A UNIFYING MODEL FOR ISOPRENE EMISSION BY PLANTS

Catherine Morfopoulos

A dissertation submitted in fulfillments of the requirements for the Degree of Philosophy of the Imperial College London, Department of Life Sciences.

July 2014
Abstract

Isoprene is the most important biogenic organic volatile compound emitted by terrestrial vegetation into the atmosphere, in term of amount and effects on atmospheric chemistry. Primary environmental drivers of isoprene production are photosynthetic photon flux density (PPFD), leaf temperature (T) and internal CO$_2$ concentration (C_i). Robust process-based modelling approaches are needed to assess how future changes in these environmental drivers may affect isoprene emissions and consequently atmospheric chemistry, air quality and (indirectly) the radiative forcing of climate.

I present an original, conceptually simple model for isoprene emission by plants based on the hypothesis that the electron flux available for isoprene biosynthesis depends on the balance between the supply of reducing power generated by the light reactions of photosynthesis and the demand for reducing power in carbon fixation and photorespiration. I explain the physiological reasoning that led me to propose this.

Using various leaf-scale measurements of carbon assimilation and isoprene emission, including a laboratory study I conducted on black poplar, I show that the model can reproduce well the variations of isoprene emission with PPFD, temperature, and C_i. The model also reproduces the tendency for the fraction of carbon re-emitted as isoprene to increase with increasing PPFD, and for the quantum efficiency of isoprene emission to decrease with increasing CO$_2$ concentration. The model is shown to systematically outperform mošdels that are in common use today.

I also analysed the PPFD and temperature responses of carbon assimilation and isoprene emission as measured above the forest canopy. The model was upscaled and shown to reproduce key responses shown in two long-term flux monitoring datasets from temperate mixed forests. I discuss future research needs and the potential for this model to be further scaled up for global analyses.
Declaration of Originality

I Catherine Morfopoulos declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institute. Information derived from the published and unpublished work of others has been acknowledged in the text and a list of references is given in the bibliography.

Copyright Declaration

The copyright of this thesis rests with the author and is made available under Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon. For any reuse or redistribution, researchers must clear to others the licence terms of this work.

Catherine Morfopoulos

Department of Life Sciences, Imperial College of London
Acknowledgments

As I put the final touches to my thesis, I realise this work marks not only the end of my PhD but also the end of a big chapter of my life, which started long before this work. I also realise that this is a unique occasion on which to thank a number of people for making it all possible.

First and foremost, I would like to express my deepest gratitude to my supervisor, Colin Prentice, who has given me the opportunity to ‘go back to Science’. This was a unique chance for me to do the most exciting and joyful ‘job’ of my life and I cannot thank him enough for that. Thank you Colin for your guidance and encouragement during this study, for you help finding the perfect words to express my ideas, for the essential freedom you gave me in this work and for helping me achieve this PhD. If a PhD can be seen as a road trip that takes you from a place where you know absolutely nothing to a place where you are an independent scientist, then Colin is the best guide along this path than one could hope for. I wish every PhD student could have the chance to be supervised by someone like Colin.

I also would like to thank my co-supervisor, Josep Peñuelas, for his support and enthusiasm. I realise that I was both lucky and privileged to have Colin and Josep as my mentors during this PhD. Despite having characters as opposed as the weather of their native countries (England and Catalonia), Colin and Josep also have many qualities in common. I have really appreciated their intelligence, their commitment, their true passion for science as well as their unerring curiosity. During this PhD, they have always allowed me to explore and go my own way, yet at the same time they have given me vital support. Thank you both for that!

This work couldn’t have seen the light without the Marie Curie International Training Network GREENCYCLESII, funded by the EU FP7 initiative. I would like to acknowledge the tremendous work of writing, reporting and chasing done by Andrew Friend. Thank you Andrew for making this project possible! I also would like to thank all the Greencycles II fellows for making this experience unique: from fieldwork in the pouring rain at Peyresq to experiencing the Northern lights in Abisko. Thanks guys for all these nice souvenirs.

I would like to thank all the members of Imperial College that helped me during these last four years. In particular, my gratitude goes to my Imperial advisor Jo Haigh for her interest in my work, her support and her always-pertinent comments. Thanks also to Maria Martin-Calvo, Diana Anderson, Christine Short, Anthony Fitzgerald, Sally Power, Alexa Lord and Apostolos Voulgarakis.

During this PhD, I also had the occasion to spend some time at the Centre for Ecological Research and Forestry Applications, Barcelona-Spain (CREAF). I would like to thank all the member of CREAF for the warm welcome they gave me. In particular, all my gratitude goes to Dominik Sperlich, Iolanda Fillela, Joan Llusià (and Josep of course!) for saving me from a nervous breakdown after a few instrument/ plant material disasters. Since this experience I have acquired an unbounded respect for experimentalists!

I have been lucky to work on a topic that has been both challenging and fulfilling. This work brought me to meet the ‘BVOC community’ where I found fantastic support.
Many people have contributed in some way or another to this work, but I wish to express my gratitude especially to Ülo Niinemets for his priceless help and great sense of humor (he never held a grudge against me despite giving a rough ride to his model), Trevor Keenan, Malcolm Possell (his lively emails always cheered me up), Almut Arneth, Michael Barkley, Rüdiger Grote; for kindly sharing their data thanks to Zhihong Sun, Quentin Laffineur, Bernard Heinesch, Karena McKinney, Shelley Pressley; and for their kindness, explanations and patience, Todd Rosenstiel, Russell Monson and Thomas Sharkey.

I would like also to thank all the members of the Geography Department of the University of Bristol and BRIDGE. Special thanks to Paul Valdes and Andy Ridgwell for their support. Thanks also to Jeni, Pru, Angela, Jo and Pati. For their help on large scale modelling, thanks to Renato Spahni, Peter Cox (pleasure meeting you eventually 😊), Stephen Sitch and Lina Mercado. Thanks to Susan Solomon for her help and wisdom when I needed it the most. And going all the way back to the beginning, thanks to Michael Schulz and Yves Balkanski for their warmth humanity and generosity.

I am grateful to both my examiners, Prof Timothy Barraclough (Imperial College London) and Dr Victor Brovkin (Max-Plant Institute) for serving on my examination committee and their interest in my work.

I also would like to thanks my friends and family for their comfort and help during these last years. I feel fortunate to have so many good friends. Thanks to the Bristol Gang Scoob & Lou, Jem & Ses, Dee & Lol, Jo & Ash, Rex & Zoe, and so many others. Thanks to Hannah & Rob, Nicole & Karl, Em & Paul, Steph & Kev. Thanks also to all my lovely French friends Delphine, Michel & Christian, Marie, Béné, Kiki & Jean-Luc, Franck, Véro & Ludo, Beryl &Pat, les Balcons, Mike, Misio… and of course to the Belgium family Pierre, Anne, Béné, Jean-Franc & Fabienne, Renaud, Dré & Zon, Héloise. A big thanks to my cousin Basia. And above all, I am so so grateful for the ‘grannies’ Alice and Ka, for always being there when I needed them.

As for you Pierre, thank you for your love and patience, and for standing by me through it all. Professionally, it was a joy working with you. Your sharpness, your curiosity and your love for science are delightful. Thank you also for challenging me (despite having to deal with my grumpiness when you do so) and for not shouting ‘boring’ every time I was talking isoprene at home. As for the rest, no words can express ‘tou l’amour que j’ai pour toi’. How lucky I am to ride on the storm with you. Here’s to a lot more fun darling!

Last, but certainly not least, I would like to thank my both sons Zacharie and Milan. Over the last few years they had to bear with two busy parents, missed birthdays, forgotten school plays and a stressed out mummy. Despite this they managed to give me an incredible amount of support and encouragement for such little monkeys. Thanks you Zach and Milan for being such great kids and reminding me what life is really about; after all, this work is dedicated to you.
“Data without models are chaos, but models without data are fantasy.”

TABLE OF CONTENTS

1 Foreword .. 9
 1.1 Aims and objectives... 9
1.2 Introduction ... 11
 1.2.1 Isoprene: what, why and how? ... 11
 1.2.2 Interactions with the atmosphere ... 21
 1.2.3 Observations ... 23
 1.2.4 Existing schemes for isoprene modelling .. 26
 1.2.5 Thesis structure.. 28
2 The new hypothesis and model ... 30
 2.1 Introduction .. 30
 2.2 Photosynthesis, C3 Carbon assimilation and the Farquhar model 30
 2.3 The Niinemets model ... 40
 2.4 Improving on the Niinemets model ... 45
 2.4.1 Analysis of the Niinemets model ... 45
 2.4.2 The new modelling approach ... 46
 2.5 Conclusions .. 58
3 A unifying conceptual model for the environmental responses of isoprene emissions from plants .. 59
 Abstract ... 60
 3.1 Introduction .. 61
 3.2 Hypothesis ... 63
 3.3 Tests of the hypothesis .. 67
 3.3.1 Responses to PPFD ... 67
 3.3.2 Responses to C3 .. 74
 3.3.3 Responses to leaf temperature .. 78
 3.3.4 Discussion .. 82
 3.3.5 Conclusion .. 85
 Acknowledgments .. 85
 Annex 3A.1 – Comparison of Model 1 and Model 2 ... 86
 Annex 3A.2 – Supplementary table and figure to Chapter III .. 92
4 Model evaluation at the leaf scale ... 93
 Abstract .. 94
 4.1 Introduction .. 95
 4.2 Materials and methods .. 100
 4.3 Results .. 109
 4.3.1 Experiments varying C3 .. 109
 4.3.2 Experiments varying PPFD .. 112
 4.3.3 Global results .. 116
 4.4 Discussion .. 117
 Annex 4A.1- Comparison Model1 and Model2 ... 122
 Annex 4A.2 - Supplementary figures to Chapter IV ... 124
5 Evaluation of the model at canopy scale using a multi-layer approach 128
 Abstract ... 128
 5.1 Introduction .. 130
 5.2 Material and methods .. 130
 5.2.1 Observations/ site description ... 130
 5.2.2 Data treatment /analysis .. 132
5.2.3 Leaf-level model of photosynthesis

5.2.4 Leaf-level models of isoprene

5.2.5 Scaling up from leaf to canopy

5.2.6 Model evaluation statistics

5.3 Results

5.3.1 General PPFD- and temperature responses

5.3.2 Model evaluation

5.4 Discussion

Annex 5A.1 – Supplementary figures to chapter V

6 Conclusions

Supplementary material

- **S1.** The Guenther et al. (1993) algorithm
- **S2.** Model of photosynthetic carbon assimilation (Farquhar et al., 1980)
- **S3.** List of publications

Bibliography

Supplementary material
1 Foreword

1.1 Aims and objectives

Volatile isoprenoids are the most important category of Biogenic Volatile Organic Compounds (BVOCs) emitted by terrestrial vegetation, both in terms of the amount of carbon involved and in terms of their impacts on atmospheric chemistry. Despite extensive research on this topic, the great majority of studies still use empirical models to predict how changes in climate and land use affect the emissions of volatile isoprenoids. To predict changes in emissions, empirical models consider the effect of each controlling factor separately. Yet, in reality, factors controlling emissions also influence each other. As an example, leaf temperature (one of the major controls of emission) is partly controlled by shortwave radiation and stomatal aperture; while leaf temperature, light intensity and stomatal aperture together influence BVOC emissions via the leaf-internal CO$_2$ concentration. Thus, the empirical approach has important limitations as it can potentially neglect unforeseen interactions between environmental drivers. The overall aim of the project was to overcome this problem and thus to propose a new unifying strategy for process-based modelling of volatile isoprenoid emissions, with particular attention to the response of emissions to changes in CO$_2$ concentration. This work focuses on isoprene, the most abundant isoprenoid released by terrestrial vegetation. While keeping in mind that the ultimate objective is improved global modelling (and thus the modelling approach needs to be kept as simple as possible), the study presented here concentrates on processes and observations at the leaf and canopy scales. The prospect of using the new isoprene emission model ‘scaled up’ in an Earth system modelling framework is addressed in the Conclusions.

The main specific objectives of this thesis are:

i. To improve current process-based modelling of isoprene emission and propose a new modelling approach,

ii. To test the validity of the hypothesis underlying the new modelling approach by revisiting a body of published data,

iii. To conduct, analyse and compare the model with the results of experiments following a specific protocol established to test the hypothesis,

iv. To upscale the model from the leaf to the canopy scale.
The work presented here received funding from the European Community’s Seventh Framework Programme (FP7 2007–2013, grant agreement n° 238366), through the European Initial Training Network GREENCYCLES II. The objective of GREENCYCLES II was to anticipate climate change and biospheric feedbacks within the Earth System to 2200 by improving predictive capability of Earth system models through linked data and modelling activities. In the frame of this thesis, the link between data and modelling activities has been achieved through a close collaboration with experimentalists at Centre for Ecological Research and Forestry Applications, Barcelona-Spain (CREAF).

The topic of isoprene is broad and complex, with many questions remaining. The following text attempts to summarize the different area of interest and to give an overview of the subject.
1.2 Introduction

1.2.1 Isoprene: what, why and how?

What?
With a total emission strength estimated to exceed 1 PgC a\(^{-1}\), volatile isoprenoids (most importantly isoprene and monoterpenes) collectively represent the largest part of the total BVOC emitted by the terrestrial biosphere. Among these, the single most important molecule is isoprene, which accounts for about half of the total BVOC emissions (Laothawornkitkul et al., 2009; Guenther et al., 2012). Isoprene is emitted directly as it is produced (there is no storage in the leaf). It is highly reactive and thus is immediately involved in tropospheric chemistry and physics. A great deal of interest centres on the chemistry of isoprene. Thus it is interesting to start by looking at the molecule isoprene itself.

Isoprene, or 2-methyl-1,3-butadiene, is a colourless volatile unsaturated hydrocarbon of formula C\(_5\)H\(_8\) (Table 1.1). It was first discovered in 1860 by a British chemist, C. Williams (Williams, 1860). Isoprene has a low boiling point of 34˚C and high vapour pressure of 60.8 kPa (at 20 °C) that explains its high volatility. Isoprene is insoluble in water, but has lipophilic proprieties. Therefore it can interact with lipids, including those constituting the membranes of biological cells. In the leaves, the production of C\(_5\)H\(_8\) from CO\(_2\) requires many reduction steps. Consequently, isoprene tends to act as electron donor, and to react in the presence of most oxidizing agents. The two double bonds of the molecule also make it readily polymerized and isoprene is the initial building block for many organic compounds such as terpenes, carotenoids, tocopherol (vitamin E) and natural rubber.

