr>
<th>log(T) range</th>
<th>J_end</th>
<th>Root Mean Square (RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-10, -1)</td>
<td>26.5</td>
<td>0.49</td>
</tr>
<tr>
<td>(-8, -1)</td>
<td>16.9</td>
<td>0.39</td>
</tr>
<tr>
<td>(-7, -2)</td>
<td>2208.9</td>
<td>4.48</td>
</tr>
<tr>
<td>(-6, -3)</td>
<td>14879.5</td>
<td>11.63</td>
</tr>
<tr>
<td>(-5, -4)</td>
<td>18856.4</td>
<td>13.09</td>
</tr>
</tbody>
</table>

Note: all the tests used the initial transmissivity field shown in Figure 6 as initial condition thus in all cases, J_start = 4099336

Editable version:

Table 2. Inversion performance of local transmissivity bounds tests

<table>
<thead>
<tr>
<th>log(T) range</th>
<th>J_end</th>
<th>Root mean square (RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-10, -1)</td>
<td>26.5</td>
<td>0.49</td>
</tr>
<tr>
<td>(-8, -1)</td>
<td>16.9</td>
<td>0.39</td>
</tr>
<tr>
<td>(-7, -2)</td>
<td>2208.9</td>
<td>4.48</td>
</tr>
<tr>
<td>(-6, -3)</td>
<td>14879.5</td>
<td>11.63</td>
</tr>
<tr>
<td>(-5, -4)</td>
<td>18856.4</td>
<td>13.09</td>
</tr>
</tbody>
</table>

Note: all the tests used the initial transmissivity field shown in Figure 6 as initial condition thus in all cases, J_start = 4099336

2 column fitting table
Figures

Fig. 1. Geological settings of the study area. The Terrieu experimental site, black rectangle, is the main study area; modified after Roure et al., 1992; Petit and Mattauer, 1995; and Watkinson et al., 2006.

Fig. 2. Well locations and fracture map of the Terrieu site, see Fig. 1. Blue dots indicate boreholes with downhole video data.
Fig. 3. Rose diagrams derived from fracture analysis on the Terrieu pavement: fracture frequency and cumulative fracture length (in metre).

Fig. 4. Examples of the borehole video data. Note that the aperture of the karstic features - up to about 20cm as shown in (b).
Fig. 5. (a) Cross-section trace between well P11 and well P20 at the Terrieu site. (b) Temperature log profiles measured in boreholes along the cross-section AB (modified from Jazayeri Noushabadi et al., 2011). Note that the deflections in the temperature profiles define the location of the karstified bedding plane, i.e. the preferential flow path. The general dip of the bedding is also indicated by the dashed lines. (c) 3D geometry of the karstified bedding plane determined by the correlation of borehole temperature logs and borehole videos. It is found that the groundwater flow on the local scale is strongly constrained within this bedding plane. It has been used as the conceptual model in this work.

Fig. 6. Connectivity maps inferred from the affected zones during different cross-hole pumping tests (modified after Jazayeri Noushabadi et al., 2011).
Fig. 7. Inversion model setup with an initial transmissivity field derived from connectivity interpretations based on the cross-hole pumping tests at the Terrieu site.

1.5 column fitting image
Fig. 8. (a) DFN model used in the synthetic experiment. Three types of borehole-network connectivity were considered in this work are: borehole-karst, borehole-fracture and borehole-matrix (b) Inverted transmissivity field with a grid size of 1m by 1m. (c) Inverted transmissivity field with a grid size of 0.5m by 0.5m.

1.5 column fitting image
Fig. 9. Correlations of inverted vs. measured hydraulic heads. (a) Results for inversion model with a grid size of 1m by 1m. (b) Results for inversion model with a grid size of 0.5m by 0.5m.
Fig. 10. Comparison of inverted transmissivity fields obtained by using (a) a constant initial transmissivity value ($10^{-4} m^2/s$) for both the local and regional areas as the initial condition in the inversion; (b) an initial transmissivity field, shown in the Fig. 7, as the initial condition in the inversion.

Fig. 11. Scatter plots of observed hydraulic heads versus predicted hydraulic heads: (a) result for using a constant initial transmissivity value ($10^{-4} m^2/s$) for both the local and regional areas as the initial condition in the inversion model; (b) result for using an initial transmissivity field which is shown in the Fig. 7 as the initial condition in the inversion.
Fig. 12. Comparison of transmissivity fields inverted using different regional transmissivity value. Values of $10^{-2} m^2/s$, $10^{-3} m^2/s$, $10^{-4} m^2/s$, and $10^{-5} m^2/s$ were set in the model (a), (b), (c) and (d) respectively. The range set for the local transmissivities in all the four simulations was $[-8, -1] \ (\log_{10} T; m^2 s^{-1})$.

2 column fitting image
Fig. 13. Scatter plots of observed hydraulic heads versus predicted hydraulic heads for the study of hydraulic transmissivity bounds in the regional buffer area. The inverse models were run by using four different regional transmissivity values. See Table 1 for the inversion performance of the four simulations.
Fig. 14. (a) Transmissivity field inverted using $[10^{-10}, 10^{-1}] \ (m^2s^{-1})$ for the local transmissivity range; (b) Transmissivity field inverted using $[10^{-7}, 10^{-2}] \ (m^2s^{-1})$ for the local transmissivity; (c) Transmissivity field inverted using $[10^{-6}, 10^{-3}] \ (m^2s^{-1})$ for the local transmissivity; (d) Transmissivity field inverted using $[10^{-5}, 10^{-4}] \ (m^2s^{-1})$ for the local transmissivity. Note in all the cases, a constant value of $10^{-4} m^2/s$ was considered for transmissivity in the buffer region. See Fig. 10b to compare with the inverse model run with a $[10^{-8}, 10^{-1}] \ (m^2s^{-1})$ range for local transmissivities.
Fig. 15. Scatter plots of observed hydraulic heads versus predicted hydraulic heads for the investigation of bounds for local transmissivities. The inversion models were run with five different ranges for the local spatially varying transmissivities. The regional transmissivity was set to be $10^{-4} \text{ (m}^2\text{s}^{-1})$ for all the five simulation models. See Table 2 for the inversion performance of the five simulations.
Fig. 16. Comparison of transmissivity fields inverted using different grid sizes. In (a) the grid size is 0.5m by 0.5m; in (b) the grid size is 0.25m by 0.25m. Both models were run by using a constant regional transmissivity value of $10^{-4}(m^2s^{-1})$ and the range for the local transmissivities in these models was set to $[10^{-8}, 10^{-1}](m^2s^{-1})$. In both cases, the a priori transmissivity field shown in Fig. 7 was used as the initial condition for the inversion. See also Fig. 10b to compare with inverted transmissivity field obtained by using a grid size of 1m by 1m.

1.5 column fitting image
Fig. 17. Scatter plots of observed hydraulic heads versus predicated hydraulic heads: (a) using a 0.5m by 0.5m grid size; (b) using a 0.25m by 0.25m grid size. We note that the inversion model run with the grid size 0.25m by 0.25m did not converge. See text for discussion.