Why?
Global isoprene emissions are estimated to be about 500 TgCa\(^{-1}\) (Laothawornkitkul et al., 2009; Guenther et al., 2012). Pike & Young (2009) note that the annual loss of carbon from terrestrial vegetation in the form of isoprene is equivalent to the weight of all human beings. In the same vein, Sharkey (2013) evaluates the annual isoprene release by vegetation as equivalent to ‘300 000 Olympic-sized swimming pools’ (Sharkey, 2013). With an energetic cost estimated at 20 ATP and 14 NADPH per isoprene produced (Sharkey and Yeh 2001) and a carbon cost that can amount for more
than 2% of the leaf net carbon assimilation (Sharkey & Loreto, 1993; Lerdau & Throop, 1999) (up to 20% reported for high temperatures), the question of why plants emit isoprene is relevant. The adaptive significance of volatile isoprenoid emissions is still debated but considerable advances have been made during the last few years through the use of genetic manipulation (Sasaki et al., 2005, 2007; Behnke et al., 2007, 2010; Vickers et al., 2009b). The leading hypothesis is that isoprene protects plant from heat damage, in particular during sunflecks, by stabilizing the thylakoid membrane (Sharkey & Singsaas, 1995; Singsaas et al., 1997; Siwko et al., 2007; Velikova et al., 2011). Another well-supported hypothesis is that volatile isoprenoids protect the plant from oxidative stress by quenching Reactive Oxygen Species (ROS). ROS can originate externally through pollution (e.g. high ozone concentrations). But they are also generated internally under conditions of high-temperature or/and high-light stress, so this mechanism may be a principal way in which isoprene serves to protect the plant against heat damage (Velikova et al., 2005; Fares et al., 2006). However, other strategies exist to protect plants from heat and/or oxidative damage; and certain plants emit isoprene while others don’t.

Table 1.1: Isoprene properties under the standard state of 25°C and 100 kPa (except where noted otherwise)

<table>
<thead>
<tr>
<th>Isoprene Properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical structure</td>
<td></td>
</tr>
<tr>
<td>Molecular formula</td>
<td>(\text{C}_5\text{H}_8)</td>
</tr>
<tr>
<td>Molar Mass</td>
<td>68.12 g mol(^{-1})</td>
</tr>
<tr>
<td>Density</td>
<td>0.681 g cm(^{-3})</td>
</tr>
<tr>
<td>Melting point</td>
<td>-143.95 °C</td>
</tr>
<tr>
<td>Boiling point</td>
<td>34.67°C</td>
</tr>
<tr>
<td>Vapour pressure</td>
<td>60.8 kPa (20 °C)</td>
</tr>
<tr>
<td>Water solubility</td>
<td>0.7 g mL(^{-1})</td>
</tr>
</tbody>
</table>
The distribution of plants emitting isoprene is large and doesn’t follow any obvious environmental or phylogenetic logic. It is generally assumed that capacity to emit isoprene is mainly found in plants with C₃ carbon fixation metabolic pathway (Box 1.1). According to Pacifico et al. (2009), this assumption might result from a lack of measurements on species using other photosynthetic pathways and isoprene emissions have been detected in at least one C₄ plant (Zea mays: Evans et al., 1982) and one Crassulacean Acid Metabolism (CAM) plant (Opuntia lindheimeri: Archer & Zitser, 1994). A survey of plants emitting isoprene can be found on the web from two compilations: the Sheffield database (Hewitt & Street, 1992; http://www.es.lancs.ac.uk/enhgroup/download.html); and the University Corporation for Atmospheric Research (UCAR) database (Wiedinmyer et al., 2004; http://bai.acd.ucar.edu/Data/BVOC/index.shtml). The major groups of land plants (mosses, ferns and fern allies, gymnosperms and angiosperms) all include species that emit isoprene and others that don’t. Even in the same genus, some members do produce isoprene and others don’t. For instance all North American oaks emit isoprene whereas only a small proportion of European oaks do so in significant amounts (Sharkey et al., 2008). However, trees, particularly oak and aspen trees, are generally the biggest isoprene emitters, while most of the crops and desert plants are non-emitters. Thus the question ‘why not?’ can also be asked. Emerging studies, using the phylogeny of the isoprene synthesis pathway to explore the frequency of gains and losses of the trait (Monson et al., 2013), are beginning to emerge – though not without raising some debate (Sharkey, 2013).

A trade-off seems to exist in the capacity of plants to emit isoprene and monoterpenes (formed of 2 isoprene units). Using data on 192 species from 48 plants families, Harrison et al. (2013) shown that isoprene versus monoprene emission capacity follows a L-shape pattern: moderate to high BVOC emitters tend to emit either isoprene or monoterpenes, or if they emit one, they emit only small quantities of the other (Fig. 1.1). The same study reports a greater tendency to produce isoprene among light-demanding plants (Fig. 1.2). Other leaf traits, such as high photosynthetic capacity (A_max), short leaf lifespan, and high specific leaf area (SLA) are also characteristic of ‘species with rapid growth in high-resource (including high-light environments)’. The same association was also recently noted by (Dani et al., 2014).
Carbon assimilation through photosynthesis is achieved differently by different species; the three biochemical mechanisms for carbon assimilation by plants are the C\textsubscript{3}, the C\textsubscript{4} and the crassulacean acid metabolism (CAM) pathways. All these pathways transform CO\textsubscript{2} into sugars through the Calvin cycle. However, each pathway has different strategy for incorporating CO\textsubscript{2} to the Calvin cycle.

C\textsubscript{3} plants: C\textsubscript{3} pathway is the most common carbon fixation metabolic pathway and it is present in about 95\% of the earth biomass. During the day the leaf stomata (pores at the surface of the leaf) open allowing CO\textsubscript{2} (and O\textsubscript{2}) to enter inside the leaf. At the same time water is transpired and escapes outside the leave though the stomata. CO\textsubscript{2} is incorporated into the Calvin cycle and is further reduced to sugar. The first step of this process is a 3-carbon organic acid, and, is catalysed by the enzyme Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Because Rubisco has also an affinity for O\textsubscript{2}, energy is lost through photorespiration cycles in C\textsubscript{3} plants. Plants with C\textsubscript{3} pathway have also a large water lost through leaf transpiration due to stomata aperture during the day.

C\textsubscript{4} plants: C\textsubscript{4} pathway is present in about 5\% of the earth biomass. A large part of C\textsubscript{4} terrestrial plant species is represented by grasses, in particular food crops. C\textsubscript{4} plants developed a CO\textsubscript{2}-concentration mechanism to avoid photorespiration. Here, CO\textsubscript{2} is first fixed in a 4-carbon organic acid within mesophyll cells. This organic acid releases CO\textsubscript{2} in a separate cell (the Bundle-sheath cell), where the Calvin cycle transforms CO\textsubscript{2} into sugars in absence of O\textsubscript{2}. In comparison with C\textsubscript{3} plants, C\textsubscript{4} plants are characterised by higher water use efficiencies and higher photosynthetic efficiency especially under warmer temperatures where affinity of Rubisco for O\textsubscript{2} increases.

CAM plants: Like the C\textsubscript{4} plants, CAM plants also have a strategy to bypass photorespiration. Here, the CO\textsubscript{2}-concentration mechanism is not spatial but temporal. The leaf opens its stomata during the night and atmospheric CO\textsubscript{2} is ‘stocked’ in the leaf in the form of a 4-carbon organic acid. During the day, the stomata shut, preventing water to be lost and O\textsubscript{2} to enter the leaf; the 4-carbon organic acid releases CO\textsubscript{2}, which is transformed into sugar in the Calvin cycle. All these steps occur in the same mesophyll cell. CAM pathway’s major advantage is very high water use efficiency due to closure of stomata during the day. This pathway is mainly found in desert plants.
Regionally, the humid tropics are the larger source of isoprene (Sharkey & Yeh, 2001; Guenther et al., 2006; Sharkey et al., 2008; Paciﬁco et al., 2009). The first reason for that is that humid tropics harbour the greatest number of isoprene-emitting plants. The second reason is that these regions have the largest terrestrial vegetation biomass; or the amount of isoprene emitted at the regional scales on the ecosystem leaf’s coverage. Finally, the humid tropical climate is associated with high relative humidity of the air. Under these conditions, where evaporative cooling is reduced due to low atmospheric vapour pressure deﬁcit, the plant is likely to experience higher leaf temperature and consequently higher isoprene emission rate (isoprene steeply increases with increasing temperature) (Sharkey & Yeh, 2001).

Figure 1.1: Trade-off between isoprene and monoterpene emission capacities. The main plot, the “L-graph”, is based on 403 data points representing 192 species from 48 plant families, drawn from 35 individual studies on ﬁeld-sampled adult plants. Non-zero emissions for both isoprene and monoterpene were reported for 80 of 403 cases; these are shown again in the inset panel, on log10-scaled axes. Figure from Harrison et al. (2013).
Figure 1.2: Relationship between isoprene emission capacity and traits related to species’ ecological strategies: (A) shade tolerance index, (B) photosynthetic capacity, (C) leaf lifespan, (D) specific leaf area (SLA). Data are for 134 tree and shrub species from a broad range of families and vegetation types; in each graph each data point represents a different species. SLA data were sourced from the same publications as the emissions data; shade tolerance indices are from Niinemets & Valladares (2006); photosynthesis and leaf lifespan data were derived from a variety of published and unpublished sources. Photosynthetic capacity refers to measurements made in the field under near-optimal light, temperature and soil moisture conditions. Figure from Harrison et al. (2013).

How?

Biochemical mechanisms

Two separate metabolic pathways in plants can produce the unsaturated C₅ unit, isopentenyl diphosphate (IDP), and its isomer dimethylallyl diphosphate (DMADP), which is the base of isoprenoid molecules. One is the mevalonic acid (MVA) pathway and takes place in the cytosol. The other, more recently discovered, is the 2-C-methyl-D-erythritol 4-phosphate (MEP) or 1-deoxy-D-xylulose 5-phosphate (DXP) pathway, and takes place in the chloroplast (Lichtenthaler, 1999; Vickers et al., 2009a). It is now known that most of the production of isoprene takes place in the chloroplast, via the
MEP pathway, through the action of isoprene synthase (IspS) on DMADP (Fig. 1.3) (Silver & Fall, 1991).

IspS’ main characteristics are i) a low affinity for its substrate DMADP with value of Michaelis constant K_m ranging between 1.2 and 2.45 mM (Silver & Fall, 1995; Schnitzler et al., 2005) and ii) a high temperature optimum with activity maximal between 45 and 48°C (Monson et al., 1992; Lehning et al., 1999; Niinemets et al., 1999b; Rasulov et al., 2010). The DMADP pool is also used for production of ‘essential’ isoprenoids, which include carotenoids and sterols. Thus, one additional hypothesis to account for the emission of volatile isoprenoids is that it provides a way for plant to deal with an excess of DMADP, which would lead to unnecessary sequestration of phosphate, after the plants’ requirements for essential isoprenoid molecules have been satisfied (Owen & Peñuelas, 2005).

Three reducing steps are needed within the MEP pathway to reduce the initial substrates glyceraldehyde 3-phosphate (G3P, a direct product of photosynthesis) and pyruvate to DMADP. These reducing steps consume one NADPH, and two additional reducing equivalents in the form of either NADPH or ferredoxin (Fd) (Charon et al., 1999; Hecht et al., 2001; Seemann et al., 2006; Li & Sharkey, 2012). These three reduction steps are highlighted in red in the schematic of the MEP pathway in Figure 1.3.

13C labeling experiments show that emitted isoprene mostly originates from photosynthetic products linking the isoprene production with photosynthetic carbon assimilation (Delwiche & Sharkey, 1993; Loreto et al., 2004). This is confirmed by the fact that isoprene emissions are often correlated with net assimilation rate (Monson et al., 1995; Kuhn et al., 2004b). However, in these experiments isoprene doesn’t reach 100% of 13C-labelling, suggesting that extra sources of carbon can reach the chloroplasts and be used for isoprene production. The positioning of the unlabelled carbons in isoprene molecules suggests that pyruvate, a precursor of DMADP, has partly cytosolic origins (Karl et al., 2002).
Figure 1.3: The MEP pathway. Metabolites are in black; enzymes are in orange; reduction steps are in red. RuBP, Ribulose Bisphosphate; PGA, 3-phosphoglycerate; PEP, phosphoenolpyruvate; G3P, glyceraldehyde 3-phosphate; DXS, deoxyxylulose phosphate (DXP) synthase; DXR, DXP reductoisomerase; MEP, methylerythritol phosphate; CTP, cytidine triphosphate; PPi, inorganic diphosphate; MCT, MEP cytidylyltransferase; CDP-ME, diphosphocytidylyl methylerythritol; CMK, CDP-ME kinase; CDP-MEP, CDP-ME phosphate; CMP, cytidine monophosphate; MDS, methylerythritol cyclodiphosphate (MEcDP) synthase; NADPH/NAPD⁺, nicotinamide adenine dinucleotide phosphate; ADP/ATP, adenosine-di/(tri) phosphate; ETC, electron transport chain; HDS, hydroxymethylbutenyl diphosphate (HMBDP) synthase; HDR, HMBDP reductase; IDP, isopentenyl diphosphate; IDI, IDP isomerase; DMADP, dimethylallyl diphosphate; IspS, isoprene synthase. Based on the work of Li & Sharkey (2012, 2013)
The use of advanced experimental techniques has recently provided new insights on the regulation of the MEP pathway. Profiles of MEP pathway metabolites under different conditions are starting to be identified (Li & Sharkey, 2012), and a possible downregulation of the pathway through the action of DMADP on key enzymes has been discovered (Banerjee et al., 2013).

Controls of isoprene emission

There is no storage of isoprene in plants and emission rates of isoprene are usually correlated with synthesis rates (Affek & Yakir, 2003). However, not all isoprene that is synthesized is emitted, as reaction with ROS within the leaf can lead to the production of other volatile species such as methacrolein (2-Methylprop-2-enal, MAC, C₄H₆O) and methyl vinyl ketone (Butenone, MVK, C₄H₆O) (Jardine et al., 2011). Synthesis of isoprene is mainly controlled by light and temperature (Fig. 1.4). Response to light follows a rectangular hyperbolic shape, similar to the response of photosynthetic assimilation to light, reflecting the link between photosynthesis and isoprene production. However, in the great majority of measurements, light response curves of isoprene saturate at higher light intensities than those of carbon assimilation (Monson et al., 1992; Sharkey & Loreto, 1993; Lerdau & Keller, 1997).

![Figure 1.4](image-url)

Figure 1.4: Schematic responses of rates of carbon assimilation (dashed green line) and isoprene emission (solid red line) in response to changes in (A) photosynthetic photon flux density (PPFD), (B) temperature and (C) internal CO₂ concentration (Cᵢ). In panel (B), the schematic response of isoprene synthase is also represented.
In response to increasing leaf temperature, isoprene emission follows an exponential increase up to an optimum around 38°C after which emission decreases steeply, reflecting to a certain extend the temperature response of enzymatic activity (Guenther et al., 1993; Niinemets et al., 1999b; Sharkey & Yeh, 2001; Pacifico et al., 2009). This temperature optimum for isoprene emission is higher than the optimum for assimilation. However it is always somewhat lower than the optimum of IspS and therefore cannot be fully explained by enzymatic activity (Monson et al., 1992; Niinemets et al., 1999b; Rasulov et al., 2010) (Fig.1.4 B).

CO₂ concentration also influences the production of isoprene, in the opposite sense to its effect on photosynthesis. Plants grown at high atmospheric CO₂ concentrations emit less isoprene than those grown at lower concentrations (Rosenstiel et al., 2003; Possell et al., 2004; Pacifico et al., 2009; Niinemets, 2010) at least under standard conditions of temperature (30°C). However, at canopy scale this effect can be offset by a larger plant productivity (Sun et al., 2013b), and higher temperature seems also to suppress this reduction in isoprene emission capacity (Sun et al., 2013a). It has been shown that isoprene emission responds to the leaf-internal CO₂ concentration (Cᵢ), with lower emission rates associated with higher Cᵢ (Wilkinson et al., 2009; Possell & Hewitt, 2011; Sun et al., 2012) (Fig. 1.4 C). There is no generally accepted explanation for this effect, but it has been observed in a variety of plant species, and is persistent – it applies to plants grown in different CO₂ concentrations, as well as in short-term experiments that manipulate ambient CO₂ concentration in order to alter Cᵢ. A few studies (Rosenstiel et al., 2003, 2004; Trowbridge et al., 2012) have hypothesized that an intracellular metabolic competition for phosphoenolpyruvate (PEP; precursor of pyruvate) occurs at higher CO₂ levels leading to lower concentration of DMADP. However, a recent study (Sun et al., 2013a) has questioned the responsiveness of isoprene to changes of Cᵢ at higher leaf temperature. Although not well understood yet, the response of isoprene emissions to atmospheric CO₂ concentrations is fundamental in the context of climate change and needs to be realistically taken in account in models. In particular, the effect of high CO₂ concentration in suppressing isoprene emission may largely negate the previously projected effects of high temperatures in promoting isoprene emission and thus ozone formation (Possell et al., 2005; Young et al., 2009; Heald et al., 2009; Pacifico et al., 2012).
Water stress has a large negative impact on photosynthetic activity, but a very much weaker impact on the emissions of isoprene. Drought can even enhance emissions (Tingey et al., 1981; Sharkey & Loreto, 1993; Fang et al., 1996; Niinemets et al., 1999a; Funk et al., 2005; Brilli et al., 2007). Under sufficiently severe drought, however, emissions collapse.

Finally, plant phenology also influences isoprene emission. A delay is usually observed between the development of photosynthetic capacity and isoprene emission during the early growth of leaves (Sharkey & Loreto, 1993; Monson et al., 1995; Kuhn et al., 2004a). The reason remains unclear: some studies (Loreto et al., 2004; Monson et al., 2007) put forward a shortage of enzyme IspS while a more recent study (Vickers et al., 2010) suggests a lack of DMADP availability in the early stage of leaf development.

1.2.2 Interactions with the atmosphere

The atmospheric lifetime of isoprene is very short, somewhere between 50 min and 1.3 days (Atkinson, 2000). Due to its reactivity, isoprene plays an important role in the oxidation capacity of the atmosphere. If emitted in a high NO_x (NO_2 + NO) regime, sub-products of isoprene oxidation enhance ozone production due to photolysis of NO_2, by regenerating NO_2 from NO (Jenkin & Clemitshaw, 2000) (Fig. 1.5). On another hand, in a low NO_x regime, isoprene acts as a sink for the hydroxyl radical OH (Guenther et al., 1999; Pike & Young, 2009; Archibald et al., 2011) and therefore can increase the lifetime (and thus the concentration) of methane, an important greenhouse gas. The large amount of isoprene emitted by vegetation consumes a large amount of OH, making OH unavailable to oxidise other reduced compounds, including methane. Pike & Young (2008) found (for present-day climate) an increase in the methane lifetime of about 2 years. This result was obtained by comparing atmospheric chemistry model simulations with or without isoprene emissions. However, some recent studies have questioned the real impact of isoprene emission on the tropospheric oxidation capacity, and proposed new pathways for a recycling of OH (Lelieveld et al., 2004, 2008; Guenther, 2008; Fuchs et al., 2013). In a low NO_x regime, due to isoprene nitrate and peroxyacetyl nitrate (PAN) chemistry, isoprene can also reduce the production rate of ozone (Young et al., 2009).
Isoprene may further influence radiative forcing through the formation of secondary organic aerosols (SOA). Sub-products of isoprene oxidation can condense to form particles, which affect the partition between direct and diffuse light, atmospheric albedo and cloud formation. Even if the yield of SOA from isoprene is low (~3%), it may play an important role, due to the sheer amount of isoprene emitted into the atmosphere (Claeys et al., 2004; Edney et al., 2005; Kroll et al., 2006; Heald et al., 2008; Carlton et al., 2009; Carslaw et al., 2010; Nozière et al., 2011).

A warmer climate, changes in land use and higher CO₂ levels are all expected to have an impact on isoprene emissions; and as a key regulator of atmospheric chemistry, changes in isoprene emissions can in turn influence climate (Arneth et al., 2010; Peñuelas & Llusia, 2003). Due to spatial heterogeneity in atmospheric pollutant concentrations (in particular NOₓ) and in the distribution of isoprene-emitting vegetation, changes in emissions and thus their feedbacks on climate system may be spatially very variable (Young et al., 2009; Makkonen et al., 2012; Tai et al., 2013; Ashworth et al., 2013; Hardacre et al., 2013). A conceptual scheme of the impact of BVOC emissions, and isoprene in particular, on climate is displayed in Figure 1.5.

![Figure 1.5: Effects of increased BVOC emissions on atmospheric chemistry and climate. Schematic figure of coupling of enhanced BVOC emissions and atmospheric and climatic changes: increased temperature might enhance BVOC emissions (+). Increased BVOC emissions might enhance aerosol formation and growth and therefore also enhance aerosol and cloud condensation nuclei (CCN) concentrations. Enhanced aerosol and CCN concentrations might decrease temperature (−) as a result of increased reflection of sunlight from low clouds back to space. Other positive feedbacks (indirect greenhouse effect through ozone formation and methane lengthening lifetime, CO₂ production) are also represented. Figure from Peñuelas & Staudt (2010).](image-url)
1.2.3 Observations

Direct observations of isoprene emission can be done at the leaf, canopy and ecosystem level using diverse techniques (Fig. 1.6). However, measurements of other compounds than isoprene, such as (upstream) metabolites of the MEP pathway or (downstream) observations of atmospheric oxidation products, are a mine of information. Each observation gives information at different temporal and spatial scales, and each has its advantages and disadvantages.

Developments in genetics have made it possible to identify the gene sequence and expression for isoprene synthase. Analysis of genomic DNA and IspS mRNA are usually completed with data on the total quantity of the protein isoprene synthase. These combined measurements permit investigation of environmental (heat, light level, ozone level…) and developmental controls on isoprene emission through regulation at the transcriptional level (Sasaki et al., 2005; Fares et al., 2006; Calfapietra et al., 2007; Vickers et al., 2010). On the other hand, large datasets of species DNA sequences combined with information on species-specific isoprene emission capacity (i.e. the Lancaster or NCAR databases) allow the reconstruction of gain and loss events for isoprene emission capacity along phylogenetic pathways (Loreto, 2002; Monson et al., 2013; Sharkey, 2013). Investigation of how this trait has evolved can provide insights on the adaptive response of isoprene emission capacity to the environment.

Purification methods on leaf extracts carried out with high-performance instruments (mass spectrometers and chromatographs) also make it possible to separate, identify and quantify each chemical component along the MEP pathway. These techniques are valuable in determining enzyme activity and/or leaf metabolite content under different environmental conditions. Such analyses are needed in order to better constrain the steps along the MEP pathway and to understand the combined kinetics of processes controlling isoprene production at the plastid level (Silver & Fall, 1995; Lichtenthaler, 1999; Rosenstiel et al., 2004; Li & Sharkey, 2012; Weise et al., 2013; Banerjee et al., 2013).

Observations of isoprene emission rates on individual leaves, branches or entire plants can be done using enclosure measurements. Here, the individual is isolated in a cuvette
or a chamber, and the air is analysed in order to quantify the isoprene fluxes. Isoprene fluxes can be measured i) directly using proton-transfer mass spectrometry (PTR-MS) or the fast isoprene sensor (FIS) based on isoprene/ozone chemiluminescence; or ii) indirectly, using air collected in tubes filled with isoprene adsorbents, and thereafter analysed with various techniques including gas chromatography flame ionization detection (GC-FID) and FIS. Enclosure measurements allow a tight control on relevant aspects of the individual’s environment, including temperature, CO₂ concentration, light intensity and ozone concentration. Study of the ¹³C labelling of isoprene using PTR-MS on individuals exposed to a ¹³CO₂ atmosphere can be also done and provides important information on the sources of carbon involved in isoprene production (Karl et al., 2002; Loreto et al., 2004; Trowbridge et al., 2012). The decay of isoprene emission after switching off the light has been used in some studies to evaluate the DMADP pool size (Rasulov et al., 2009a, 2010). Enclosure measurements of isoprene emission can be associated with measurements of net carbon assimilation, chlorophyll fluorescence, leaf dry mass, and observations of leaf anatomy. However, the information given is instantaneous; these techniques do not allow isoprene production rate to be tracked continuously on longer time scales.

Above-canopy observations of isoprene emissions, collected during ground-based or airborne measurements campaigns, give information at the ecosystem scale. As with the enclosure measurements, isoprene emission rates are directly measured. Airborne campaigns provide essential information to understand and constrain isoprene atmospheric chemistry at the ecosystem scale, but the time period covered is usually short (Kuhn et al., 2007). In contrast, static above-canopy observations provide information on the variability in isoprene emission at daily, seasonal and interannual time scales, depending on the duration of the measurement campaign. Here, isoprene concentrations are measured at high frequency using PTR-MS (McKinney et al., 2011; Laffineur et al., 2011, 2013) or FIS (Pressley, 2005). From observed isoprene concentration associated with information on vertical wind velocity, isoprene fluxes are inferred using eddy covariance techniques or even simple gradient and variance techniques (Greenberg et al., 2014). Information on CO₂ fluxes (and thus net ecosystem production), photosynthetic photon flux density (PPFD), air temperature, heat and latent fluxes, is usually available as well.
Finally, remotely sensed observations of formaldehyde (HCHO) or more recently glyoxal (CHOCHO), two oxidation products of isoprene, can be used to constrain isoprene emission at a regional scale. However, these observations do not provide a direct measure of either isoprene fluxes or concentration. The errors associated with HCHO and CHOCHO column estimates are rather large, and increase with latitude and cloud cover. Moreover, the contribution of other VOCs and biomass burning to the formation of HCHO and CHOCHO cannot be attributed directly. Nevertheless, information (in particular, seasonal and inter-annual variability) provided by satellite observation of HCHO and CHOCHO, combined with chemistry-transport modelling, is valuable in order to constrain isoprene emissions from regional to global scale, using both bottom-up and top-down approaches (Palmer et al., 2003, 2006; Fu et al., 2008; Barkley et al., 2008, 2011, 2012, 2013; Stavrakou et al., 2009; Marais et al., 2012; Fortems-Cheiney et al., 2012; Foster et al., 2013).

Figure 1.6 summarizes the different type of measurements and their spatio-temporal scales. Evaluation of isoprene emission models commonly uses enclosure and above-canopy measurements as well as remote-sensed observations (e.g. HCHO) in association with chemistry-transport modelling. As isoprene and its immediate oxidation products have a very short lifetime in the atmosphere, no paleo-data are available for isoprene.
1.2.4 Existing schemes for isoprene modelling

Due to the complexity of the biochemistry involved, modelling isoprene emissions is a challenge. All models of isoprene emissions mimic, to a certain extent, models of photosynthesis. Early isoprene models were developed by Guenther and co-workers (Guenther et al., 1991, 1993, 1995). The algorithms proposed by Guenther and co-workers for isoprene and monoterpene emissions depended on previous observational studies, which had pointed out similarities between the light responses of isoprene emission rate and carbon assimilation. Using similar mathematical approaches as for photosynthesis to describe light- and temperature response curves, Guenther and co-workers proposed the following empirical algorithm:

\[
E = E_s f(D_1) f(D_2) f(D_3) \cdots f(D_n)
\]

(1.1)

where \(E\) is the BVOC emission rate, \(E_s\) is the BVOC emission rate under standardised conditions, and \(f(D_i)\) for \((i = 1..n)\) are functions describing how changes in the environmental driver \(D_i\) affect the standard emission rate \(E_s\). Initially the environmental variables driving the isoprene emissions were light and temperature alone. However, the algorithm evolved, and now includes activity factors accounting for emission responses to past temperature, leaf age, soil moisture, leaf area index (LAI) and \(CO_2\) inhibition (Guenther et al., 2012). This empirical approach has two major advantages. The first is that it is extremely simple to compute and the principle of a standard emission factor modulated by a succession of functions can be easily extended to any other biogenic volatile compound. The second advantage is simply that this was the only available model for isoprene emission (and this is still true for most BVOCs other than isoprene) for about 10 years. Thus, large datasets of \(E_s\) are now available. The downside of this approach however is that isoprene species-dependent emission capacities have usually been measured without additional information on photosynthetic capacities. Yet, as described later, process-based models of isoprene emission by plants all build on models of photosynthetic carbon assimilation. In a process-based modeling approach, information on both isoprene emission and photosynthetic capacities is essential.

The initial algorithm of Guenther and co-worker evolved into a larger BVOC model called MEGAN (Model of Emissions of Gases and Aerosols from Nature: http://bai.acd.ucar.edu/MEGAN/; Guenther et al. (2012)). The latest version of MEGAN
included almost 150 compounds and is freely accessible. Thus, the great majority of studies analysing impact of BVOC on air quality and global environment use MEGAN. In this work (Chapter III, IV, V), I used the simplest version of this algorithmic as proposed by Guenther et al. (1993) and detailed in the Supplementary Material section (note S1).

Almost a decade after the publication of first algorithms for calculation of isoprene production, Niinemets et al. (1999b) proposed a first mechanistic approach to simulating isoprene emission. The model is based on energetic requirements for isoprene production. The basic idea is that a certain proportion of electrons generated by Photosystem II are used in the MEP pathway. This model received wider attention in the regional- and global-scale modeling community thanks to the work of Arneth and co-workers (Arneth et al., 2007a,b, 2008a,b, 2011). This model is described more details in Chapter II.

Shortly afterwards, Martin et al. (2000) proposed another mechanistic approach for the calculation of isoprene emission. As in the standard model of photosynthesis, the rate of emission is governed by the slowest of three processes in the production pathway of isoprene:

– The production of pyruvate in the chloroplast;

– The production of ATP by phosphorylation;

– The maximum capacity of isoprene synthase.

The Martin et al. (2000) model has been used in regional studies (Keenan et al., 2009, 2011), but never at the global scale.

Zimmer and co-workers (Zimmer et al., 2000, 2003) developed a more complex process-based approach whereby the entire production pathway (and associated metabolite pools) was represented. This model was coupled with a photosynthetic model (the seasonal isoprene synthase model–biochemical isoprenoid biosynthesis model, SIM-BIM), and expanded to cover monoterpenes emissions (Grote et al., 2006). The representation of the cascade of biochemical reactions occurring along the isoprene production pathway requires knowledge of the maximum reaction velocity and
Michaelis-Menten constants (K_m) at each step. In practice, some parameters describing reaction velocities were obtained using inversion, whereby parameters are estimated to best fit the data rather than being measured directly. The rest of the parameters were either measured or taken from the literature, but parameter values taken from literature largely referred to different species from those under consideration. All enzymatic maximum reaction rates were further adjusted in time by a factor determined experimentally from reaction rates of isoprene synthase extracts from the studied species. Due to its complexity, this model has never been applied at regional- or global scale.

Finally, Niinemets et al. (2013) proposed very recently a new model named the C-Ratio model. Here, gross assimilation rates are multiplied by the ‘C-ratio’, which is the ratio between isoprenoid emission and CO$_2$ gross assimilation. This ratio is modulated by light- and temperature-dependent function. An additional function accounts for seasonal variation in the C-ratio.

More detailed reviews of isoprene emission modelling can be found in the literature (Arneth et al., 2007b; Monson et al., 2012; Pacifico et al., 2009; Grote et al., 2013).

1.2.5 Thesis structure

In the following chapter (Chapter II), after describing the Farquhar model for carbon assimilation (Farquhar et al., 1980) and the Niinemets model for isoprene emission by plants (Niinemets et al., 1999b), I explain the motivations for developing a new model for isoprene emissions. I also expound my hypothesis that isoprene production is controlled by reductant availability. I explain why I consider that the energetic balance between assimilation needs and reductant supply from light reactions controls reductant availability for secondary pathways.

Chapter III describes how I tested the validity of my working hypothesis by investigating published observed responses of isoprene emission to changes in its main environmental drivers (light, temperature and CO$_2$), and comparing these responses to the ones predicted by my model. In particular, I examined whether, when environmental conditions vary, observed changes in the ratio of assimilated carbon lost in the form of isoprene follow predicted changes. To my knowledge, this is the first time that a
modeling study has considered together the variations (and the empirical mis-match) between assimilation rate and isoprene emission.

In Chapter IV, I describe leaf-scale experiments I conducted at CREF on *Populus nigra* L., a high isoprene emitter. The experiments were designed explicitly to test my hypothesis by changing environmental conditions, following a specific protocol. Then, I detail how I tested my model against this new dataset as well as an additional dataset from the study of Sun *et al.* (2012) on hybrid aspen (*Populus tremula* L. x *P. tremuloides* Michx).

Chapter IV reports how I upscaled my new isoprene model from leaf to canopy scale using long-term above-canopy flux measurements of both isoprene and CO$_2$ fluxes. The upscaling technique I used is a simple multi-layer approach, which allows model behaviour to be tested at larger scales without adding (uncontrolled) complexity.

Finally, in the Conclusions, I discuss the advantages of my new model and the possibility of extending it to global-scale applications. I also highlight secondary environmental controls on isoprene emissions, which are still missing from the model. I discuss how recent experimental studies question aspects of our knowledge of the controls of isoprene emission. I conclude the thesis with an outlook on what is still lacking in term of experimental and modelling studies of isoprene emission.
2 The new hypothesis and model

2.1 Introduction

All process-based models of isoprene emissions are tightly linked to models of photosynthetic carbon assimilation in leaves. Thus, understanding the logic behind process-based isoprene models requires a fundamental knowledge of the logic that photosynthetic models follow, along with a basic comprehension of the processes underlying carbon assimilation. In this section, I describe key processes taking place in the chloroplast, leading to the assimilation of atmospheric CO$_2$ by C$_3$ plants (Box 1.1). I also describe succinctly, but still with some essential process-dependent details, the standard model for photosynthetic carbon assimilation for C$_3$ leaves developed by Farquhar and co-workers (Farquhar et al., 1980; Brooks & Farquhar, 1985).

The model of isoprene emission developed by Niinemets and co-workers (Niinemets et al., 1999b; Niinemets, 2004) is also described here in detail. This is an essential step as my work has explicitly attempted to improve this model. The Niinemets model is, as far as I know, the only process-based model for isoprene emission that has been used at the global scale for studying the potential impact of future environmental change on emissions.

The hypothesis underlying my new modelling approach is then described, along with a proposed physiological explanation.

2.2 Photosynthesis, C$_3$ Carbon assimilation and the Farquhar model

Photosynthetic carbon assimilation by plants is a complex and highly evolved natural biochemical process by which carbon dioxide and water are combined and reduced to produce carbohydrates. Photosynthesis takes place in the chloroplasts (also called plastids), bodies present in the leaf and/or outer stem cells of all green plants. The processes comprise an enzymatic phase (dark reactions) and a photo-activated phase (light reactions). The Farquhar model describes processes occurring in both of these phases and assumes that the most limiting process drives the final rate of carbon assimilation.
Figure 2.1: Schematic representing processes occurring in photosynthetic carbon assimilation and associated photorespiration.

Figure Legend:
- **Carboxylation**
- **Reduction**
- **Regeneration**

Labels:
- **Oxygen:** \(\text{O}_2 \)
- **Water:** \(\text{H}_2\text{O} \)
- **Photosystem: PSII**
- **Photosystem: PSI**
- **Electron flux:** \(\text{ΔH}^+ / \text{ATP synth.} \)
- **Rubisco**
- **G3P:** (Sucrose, starch, ...)
- **PGA:** 2-phosphoglycerate
- **PG:** Phosphoglycerate
- **PGA:** Phosphoglycerate
- **PG:** Phosphoglycerate

Chemical Reactions:
- **Light reactions:** Light
- **Dark reactions:** \(2 \text{NADPH} \rightarrow \text{ATP} \)
- **Photorespiration:** \(\Phi\text{O}_2 \)
- **PGA**

Substrates:
- **CO\(_2\)**
- \(\Phi\text{PGA} \)
- \(\Phi\text{PG} \)

Enzymes:
- **RuBP:** Ribulose Bisphosphate

Nomenclature:
- **PGA** 3-phosphoglycerate
- **G3P** glyceraldehyde-3-phosphate
- **PG** 2-phosphoglycerate
- **NADPH/NADP\(^+\)** nicotinamide adenine dinucleotide phosphate
- **ADP/ATP** adenosine-di/(tri)phosphate
- **RuBP** Ribulose Bisphosphate
- **Rubisco** Ribulose bisphosphate carboxylase/oxygenase
Figure 2.2: Schematic of the normalized responses to increase in photosynthetic photon flux density (PPFD), internal CO\(_2\) concentration \((C_i)\), and temperature \((T)\) of electron flux \((J)\) in red and associated light-limited gross assimilation rate \((A_j)\) in orange; carboxylation rate \((V_c)\) in dark green and associated Rubisco-limited gross assimilation rate \((A_v)\) in light green; and gross assimilation rate \((A_{\text{gross}})\) in black. Simulations were done using the Farquhar model as modified by Medlyn et al. (2002, 2005) (Supplementary Material, note S2).

DARK REACTIONS

The Calvin cycle

The Calvin cycle, discovered by Calvin and co-workers in the 1950s, involves three phases, which allow plants to transform inorganic CO\(_2\) molecules into organic compounds. The three stages are described in Figure 2.1:

1. Carboxylation of the five-carbon molecule Ribulose Bisphosphate (RuBP). By reacting with RuBP, CO\(_2\) enters the cycle, giving two three-carbon molecules of 3-phosphoglycerate (PGA). This first step is catalysed by the key enzyme ribulose bisphosphate carboxylase/oxygenase, referred to as Rubisco.
2. *Reduction and phosphorylation* of PGA into gyceraldehyde-3-phosphate (G3P). G3P constitutes the base for sucrose or starch production. It is also one of the two initial substrates for isoprene synthesis.

3. *Regeneration* of the acceptor RuBP from G3P. Approximately 1/6th of G3P is used for sugar production. The rest of G3P is combined and phosphorylated in order to regenerate RuBP and complete the cycle.

The Farquhar model describes limitation of CO\textsubscript{2} assimilation in the carboxylation phase and controlled by Rubisco enzymatic kinetics. The carboxylation stage can be described using Michaelis–Menten kinetics:

\[
V_c = V_{\text{cmax}} \cdot \frac{C_i}{(k_c + C_i)}
\] \hspace{1cm} (2.1)

where \(V_c\) is the rate of carboxylation; \(V_{\text{cmax}}\) is the maximum rate of carboxylation attained when all enzymes are bound to substrate; \(k_c\) is the Michaelis–Menten constant for carboxylation and represents the substrate concentration at which the reaction rate is half of \(V_{\text{cmax}}\); and \(C_i\) is the internal CO\textsubscript{2} concentration, i.e. the concentration inside the leaf. \(C_i\) is controlled by both atmospheric CO\textsubscript{2} concentration and aperture of the microscopic pores on the surface of the leaf (stomata) that permit diffusion of water out of and CO\textsubscript{2} into the leaf. \(k_c\) indicates the affinity of Rubisco for CO\textsubscript{2} while \(V_{\text{cmax}}\) depends mostly on the concentration of Rubisco in the chloroplast. Both \(k_c\) and \(V_{\text{cmax}}\) vary with temperature. Thus \(V_c\) varies with temperature and CO\textsubscript{2} concentration (Fig. 2.2). To first order photosynthetic photon flux density (PPFD) has no impact on \(V_c\).

Photorespiration

A limitation of CO\textsubscript{2} assimilation, particularly in C\textsubscript{3} plants (which have no CO\textsubscript{2} concentration mechanism), comes from the affinity of the key enzyme Rubisco to bind with O\textsubscript{2} and catalyse oxygenation of RuBP into PGA and the two-carbon molecule 2-phosphoglycolate (PG). A complex pathway, taking place among three different organelles (chloroplast, peroxisome and mitochondrion) follows this first step. Along this pathway, 0.5 mole of CO\textsubscript{2} per mole of O\textsubscript{2} is lost; and 0.5 mole of inorganic ammonium (NH\textsubscript{4}+) is released and refixed. This latter process requires the use of the equivalent of one mole of NADPH per mole of NH\textsubscript{4}+ (not detailed in Figure 2.1). Thus
reduction steps occurring along the pathway include reduction reactions for re-fixation of \(\text{NH}_4^+ \) and regeneration of RuBP.

Like carboxylation, oxygenation can be described using Michaelis–Menten kinetics:

\[
V_o = V_{\text{max}} \cdot \frac{O_i}{k_o + O_i}
\]

(2.2)

where \(V_o \) is the rate of oxygenation; \(V_{\text{max}} \) is the maximum rate of oxygenation; \(k_o \) Michaelis–Menten constant for oxygenation and \(O_i \) is the internal \(\text{O}_2 \) concentration.

Thus \(\text{O}_2 \) competes with \(\text{CO}_2 \) for the common substrate RuBP and for each carboxylation, a number \(\Phi \) of oxygenation occurs, with \(\Phi \) defined as the ratio of oxygenation to carboxylation (\(\Phi \equiv V_o / V_c \)). Competition between \(\text{O}_2 \) and \(\text{CO}_2 \) for RuBP affects the \textquote{apparent} Michaelis–Menten constants for carboxylation and oxygenation. In other words, the internal concentration of the substrate (\(\text{CO}_2 \) or \(\text{O}_2 \)) necessary to reach half of the maximum reaction rate (\(V_{c\text{max}} \) or \(V_{o\text{max}} \)) needs to be greater than in absence of the competitive substrate. The increase of the concentration necessary to reach half of the maximum reaction rate depends on the competitive substrate concentration. This effect can be taken into account by introducing modified Michaelis–Menten constants:

\[
k'_c = k_c \left(1 + \frac{O_i}{k_o}\right)
\]

(2.3)

and

\[
k'_o = k_o \left(1 + \frac{C_i}{k_c}\right)
\]

(2.4)

In presence of both substrates, carboxylation and oxygenation rates become:

\[
V_c = V_{c\text{max}} \cdot \frac{C_i}{k'_c + C_i} = V_{c\text{max}} \cdot \frac{C_i}{k'_c + C_i} = V_{c\text{max}} \cdot \frac{\left(\frac{C_i}{k_c}\right)}{1 + \frac{O_i}{k_o} + \frac{C_i}{k_c}}
\]

(2.5)

and
\[V_o = V_{\text{emax}} \cdot \frac{O_i}{k_o+O_i} = V_{\text{emax}} \cdot \frac{O_i}{1+\frac{O_i}{k_o} + \frac{C_i}{k_c}} \] (2.6)

and

\[\phi = \frac{V_o}{V_c} = \left(\frac{V_{\text{emax}}}{V_{\text{emax}}} \right) \cdot \frac{O_i}{k_o} \cdot \frac{C_i}{k_c} \] (2.7)

As one carboxylation of RuBP incorporates one CO\(_2\) in the cycle and one oxygenation is accompanied by the loss of 0.5 CO\(_2\), the rate of gross CO\(_2\) assimilation \(A_{\text{gross}}\) is related to rate of carboxylation and oxygenation thus:

\[A_{\text{gross}} = V_c - 0.5V_o \] (2.8)

The ingenuity of the Farquhar model comes from the introduction of the term \(\Gamma^*\), which is the compensation point in absence of dark respiration. In other words \(\Gamma^*\) is the CO\(_2\) internal concentration for which \(A_{\text{gross}}\) is equal to zero (and \(\Phi = 2\)). Replacing \(C_i\) by \(\Gamma^*\) in equation 2.7 when \(A_{\text{gross}} = 0\) gives:

\[\Gamma^* = \left(\frac{V_{\text{emax}}}{V_{\text{emax}}} \right) \cdot \frac{O_i}{k_o} \cdot \frac{k_c}{2} \] (2.9)

Rearranging equations 2.7, 2.8 and 2.9:

\[\phi = \frac{2\Gamma^*}{C_i} \] (2.10)

and

\[A_{\text{gross}} = A_c = V_c \left(1 - 0.5\phi\right) = V_c \left(1 - \frac{\Gamma^*}{C_i}\right) = V_{\text{emax}} \cdot \frac{(C_i - \Gamma^*)}{(C_i + k_c)} \] (2.11)
This is the ‘Rubisco-limited’ assimilation rate (A_v) and represents the assimilation driven by enzymatic reactions dictated by Rubisco kinetics (dark reactions). A_v is limited by Rubisco availability (V_{max}), substrate availability (C_i) and competition for substrate with O_2 (I^*). The response of A_v with increasing PPFD, C_i and temperature (T) is shown in Figure 2.2. As for the carboxylation rate, changes in PPFD do not affect A_v. As shown in Figure 2.2, differences between V_c and A_v in response to changes in C_i and T are due to the effect of the Rubisco affinity for O_2. Farquhar model temperature dependencies, as used within this study, are described in the supplementary material (S2).

LIGHT REACTIONS

Reduction and phosphorylation steps of the Calvin cycle are essential for the conversion of carbon dioxide into sugar and for the CO$_2$ assimilation pathway to operate as a cycle. *Reduction* reactions use electrons provided by the oxidation of the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) into NADP$^+$:

$$\text{NADPH} \rightarrow \text{NADP}^+ + \text{H}^+ + 2 \text{e}^-$$

Phosphorylation steps use the phosphate and energy provided by the loss of an inorganic phosphate (P_i) occurring in the transformation of adenosine-triphosphate (ATP) into adenosine-diphosphate (ADP):

$$\text{ATP} \rightarrow \text{ADP} + P_i + \text{energy}$$

NADPH and ATP are produced in the thylakoid membranes of the chloroplast where light reactions occur. Their production uses energy provided by PPFD, making light a limiting factor for carbon assimilation. NADPH molecules trap electrons extracted from photolysis of water, and permit export of electrons from the thylakoid membrane to the rest of the cell. Water splitting and the production of NADPH generate a gradient of protons, which in turn provides the energy necessary to produce ATP by photophosphorylation of ADP. The Farquhar model takes into account light limitation of assimilation on the basis of NADPH limitation.

The rate of NADPH consumption is equal to the rate of PGA produced in the carboxylation and oxygenation pathways (RuBP regeneration) plus the rate of NH$_4^+$ re-fixation associated with photorespiration:
Rate of consumption of NADPH = \((2V_c + 1.5V_o)\)
\[= V_c \cdot (2 + 2\phi)\]
\[= V_c \cdot \left(2 + \frac{4J^{+}}{C_i}\right)\] (2.12)

Photosynthetic photon flux density (PPFD) is the part of the light spectrum (mainly visible) absorbed by the chloroplast. Two photons are needed to move an electron from its energy state in H₂O to the higher energy state in NADP⁺ (Box 2.1). Accompanying this increase in energy level, the electron is transferred from compounds of high reduction-oxidation (redox) potential (oxidant) to compounds of low redox potential (reductant). One photon, absorbed by Photosystem II (PSII), extracts an electron from water, and a second photon, absorbed by the Photosystem I (PSI), brings this electron to a energy state strong enough to reduce NAPD⁺ to NAPDH (Box 2.1). Thus, 4 photons, corresponding to 2 electrons, are necessary for one NADP⁺ to be reduced into NAPDH. Note that the NAPDH requirement per CO₂ assimilation is equal to 2 in the carboxylation pathway. Electron transport rate \((J)\) can be described to first order by:

\[J = \alpha PPFD\] (2.13)

where \(\alpha\) in the quantum yield in mol electron mol photon⁻¹. The quantum yield depends on leaf absorbance, quantum yield of PSII and the fraction of PPFD reaching PSII (0.5) (von Caemmerer, 2000) (Fig. 2.3). This linear relationship between PPFD and \(J\) however applies only for low PPFD. For higher PPFD, due to thylakoid membranes properties, \(J\) saturates, approaching a maximum rate of electron transport \(J_{\text{max}}\). Thus the electron transport rate can be represented by a non-rectangular hyperbola:

\[J = \frac{(\alpha PPFD + J_{\text{max}}) - \sqrt{(\alpha PPFD + J_{\text{max}})^2 - 4\alpha \theta PPFD J_{\text{max}}}}{2\theta}\] (2.14)

where \(\theta\) is a curvature parameter and \(J_{\text{max}}\) is the maximum electron transport rate. To first order, \(J_{\text{max}}\) varies with temperature only; \(J\) varies with \(T\) and PPFD, but not \(C_i\) (Fig. 2.2).

As reduction of NADP⁺ to NADPH requires 2 electrons, the rate of NAPDH production is equal to:
NADPH production = \(\frac{J}{2} \) \hfill (2.15)

Therefore if production of NAPDH limits carbon assimilation, then the rate of the consumption of NAPDH equal the rate of production of NADPH and assimilation is found to be in a so-called light-limited regime. Gross assimilation is calculated by rearranging equations 2.8, 2.12 and 2.15:

\[
A_{\text{gross}} = A_j = \left(\frac{J}{4} \right) \cdot \frac{(C_i - \Gamma^*)}{(C_i + 2\Gamma^*)}
\] \hfill (2.16)

This is the light-limited gross assimilation \((A_j) \). It is mainly determined by PPFD, leaf structure and thylakoid membranes proprieties \((\alpha, J_{\text{max}}) \). However, \(A_j \) is also dependent on the distribution of NAPDH between the carboxylation and oxygenation pathways \((C_i, \Gamma^*) \). Consequently, calculation of \(A_j \) includes a component associated with properties of Rubisco. There are differences between the responses of \(J \) and \(A_j \) to changes to \(C_i \) and \(T \), as shown in Figure 2.2.

\(A_v \) and \(A_j \) represent ‘potential’ CO\(_2\) assimilation rates by leaves. Effective gross assimilation is controlled by the most limiting factor and gross assimilation is calculated as the minimum of Rubisco- and light-limited gross assimilation (Fig. 2.2):

\[
A_{\text{gross}} = \min \{A_v, A_j\}
\] \hfill (2.17)

The net assimilation rate of CO\(_2\) \((A_{\text{net}}) \) is always somewhat lower than \(A_{\text{gross}} \) as CO\(_2\) is lost through mitochondrial respiration \((R_d) \):

\[
A_{\text{net}} = A_{\text{gross}} - R_d
\] \hfill (2.18)

Mostly, it is \(A_{\text{net}} \) (not \(A_{\text{gross}} \)) that is measured by commonly used gas-exchange measurement techniques.
Figure 2.3: Schematic representing, in blue, the total electron flux generated by photosystem II (J_{tot}) and, in red, the total electron flux as computed from assimilation curves using the Farquhar model (J) versus photosynthetic photon flux density (PPFD). Differences between the two fluxes that can be observed are represented with higher quantum efficiencies (α) for J_{tot} or saturation of J_{tot} at higher light intensity than J (light blue dashed line). The dotted-dashed line in blue represents the total photons absorbed by the chloroplast. Differences between the total electrons flux and the total of photon absorbed are due to transfer of energy to heat dissipation and florescence. This figure is only illustrative and scales are not respected.
2.3 The Niinemets model

‘A biochemical model of isoprene emission based on the electron requirement for isoprene synthesis’

Niinemets and co-workers (Niinemets et al., 1999b; Niinemets, 2004) were the first to attempt to model isoprene emission in a process-based way. Before the study of (Niinemets et al., 1999b), available models of isoprene emission were based on empirical algorithms (Guenther et al., 1991, 1993, 1995). Temperature response function based on equations developed by Johnson et al. (1942) describing the temperature dependency of enzymatic catalysed reactions, and a hyperbolic relationship with PPFD calculate rates of isoprene emission in relation to changes in leaf temperature and PPFD. However, Niinemets and co-workers found that a unique set of PPFD and temperature dependencies for isoprene emission (I), was restrictive – variation in the PPFD and temperature responses between species was considerable. Thus, they proposed a new process-based model, based on the energetic requirement for isoprene synthesis and leaf photosynthetic properties. The model was developed using experiments on Liquidambar and Quercus species and has been expanded to larger scales (Arneth et al., 2007a,b, 2008b; Keenan et al., 2009; Young et al., 2009; Pacifico et al., 2011, 2012; Unger et al., 2013).

The Niinemets model was built on two foundations. The first foundation comes from observations. Despite the general correlation between I and net assimilation rate, there are differences in their responses: i) I saturates at higher PPFD than A_{net}, ii) the A_{net} to I ratio declines with increasing temperature, and iii) decreases in stomatal conductance reduce A_{net} but not I. In all these situations A_{net} is affected in a different manner from photosynthetic electron transport (J). Thus, these observations suggest that the electron flux J, rather than carbon assimilation rates, limits I.

The second foundation is more physiological and comes from the (then novel) research on production pathways of isoprene, which revealed that foliar isoprene is mainly produced in the chloroplast by the MEP pathway. Knowledge of the MEP pathway available at that time is summarized in Figure 2.4.
Therefore, Niinemets and co-workers developed a model based on leaf electron transport rate and the electron requirement for isoprene synthesis. This model proposes that a fraction of the total electrons (ε_N) is involved in the isoprene synthesis pathway, with the hypothesis that ε_N is controlled by both competition for electrons between isoprene and carbon assimilation and photorespiratory pathways, and enzymatic (IspS) activity. ε_N is defined by:

$$\varepsilon_N = \frac{J_I}{J_{tot}}$$ \hspace{1cm} (2.19)

where J_I is the electron flux required in order to generate a production rate of isoprene I and J_{tot} is the total photosynthetic electron flux produced by photosystem II, approximated by J (equation 2.14). J can be computed from leaf gas-exchange measurements (under RuBP regeneration limitation) using the Farquhar model (Eq. 2.16 and 2.18):

$$J_{tot} = J = \left(A_{net} + R_d\right) \cdot \frac{(4C_i + 8F^*)}{(C_i - F^*)}$$ \hspace{1cm} (2.20)

The total electron flux produced by photosystem II (J_{tot}) is always somewhat larger than J, the electron flux used for carbon assimilation and photorespiration, as additional electrons are used for other redox reactions in the leaf, including nitrate reduction and isoprene synthesis (Fig. 2.3).
With the newly available knowledge of the MEP pathway, Niinemets et al. (1999b) estimated a total cost of 14 NAPDH (equivalent to 28 electrons) per molecule of isoprene emitted (Fig. 2.4). The production of one molecule of isoprene (C₅H₈) requires the assimilation of six molecules of CO₂ (one CO₂ is lost in the pathway). Thus the requirement of NADPH is 2.33 per assimilated CO₂ for the synthesis of one molecule of isoprene. This energetic cost is compared with the cost for sugar synthesis, which (in the absence of energetic loss in photorespiration) is two NAPDH per CO₂. Hence, Niinemets et al. (1999b) made a parallel between effective electron cost for sugar synthesis and for isoprene synthesis in order to calculate the electron flux (Jᵢ) required to produce isoprene at a rate I:

\[Jᵢ = 6I \left(\frac{2.33}{2} \right) \left(\frac{4C_i + 8Γ^*}{(C_i - Γ^*)} \right) = 6I \left(\frac{4.67C_i + 8Γ^*}{(C_i - Γ^*)} \right) \]

(2.21)

Combining equations 2.19 and 2.21, gives the model isoprene emission rate:

\[I = ε_N J \frac{(C_i - Γ^*)}{6 (4.67C_i + 9.33Γ^*)} \]

(2.22)

or on a dry mass basis

\[I = ε_N J \frac{M_A}{m} \frac{(C_i - Γ^*)}{6 (4.67C_i + 9.33Γ^*)} \]

(2.22’)

where Jᵢ is the rate of photosynthetic electron transport per unit of leaf dry mass (μmol g⁻¹ s⁻¹), and Mₐ is the leaf dry mass per unit area (g m⁻²).

The second hypothesis of the Niinemets model is that the strength of the demand for electrons used for isoprene synthesis is proportional to the activity of isoprene synthase (Sₛ). Thus, and based on equation 2.19, the temperature response of εₙ is given by:

\[εₙ = d \frac{Sₛ}{Jₘ} \]

(2.23)

where Sₛ is the specific activity of isoprene synthase (μmol isoprene (g isoprene synthase)⁻¹ s⁻¹), d is a scaling constant in (μmol electron) (g isoprene synthase) (μmol
isoprene$^{-1}$ (g leaf dry mass$^{-1}$). S_S and J_m both have temperature dependencies of the form

$$\exp\left(c - \frac{\Delta H_a}{RT_k}\right)$$

$$\frac{1}{1+\exp\left(\frac{\Delta S T_k - \Delta H_d}{RT_k}\right)}$$

Here c is a scaling constant, ΔH_a and ΔH_d are the activation and deactivation energies, ΔS is the entropy term, T_k is absolute temperature and R is the gas constant (8.314 J mol$^{-1}$ K$^{-1}$). Specific values of these parameters are given for S_S and J_m in Table 2.1. Figure 2.5 shows the form of the response to temperature of ε_N, S_S and J_m. It has to be noted that for a given C_i, the overall temperature dependency of the Niinemets model follows the temperature response of enzymatic activity only, as by replacing equation 2.23 in equation 2.22:

$$I = d S_S M_A \frac{(C_i - \Gamma^*)}{6 \left(4.67 C_i + 9.33 \Gamma^* \right)}$$

(2.24)

The loss of the temperature response of the electron flux is an issue, which was recognised by Niinemets et al. (1999b). The authors also pointed out that the drop-off of isoprene emissions at temperature below temperature optimum of IspS suggests an influence of the temperature dependency of J. Consequently, they set up an upper limit to ε_N. This temperature response of isoprene emissions has been transcribed into a larger-scale model, by using the simplified function of Arneth et al. (2007b) which mimics the one from Niinemets et al. (1999b):

$$f(T) = \min\{\exp(a_T (T - T_{st})); 2.3\}$$

(2.25)

T_{st} is the temperature of standard conditions (30°C), and a_T is a scaling parameter set to 0.1 °C$^{-1}$.
Table 2.1: Parameters used for temperature response of ε_N taken from Niinemets et al. (1999b)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Units</th>
<th>Value for S_S</th>
<th>Value for J_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaling constant</td>
<td>c</td>
<td>unitless</td>
<td>35.478</td>
<td>10.19</td>
</tr>
<tr>
<td>Activation energy</td>
<td>ΔH_a</td>
<td>kJ mol$^{-1}$</td>
<td>83.129</td>
<td>24.998</td>
</tr>
<tr>
<td>Deactivation energy</td>
<td>ΔH_d</td>
<td>kJ mol$^{-1}$</td>
<td>284.6</td>
<td>299.69</td>
</tr>
<tr>
<td>Entropy term</td>
<td>ΔS</td>
<td>kJ K$^{-1}$ mol$^{-1}$</td>
<td>0.8875</td>
<td>0.9437</td>
</tr>
</tbody>
</table>

Figure 2.5: Normalised temperature responses of enzymatic activity (S_S), photosynthetic electron transport per unit of leaf dry mass (J_m) and fraction of electron (ε_N) as modelled by the Niinemets model using values from Niinemets et al. (1999b) (Table 2.1).
2.4 Improving on the Niinemets model

My working hypothesis originates from inconsistencies noticed in the Niinemets model. Hence, I start this paragraph by explaining those inconsistencies.

2.4.1 Analysis of the Niinemets model

The first contradiction is the importance implicitly assigned by the Niinemets model to pathways other than the MEP (or DXP) pathway for isoprene synthesis. In particular, the model strongly links isoprene emissions to the production of G3P. By comparing Figure 2.4 and equation (2.22), we see that the cost in NADPH for isoprene synthesis in the Niinemets model is primarily linked to NADPH cost related to the Calvin cycle and associated photorespiration pathways, while the cost in NADPH along the MEP pathway itself is neglected. Moreover, due to the parallelism between the Niinemets model and the Farquhar model, the extra NADPH cost needed in order to reduce G3P and Pyr into DMADP is tightly linked with the specificity of Rubisco and its affinity to both CO$_2$ and O$_2$ through the use of the term I^\ast. The hypothesis underlying the Niinemets model could be considered not a substrate limitation but as a competition for electrons between the isoprene synthesis pathway and the Calvin and photorespiratory cycles. Thus, I conjectured that the cost of electrons involved in the MEP pathway should be represented with more accuracy in a different way, and be decoupled from specific electron cost of CO$_2$ assimilation.

The second problem I found with the Niinemets model comes from equation (2.22), which can be rewritten as:

$$I = \varepsilon_N \cdot J \cdot \frac{(C_i - I^\ast)}{6 (4.67 C_i + 9.33 I^\ast)}$$

$$= \varepsilon_N \cdot J \cdot \frac{(C_i - I^\ast)}{6 \left(\frac{2.33}{2} \right) \cdot (4 C_i + 8 I^\ast)}$$

$$= \left[\frac{\varepsilon_N}{6 \left(\frac{2.33}{2} \right)} \cdot \frac{(J \cdot (C_i - I^\ast))}{(C_i + 2 I^\ast)} \right] \cdot \left(\frac{\chi_j}{\chi_j} \right)$$

$$I = \varepsilon_N \cdot A_j$$
with \(\varepsilon_N \) a constant expressed in \((\mu\text{mol isoprene}) (\mu\text{mol CO}_2)^{-1}\). The Niinemets model thus describes a substrate-limited situation even when assimilation is actually light-limited.

A supplementary issue arises from this: when the assimilation of CO\(_2\) is Rubisco-limited, \(A_j \) becomes hypothetical. The original idea of Niinemets and co-authors was certainly to link \(I \) to \(J \) (rather than \(A_j \)), and \(A_j \) versus PPFD follows the response of \(J \) under constant conditions of \(C_i \) and \(T \) as shown in Figure 2.2. However, the majority of studies using Niinemets et al. (1999b)’s approach have related \(I \) to \(A_j \) (Arneth et al., 2007a,b; Young et al., 2009; Pacifico et al., 2011, 2012; Unger et al., 2013).

2.4.2 The new modelling approach

The hypothesis underlying the Niinemets model clearly stipulates a competition for electrons between isoprene synthesis and other biochemical pathways, including nitrate reduction. Niinemets et al. (1999b) also discussed in their original paper the fact that the total electron flux produce by Photosystem II (\(J_{\text{tot}} \)) is always somewhat larger than necessary for sugar synthesis (Figs 2.3, 2.6). This has to be so in order to feed other pathways’ energetic requirements. A parallel is made between isoprene and nitrate reduction, which also is found to saturate at higher light intensities and to increase with decreasing \(C_i \) (Bloom et al., 1989; Holmes et al., 1989). However, the mathematical approach of the Niinemets model does not exactly represent this idea.

In order to fill the gaps in the Niinemets model and in an attempt to represent the NADPH and associated electron fluxes involved in the MEP pathway alone, I analysed the available studies that have quantified \(J_{\text{tot}} \) in comparison to \(J \) (as used in Calvin and photorespiratory cycles and computed from carbon assimilation measurements). The difference is important because the MEP pathway has to find additional reducing power to move the reduction state of carbon in sugars up to the level of isoprene. The ‘excess’ of electrons can be represented by \([J_{\text{tot}} - J]\) or more precisely \([J_{\text{tot}} - J_{\text{CO}_2 + \text{O}_2}]\). \(J_{\text{CO}_2 + \text{O}_2} \) represents the electrons used in the Calvin and photorespiratory cycles and \(J_{\text{CO}_2 + \text{O}_2} = J \), when assimilation is under light-limited conditions (Fig. 2.5). Unfortunately, it is commonly assumed that \(J_{\text{tot}} = J \). There is very little information about the differences between \(J_{\text{tot}} \) and \(J \). Although it is common (and generally true) to assume that \(J_{\text{tot}} \) and \(J \) vary together, some difference between the two electrons fluxes has been observed.
(schematically represented in Fig.2.3). Differences in quantum efficiencies of J_{tot} and J have been measured using O$_2$ evolution and gas exchange techniques. These differences can be partially but not fully explained by the additional electrons needed for nitrate assimilation (Singsaas et al., 2001). J_{tot} has been found to saturate at the same light fluxes as J for plants fed with ammonium, but J_{tot} has been found to saturate at higher light fluxes than J for plant fed with nitrate (note that nitrate reduction to ammonium occurs mainly in the cytoplasm and consumes NAPDH) (Bloom et al., 1989). This observation suggests that the leaf has the ability to adapt its photosynthetic capacity to its need for reducing power.

New techniques, based on chlorophyll fluorescence, are now commonly used to measure the total electron flux produced by Photosystem II. The principle of chlorophyll fluorescence is that light energy absorbed in the chloroplast can (i) drive photosynthesis (photochemistry); (ii) be dispersed as heat; or (iii) be re-emitted as light (fluorescence) (Fig. 2.3, Box 2.1). However, the relative ease of fluorescence measurements (a number of commercial manufacturers provide a fluorimeter designed to be attached to standard gas exchange chambers) hides the fact that the theory behind these measurements is not simple. Although measurements using fluorescence techniques give information on Photosystem II activity, absolute values of J_{tot} should be interpreted with caution (Baker, 2008; Murchie & Lawson, 2013). Investigation of $[J_{\text{tot}} - J]$ is further complicated by uncertainties in the measurement of J. J is usually estimated from gas exchange measurement of leaf net assimilation. But gas exchange measurements do not give a direct observation of J. Hence, calculations of J from gas exchange techniques suffer from unavoidable assumptions e.g. about leaf absorptance, activation and de-activation energies and respiration rates.
Figure 2.6: Schematic representation of electrons fluxes versus photosynthetic photon flux density (PPFD) assuming constant conditions of temperature and internal CO₂ and O₂ concentration. In red, the total electron flux generated by photosystem II (J_{tot}); in orange, total electron flux as computed from assimilation curve using the Farquhar model (J); in dashed green, electron flux required to satisfy the Rubisco capacity, (J_v); in dotted grey, electron flux used for CO₂ assimilation and associated photorespiration ($J_{\text{CO}_2+\text{O}_2}$); The light orange area represents the pool of electrons available for other purposes than carbon assimilation and photorespiration; the orange dashed area represents the knowledge available on the electrons in excess using Farquhar equations. Panel (A) shows the situation when assimilation is always light limited; Panel (B) shows the situation when assimilation becomes Rubisco-limited at high PPFD. Panel (C) shows the modelling tools available for modelling the pool of available electrons for other purposes than carbon assimilation and photorespiration. Graphs are only figurative and scales, in particular for the differences between electron fluxes, are not representative.
In the absence of reaction centres, a photon absorbed by chlorophyll brings an electron from its ground-level energy state to a higher-energy state. Relaxation of the excited state to its lowest vibrational level occurs with heat dissipation. From there, the electron relaxes to its ground state by emitting a photon of lower energy than the photon absorbed. This light emission is called fluorescence.

In the presence of reaction centres, excited chlorophyll becomes unstable and generates reactive oxygen species (ROS), which are damaging for the plant. ROS are produced through the transfer of energy or electrons to oxygen species. The most common ROS found in the chloroplast are superoxide (O$_{2}^-$), singlet oxygen (O$_{2}$) and hydrogen peroxide (H$_2$O$_2$).

The best way of dealing with the photon energy absorbed by the reaction centres is by using this energy for photosynthesis. A photon absorbed by Photosystem II (PSII; functional and structural units with a reaction centre at their heart) excites the reaction centre P680. Excited P680 is a very strong biologic oxidant. It snatches an electron from water, and passes its excited electron (at a high energy level) to the electron transport chain (ETC). A chain of redox reactions brings this electron to the ground-state energy level of PSI. Another photon absorbed by P700 brings the electron to a level of higher energy. Excited P700 is a very strong biological reductant. It reduces Ferredoxin (Fd), which in turn reduces NAPD$^+$ to NAPDH. NADPH is further exported to the Calvin cycle and used to produce sugar from CO$_2$.
A large part of the photon energy absorbed by chlorophyll is re-emitted as light (fluorescence). Thanks to the reaction centres and ETC, a part of this energy is quenched and used in photochemistry. To avoid the production of damaging ROS, plants have developed strategies to deal with the excess of energy absorbed and electrons produced. Among those, the Mehler reaction or water-water cycle (W-W) efficiently uses electrons in excess to reduce oxygen to water. Non-photochemical quenching (NPQ) also deals with excess energy. The general concept of NPQ can be described as a transfer of energy from excited chlorophyll to molecules having the ability to dissipate this energy as heat (non-radiative relaxation). The major mechanism of NPQ is called the xanthophyll cycle and involves three carotenoids: violaxanthin, antheroxanthin and zeaxanthin.

Finally, some of the electrons generated by the complex PSII-ETC-PSI are used in the MEP pathway. The MEP pathway produces isoprene and also carotenoids involved in NPQ.
Box 2.1 (3/3) Overall picture of processes involving photon capture in the chloroplast

The production of ROS, and associated photoprotective mechanisms are enhanced under conditions where the photon intensity is in excess to what can be absorbed by carbon assimilation. It is logical to assume that the intensity of the electron flux available for the MEP pathway is influenced in the same way.

If photon intensity increases; the electron flux that can be generated by the photosystems goes over what can be absorbed by CO₂ assimilation. Energy and electrons are in excess. NPQ increases to dissipate excess of energy into heat. More electrons are used in the W-W cycle and in the MEP pathway.

Low CO₂ concentration causes another situation where photon intensity is greater than can be used in the Calvin cycle. Less substrate availability (CO₂) leads to lower carboxylation velocity (highlighted in red in the Michaelis-Menten kinetics curve). This reduction in the velocity of carboxylation causes an over-reduction of the NADP pool. Again, energy and electrons are in excess. NPQ increases to dissipate excess of energy into heat. More electrons are used in the W-W cycle and in the MEP pathway.

On the other hand, high CO₂ concentration leads to higher carboxylation velocity (highlighted in red in the Michaelis-Menten kinetics curve) and the rate of electron consumption in the Calvin cycle increases. More photon energy is used in photochemistry processes. In this situation, electrons are in deficit. NPQ decreases to allow more energy to be used in photochemistry. Fewer electrons are used in the W-W cycle and in the MEP pathway.
Process-based models that can simulate total electron transport rate are in an early stage of development (Ye et al., 2013); the quantities involved in the MEP pathway are small (nanomole scale); and quantitative models of other pathways consuming reducing power do not exist. Therefore we have no choice but to work with the commonly used Farquhar model, a decision that requires some assumptions to be made.

\(J_{\text{max}} \) is commonly found to be larger than \(V_{\text{cmax}} \) (Medlyn et al., 2002; Kattge & Knorr, 2007). Consequently, carbon assimilation rate usually saturates at lower light than electron flux (Figs. 2.2, 2.6) and there is an observed threshold in assimilation drivers (PPFD, \(T \) and \(C_i \)) for which carbon assimilation switches from a light-limited to a Rubisco-limited regime. The electron flux \((J_v) \) required to support Rubisco-limited assimilation can be estimated by substituting \(A_v \) (Eq. 2.11) in equation 2.16:

\[
J_v = 4V_{\text{cmax}} \cdot \frac{(C_i + \Gamma^*)}{(C_i + k_c')}
\]

(2.26)

As for assimilation, the electron flux \(J_{\text{CO}_2+\text{O}_2} \) required to satisfy the energetic need of net assimilation follows the minimum of \(J \) and \(J_v \). The different responses of electron fluxes \(J_{\text{tot}}, J \) and \(J_v \) to increasing light intensity (for a given \(T \) and \(C_i \)) are schematically represented in Figure 2.6. As shown in Figure 2.6, the MEP pathway finds necessary reducing power to reduce G3P and Pyr into DMADP in the electron pool represented by \([J_{\text{tot}} - J]\) (shaded in light orange in Fig. 2.6). This pool of ‘available’ electrons increases when the assimilation becomes Rubisco-limited, as the requirement of electron for carbon assimilation then becomes equal to \(J_v \). The dashed area in Figure 2.6 represents this increase of the electron pool available for other purposes than carbon assimilation. From a modelling point of view, information about \([J_{\text{tot}} - J_{\text{CO}_2+\text{O}_2}]\) is not available; what we have to work with is limited to the mathematical representation of \(J \) and \(J_v \). However, as shown in Figure 2.6, for high light (or low \(C_i \)) we can extract some information about \([J_{\text{tot}} - J_{\text{CO}_2+\text{O}_2}]\) from carbon assimilation curves as we can assume that under Rubisco-limited conditions \([J_{\text{tot}} - J_{\text{CO}_2+\text{O}_2}]\) is at least equal to \([J - J_v]\).

The general form of \([J_{\text{tot}} - J]\) versus PPFD could follow any of four patterns: i) \([J_{\text{tot}} - J]\)- constant \(J \); ii) \([J_{\text{tot}} - J]\) narrows with increasing PPFD, iii) \([J_{\text{tot}} - J]\) increases with PPFD or vi) \([J_{\text{tot}} - J]\) varies randomly. Assuming that \([J_{\text{tot}} - J_{\text{CO}_2+\text{O}_2}]\) does not show a
sharp slope break when assimilation becomes Rubisco-limited, but rather a gradual increase following the extent to which the NADPH requirements of the Calvin-Benson and photorespiratory cycles are satisfied, I proposed that \([J_{\text{tot}} - J_{\text{CO}_2+O_2}]\) increases with PPFD in proportion to the leaf energetic status. The leaf energetic status is defined here as the balance (or imbalance) between the supply of photosynthetically generated reducing power and the demands of carbon fixation and photorespiration, which can be approximated by the difference between the light- and Rubisco-limited electron fluxes for carbon assimilation \([J - J_v]\).

This hypothesis of a gradual increase of that \([J_{\text{tot}} - J_{\text{CO}_2+O_2}]\) with the energetic status of the leaf can be viewed as parallel to non-photochemical quenching (NPQ); a photoprotective mechanism where energy is dissipated as heat mostly by the enzymatic conversion of the carotenoid violaxanthin to zeaxanthin (the xanthophyll cycle). Indeed energetic quenching, by fluorescence and heat lost, increases gradually with the energetic status of the leaf in light response curves, rather than suddenly when assimilation is light-saturated (Box 2.1). A recent study by J. Peñuelas and co-workers supports this hypothesis by showing for Populus nigra L. and Quercus ilex L. a strong negative relationship between isoprenoid emissions (isoprene plus monoterpenes) and light use efficiency (Peñuelas et al., 2013).

To represent the idea that the pool size of available electrons for isoprene synthesis is proportional to the degree to which requirement of electron for carbon assimilation are satisfied, I tested two models.

Model I

In the first model, the rate of isoprene emission is linearly related to the “energetic status” \([J - J_v]\) of the leaf.

\[
I = aJ + b(J - J_v) \quad (2.27)
\]

The total electron flux \(J_{\text{tot}}\) is approximated by \(J\) (as in the Niinemets model), the rate of isoprene emission \(I\) is calculated as an emission baseline represented by a fraction of the total electron flux \((aJ)\) modulated by a term which accounts for the electron availability for isoprene production \(b(J - J_v)\); This model was first introduced in (Harrison et al., 2013). This version was used to further test the validity of my hypothesis by comparing
the behaviour of the model with key observed responses of isoprene emission (Morfopoulos et al., 2013) (Chapter III).

However, this model can generate unrealistic negative values, especially under low light. Under light-limited conditions, with a high demand of NAPDH by the Calvin cycle, the term \(b (J - J_v) \) can reach large enough negative values to create overall negative emissions. This is an obvious limitation of Model 1.

Model 2

In Model 2 the fraction of electrons allocated to isoprene biosynthesis is linearly related to the energetic status of the plant:

\[
e = c_1 + c_2 (J - J_v)
\]

(2.28)

and

\[
I = e J
\]

(2.29)

As in Model 1, the total electron flux \(J_{tot} \) is approximated by \(J \). The term \(e \), which represents the fraction of \(J \) allocated to isoprene emission, is not constant but has a magnitude depending on the energetic status of the leaf. \(c_1 \) and \(c_2 \) are constants. My hypothesis however poses that the magnitude of the electron flux available (and not the fraction of electrons allocated) for isoprene synthesis becomes larger with the energetic status of the leaf. Using variation of the fraction of electron allocated into the MEP pathway \(e \), instead of variation of electron fluxes, is a pragmatic way to compensate for the lack of modelling tools to simulate \(J_{tot} \). In Chapter IV, this model is further explained and tested, using data and on hybrid aspen (Populus tremula L. x P. tremuloides Michx) from (Sun et al., 2012) and on Populus nigra L. (Morfopoulos et al., 2014).

Both formulations (Models 1 and 2) represent processes associated with DMADP production. The transformation of [DMADP] to isoprene also depends on the activity of IspS. This responds primarily to changes in temperature. For a constant \(T \), changes in isoprene emission rates are thus proportional to changes in [DMADP]. But with changes in \(T \), isoprene emission rate responds to changes of both DMADP concentration and activity of IspS. And for a constant [DMADP] pool size, emissions are expected to increase with temperature up to the temperature optimum of IspS. To represent this behaviour, I include a function of temperature in the model:
\[f(T) = \frac{S_S}{S_{ss}} \] (2.30)

where \(S_S \) is the IspS activity, as introduced by Niinemets et al. (1999b) (Table 2.1) and \(S_{ss} \) is the IspS activity for a standard \(T \) (30°C). Consequently, with a normalised enzymatic temperature response, the model’s parameters \((a, b)\) or \((c_1, c_2)\) must apply to standard temperature conditions. In this thesis, the temperature responses of the model(s) with additional function for enzymatic response have been expounded theoretically (Morfopoulos et al., 2013) and tested at the canopy scale (Chapter V). However, in the frame of collaboration with the Institute for Advanced Sustainability Studies (IASS, Germany), modelled effects of temperature have been tested against observations. The paper resulting from this collaborative study has been published in *Plant, Cell and Environment* (Grote et al., 2014).

On the other hand, for a given temperature, the low affinity of IspS for its substrate DMADP, implied by the high value of Michaelis constant \((1.2 < K_m < 2.45 \text{ mM})\) (Silver & Fall, 1995; Schnitzler et al., 2005), ensures linearity between [DMADP] and isoprene emissions. Thus, in the case of constant \(T \), the model describing processes involved in the MEP pathway and associated production of DMADP can be related directly to emissions.

The physiological hypothesis

Many studies have proposed a link between isoprene emission and leaf energetic status to account for the diverse observed behaviour of isoprene emission in response to \(T, C_i \) and PPFD (Niinemets et al., 1999b; Rasulov et al., 2009b, 2010; Li & Sharkey, 2012). Yet the basic concept that isoprene emission is controlled by NAPDH availability is still strongly debated in the isoprene community. The idea of the MEP pathway acting as a safety valve to get rid of excess of energy (and DMADP) has been previously proposed (Owen & Peñuelas, 2005; Rosenstiel et al., 2004). The concept of an energy security valve can be criticised because the amount of energy engaged in the MEP pathway alone is small; it does not have the capacity to absorb all of the excess energy that can generated in the chloroplast. Nevertheless, even if the pathway does not act as a safety valve, it is still physiologically plausible that the flux of electrons through the pathway could be controlled by changes in energetic status of the leaf.
Here, I propose a theoretical concept as to how chemical processes control electron/NADPH fluxes in the cell and in turn influence the entrainment of electrons into the MEP pathway. Movements of NADPH and NADP⁺ inside the cell have to be driven by diffusion generated by gradients of concentration. NADPH, which is produced in the thylakoid membranes, should preferentially diffuse towards the location of NADPH sinks. Oxidation-reduction reactions in the cell, such as those involved in the Calvin/photorespiratory cycles and the isoprene synthesis pathway, act as NAPDH sinks and thus create NADPH concentration gradients. These concentration gradients – from the thylakoid membrane to location in the cell when reduction reactions take place – generate fluxes of NAPDH from thylakoids toward reaction centres. Accompanying these NADPH fluxes, reverse fluxes of NADP⁺ are also generated from oxidation-reduction reaction centres (NADP⁺ production) toward the thylakoids (NADP⁺ sinks) (Box 2.1). Thus, an analogy with an electrical circuit can be drawn (Fig. 2.8), with thylakoids acting as anodes and biochemical pathways including oxidation-reduction steps acting as cathodes. In this analogy the main circuit is the one associated with carbon assimilation. This main circuit has a very low resistance due to the extensive use of NADPH in the carbon assimilation and photorespiration cycles (large sink strength). The resistance of the Calvin Cycle pathway can however increase in situations of reduced substrate availability (C₅) and/or the degree of engagement of Rubisco and NADPH in the reduced form (higher light). The isoprene synthesis pathway could be considered as one of many parallel circuits, with higher resistances limiting the fraction of the electron flux through these minor circuits. The current flowing through the pathway must nonetheless increase in proportion to the applied voltage, and must be sensitive to changes in the resistance of the main circuit. The high resistance of the MEP pathway could be due to i) low substrate availability (Pyr), ii) low concentrations of enzymes involved in the MEP pathway, or iii) down-regulation of the MEP pathway by DMADP (Trowbridge et al., 2012; Banerjee et al., 2013).

Two of the three reduction steps occurring along the MEP pathway can use electrons directly from the electron transport chain, using Ferredoxin (Fd) as the reductant (Fd is an intermediate in the electron transfer chain from PSII to NAPD⁺, and has a redox potential strong enough to reduce NADP⁺ to NAPDH). This fact, along with the location of the MEP pathway – which is presumed to be close to the thylakoid membrane, as IspS is possibly bound to the thylakoid membrane (Wildermuth & Fall, 1996;
Lichtenthaler, 1999) – further supports the hypothesis that the MEP pathway can be sensitive to changes in the degree of engagement of electrons in the Calvin cycle.

![Diagram of parallel between electrolyte circuit and processes involved in the oxydo-reduction reactions and nicotinamide adenine dinucleotide phosphate (NADPH/NAPD⁺) fluxes.](http://www.doitpoms.ac.uk/tlplib/fuel-cells/mcfc_electrolyte.php; University of Cambridge)

Figure 2.7: Schematic of the parallel between electrolyte circuit and processes involved in the oxydo-reduction reactions and nicotinamide adenine dinucleotide phosphate (NADPH/NAPD⁺) fluxes. (Inspired by the schematic of molten carbonate fuel cell http://www.doitpoms.ac.uk/tlplib/fuel-cells/mcfc_electrolyte.php; University of Cambridge)

Unexplained bursts of isoprene emission have been observed a few minutes after the leaf is put in the dark. The intensity of the observed burst of isoprene in the dark is found to be proportional to the light intensity (and thus energetic status) applied to the leaf before the light is switched off (Rasulov *et al.*, 2011). One of the possible explanations for this observed burst is the use of residual post-illuminated NADPH by the MEP pathway (Thomas Sharkey, personal communication 2013). This observation tends to support the
idea of the MEP pathway being sensitive to the cell reductant sinks and reductant availability, whether in the form of Fd or NADPH.

Behnke *et al.* (2007) showed that transgenic grey poplar with isoprene synthase suppressed developed higher non-photochemical quenching capacity than isoprene-emitting individuals. This observation too is in line with the idea of a connection between the intensity of the MEP pathway and the energetic status of the leaf.

2.5 Conclusions

An analysis of the Farquhar and Niinemets models, along with examination of the processes involved in both carbon assimilation related cycles and isoprene production pathway, led to the hypothesis that isoprene production rates are primarily controlled by the excess or deficit of electrons generated by Photosystem II, relative to the needs of carbon fixation. To embody this hypothesis isoprene emission rate are proposed to be proportional to the energetic status of the leaf evaluated using the difference in the light- and Rubisco electron fluxes for carbon assimilation \([J - J_c]\). Two model versions are proposed. In Model 1, the rate of isoprene emission is linearly related to the energetic status of the leaf. In Model 2, the fraction of electrons allocated to isoprene biosynthesis is linearly related to the electron excess. A possible physiological underpinning of these models was suggested. It was shown that several lines of evidence make it plausible that the flux of electrons through the isoprene synthesis pathway is related to the energetic status of the leaf.

The following chapters show how this new modelling approach considerably improves the form of the response of isoprene emission to its environmental drivers when compared to the Niinemets model. Moreover the new modelling approach represents the original idea of Niinemets and co-authors, of a competition for electrons between isoprene and the Calvin cycle, more accurately than the original Niinemets model. The mathematical form is simple, but novel, and proves to have considerable predictive power.

The following chapters describe how the new hypothesis is sufficient to reproduce widely observed responses of isoprene emission to changes in PPFD, temperature, CO₂ concentration and drought.
3 A unifying conceptual model for the environmental responses of isoprene emissions from plants

This chapter describes how the new model hypothesis (previously described in detail in chapter II), that isoprene production rates are primarily controlled by the excess or deficit of electrons generated by Photosystem II, relative to the needs of carbon fixation, has been tested. A body of published data has been revisited, paying particular attention to how the isoprene/carbon assimilation ratio \(\frac{I}{A} \) varies in response to light. The systematic increase of \(\frac{I}{A} \) with light, at both leaf and canopy scales, confirms the importance of electron availability in determining isoprene emission rates. This chapter also describes how the new hypothesis alone is sufficient to reproduce widely observed responses of isoprene emission to changes in light, temperature, CO\(_2\) concentration and drought.

Results presented in this chapter have been published in the journal *Annals of Botany* (Morfopoulos et al., 2013) using Model 1, where the rate of isoprene emission is linearly related to the leaf energetic status as approximated by the difference between light- and Rubisco- limited electron fluxes (equation 2.27 in Chapter II). After the publication of Morfopoulos et al. (2013), Model 2 was developed, in which the fraction of electrons allocated to isoprene biosynthesis is linearly related to the energetic status; this was found to fit observations better and avoids a problem of potentially negative emissions that afflicts Model 1. Additional figures that redraw key figures from Morfopoulos et al. (2013), but using Model 2, are accordingly displayed in annex 3A.1.
Abstract

Isoprene is the most important volatile organic compound emitted by land plants in terms of abundance and environmental effects. Controls on isoprene emission rates include light, temperature, water supply and CO₂ concentration. A need to quantify these controls has long been recognized. There are already models that give realistic results, but they are complex, highly empirical, and require separate responses to different drivers. I set out to find a simpler, unifying principle.

I present a simple model based on the idea of balancing demands for reducing power (derived from photosynthetic electron transport) in primary metabolism versus the secondary pathway that leads to the synthesis of isoprene. I assess this model’s ability to account for key features in a variety of experimental data sets.

The model simultaneously predicts the fundamental responses observed in short-term experiments: (1) the decoupling between carbon assimilation and isoprene emission; (2) a continued increase in isoprene emission with photosynthetic photon flux density (PPFD) at high PPFD, after carbon assimilation has saturated; (3) a maximum of isoprene emission at low internal CO₂ concentration (Ci) and an asymptotic decline thereafter with increasing Ci; (4) maintenance of high isoprene emissions when carbon assimilation is restricted by drought; and (5) a temperature optimum higher than that of photosynthesis, but lower than that of isoprene synthase activity.

I used a simple model to test the hypothesis that reducing power available to the synthesis pathway for isoprene varies according to the extent to which the needs of carbon assimilation are satisfied. Despite its simplicity the model explains much in terms of the observed response of isoprene to external drivers as well as the observed decoupling between carbon assimilation and isoprene emission. The concept has the potential to improve global-scale modelling of vegetation isoprene emission.
3.1 Introduction

Isoprene (2-methyl-1,3-butadiene; C₅H₈) is a highly volatile and reactive unsaturated hydrocarbon that is produced continuously in daylight by many terrestrial plants, and in great abundance by broad-leaved trees. On a mass basis, it is the most important biogenic volatile organic compound (BVOC) emitted by vegetation, with an annual global emission of approximately 0.5 x 10¹⁵ g C. This is similar in magnitude to the total annual emission of the greenhouse gas methane (CH₄) from all natural sources combined (Guenther et al., 1995, 2006; Laothawornkitkul et al., 2009). Although not a greenhouse gas itself, isoprene reacts in the atmosphere with oxidants, including hydroxyl radicals (OH) and ozone (O₃) (Fan & Zhang, 2004), and consequently influences the atmospheric lifetime and concentration of CH₄ (Poisson et al., 2000; Collins et al., 2002, 2010; Pike & Young, 2009). The influence of isoprene on atmospheric oxidation capacity has been proposed as one of the controls of the glacial-interglacial variations of atmospheric CH₄, as recorded in ice cores (Valdes et al., 2005; Singarayer et al., 2011). Isoprene also enhances the production of tropospheric ozone (O₃), a potent greenhouse gas and toxic pollutant, under high-NOₓ conditions (Sanderson et al., 2003; Hauglustaine et al., 2005), and can significantly affect the atmosphere’s radiative balance through the generation of secondary organic aerosols (Claeys et al., 2004; Heald et al., 2008; Carlton et al., 2009; Nozière et al., 2011).

Isoprene emissions by plants at the leaf scale respond to changes in photosynthetic photon flux density (PPFD), temperature, ambient CO₂ concentration, and drought (Sharkey & Yeh, 2001; Laothawornkitkul et al., 2009; Pacífico et al., 2009; Niinemets, 2010). Despite general agreement between models under the present climate, simulations of future isoprene emissions, and their potential impact on atmospheric chemistry, change dramatically depending on the temperature and light responses of the model (Keenan et al., 2009) and whether or not the model includes a physiological response of isoprene emission to CO₂ (Young et al., 2009; Heald et al., 2009; Pacífico et al., 2012). Given the continuously increasing atmospheric CO₂ concentration and its impact on future temperature, we need to understand the processes behind observed responses, and use that understanding to build better models.

The adaptive significance of isoprene emission is thought to be connected with enhancing membrane stability at high temperatures, and protection against oxidative
stress – including that induced by high temperatures (Sharkey & Yeh, 2001; Vickers et al., 2009a; Velikova et al., 2011, 2012). On time scales of weeks to years, acclimation mechanisms acting at the level of gene transcription may operate, possibly in such a way as to match isoprene synthase activity to adaptive requirements (Grote & Niinemets, 2008; Monson et al., 2012; Harrison et al., 2013). Here however I focus on the immediate responses of isoprene emission to environmental variations, as observed in experiments conducted over a time scale of minutes to hours, and the basic metabolic mechanisms that may be responsible for them.

The biosynthesis of isoprene occurs via the chloroplastic methylerythritol 4-phosphate (MEP) pathway (Lichtenthaler, 1999; Logan et al., 2000; Sharkey et al., 2008). 13C labelling experiments have shown that the majority of the C in isoprene comes directly from photosynthesis, with the remainder coming from cytosolic C pools depending upon the environmental conditions (Delwiche & Sharkey, 1993; Kreuzwieser et al., 2002; Karl et al., 2002; Affek & Yakir, 2003; Loreto et al., 2004). However, the metabolic controls of the MEP pathway are only beginning to be elucidated (Li & Sharkey, 2012).

With incomplete understanding of the metabolic controls of the pathway, models have been developed on the basis of experimental studies of the relationships between isoprene emission and environmental variables. The approach with the longest pedigree combines empirically derived functions for each environmental effect: this is the principle of the MEGAN model (Guenther et al., 2006), developed from the pioneer work of Guenther et al. (1993). Other approaches have made more direct use of the limited available information at the biochemical process level, e.g. SIM-BIM (Zimmer et al., 2000, 2003) and the models of Niinemets et al. (1999b) and Martin et al. (2000).

Aside from the model from Martin et al. (2000), which has an ATP limitation for isoprene production at high C_i, all these models need an empirical parameterization in order to reproduce the observed CO$_2$ response. This is potentially quite a severe limitation because there may be unforeseen interactions between the effects of different environmental drivers. Empirical models such as MEGAN include a multiplicity of functions for each environmental response of isoprene emission. More mechanistic approaches such as SIM-BIM, on the other hand, require information on many parameters. This might also be an issue because there is a generally accepted trade-off between the multiplicity of required parameter values and model robustness. I set out to identify a unifying principle that might transcend these limitations.
My starting point was the model of Niinemets et al. (1999b), which is based on quantifying the NADPH requirement of isoprene synthesis. Niinemets et al. (1999b) assumed that a certain fraction of the total electron flux generated by Photosystem II is allocated to this function. The model I present here, initially proposed in Harrison et al. (2013), builds on Niinemets’ work but differs in one fundamental respect: it links isoprene emission to the electron availability for isoprene emission, relative to the needs of CO₂ assimilation. Therefore, the model predicts higher isoprene emissions when absorbed radiant energy (leading to the ‘supply’ of NADPH) exceeds the ‘demand’ for CO₂ assimilation. An excess of energy arises because of a mismatch between light availability and carboxylation capacity, which typically occurs daily – especially at high PPFD, associated high temperature and under water stress. I compare the model’s predictions of observed, published environmental responses of isoprene emission to changes in PPFD and the leaf-internal concentration of CO₂ (Cᵢ) with those obtained with the Guenther et al. (1993) algorithm, hereafter called G93, which is the basis of the widely used MEGAN model (Guenther et al., 2006, 2012); and the model of Niinemets et al. (1999b), hereafter called the Niinemets model. I also compare the theoretical temperature responses of my model with G93 and the Niinemets model. I focus on these two models as they have been widely used at the global scale (Guenther et al., 2006; Lathière et al., 2010; Arneth et al., 2011; Pacifico et al., 2012). However, other isoprene models have been developed. Reviews can be found in Arneth et al. (2007b), Grote & Niinemets (2008) and Monson et al. (2012).

3.2 Hypothesis

In isoprene-emitting plants with the C₃ pathway of photosynthesis, over 90% of isoprene production takes place in the chloroplast via the MEP pathway (Lichtenthaler et al., 1997; Sharkey et al., 2008). The final stage is the enzymatic synthesis of isoprene from its precursor, dimethylallyl diphosphate (DMADP). On a per-molecule basis, isoprene synthesis is energetically expensive, and has a high requirement for reducing power (14 NADPH for one molecule of isoprene). For comparison, only six NADPH are needed to synthesize glyceradehyde 3-phosphate (G3P), and only five for pyruvate. NADPH consumption for G3P and pyruvate synthesis takes place within the Calvin cycle and therefore is linked to the electron cost for carbon assimilation. Three additional reducing steps are needed within the MEP pathway in order to reduce G3P and pyruvate to
DMADP. These supplementary reducing steps consume one further NADPH, and two additional reducing equivalents in the form of either NADPH or ferredoxin (Fd) (Charon et al., 1999; Hecht et al., 2001; Seemann et al., 2006; Li & Sharkey, 2012). My hypothesis focuses on these additional reduction steps, which are directly linked to the production of isoprene.

Isoprene production is typically measured in nanomoles per second while photosynthesis and respiration rates (to which G3P and pyruvate production are linked) are measured in micromoles per second. Hence, the major consumption of reducing power takes place within the Calvin cycle and associated photorespiration while the diversion of reducing power to the MEP pathway is very small. Yet there is abundant circumstantial evidence for a link between the availability of reducing power (after the requirements of carbon assimilation have been accounted for) and the magnitude of this diversion. The MEP pathway is tightly linked to the photosynthetic apparatus and involves light-dependent reactions and takes place in the chloroplast. Higher isoprene emission capacity is encountered under conditions when photoinhibition occurs, including high light intensities, low C_i and high temperatures. Isoprene emissions decrease if plants are fed with nitrate (note that nitrate reduction to ammonia occurs mainly in the cytoplasm and consumes NAPDH) instead of being fed with ammonia directly (Rosenstiel et al., 2004; Campbell, 1988). Li & Sharkey (2012) measured extremely high level of the intermediate metabolite, methylerythritol cyclodiphosphate (MEcDP), in a N$_2$ atmosphere, where the carbon assimilation and photorespiration sinks for NADPH are blocked. Thus, it might be that the MEP pathway acts as a ‘branch circuit’ with the amount of NAPDH allocated to it increasing in proportion to the amount of reducing power to spare from other functions.
Thus I hypothesize that isoprene emission is regulated in the short term by variations of the DMADP pool size, linked to the excess or deficit of electrons (and so also reducing power) relative to the needs of carbon assimilation. Figure 3.1 provides a schematic of the processes involved. When the chloroplast is illuminated, light absorbed by the thylakoids generates the electron flux \(J_{\text{tot}} \) that finally reduces NADP\(^+\) to NADPH. Most of the NADPH is used in the Calvin cycle for carbon fixation, but the total NADPH thus generated \(\approx 0.5 J_{\text{tot}} \) exceeds the amount consumed in the Calvin Cycle \(\approx 0.5 J_{\text{CO}_2+\text{O}_2} \). When assimilation is light-limited (at high \(C_i \) and/or low PPFD) there is still some NADPH available for other functions, which include nitrate reduction (Canvin & Atkins, 1974; Niinemets, 2004; Eichelmann et al., 2011) and DMADP synthesis. When assimilation is Rubisco-limited (at low \(C_i \) and/or high PPFD) this excess of NADPH becomes larger, allowing more NADPH to be used in DMADP synthesis. This reasoning suggests the following simple model:

\[
I = \max([a J + b (J - J_v)] . f(C_i), 0)
\]

(3.1)
where \(I \) is the rate of isoprene emission; \(f(C_i) \) is a function of internal CO\(_2\) concentration;
\(J \) is an estimate of the total electron flux, taken to be a non-rectangular hyperbolic function of absorbed PPFD and the maximum electron flux \(J_{\text{max}} \), following Farquhar et al. (1980); and \(a \) and \(b \) are parameters. The electron flux required to support carbon assimilation is derived as follows. From Farquhar et al. (1980),

\[
A_j = \left(\frac{J}{4} \right) \frac{(C_i - \Gamma^*)}{(C_i + 2\Gamma^*)}
\]

(3.2)

where \(A_j \) is the gross (light-limited) assimilation rate and \(\Gamma^* \) is the CO\(_2\) compensation point in the absence of dark respiration. Hence

\[
J = 4A_j \cdot \frac{(C_i + 2\Gamma^*)}{(C_i - \Gamma^*)}
\]

(3.3)

When Rubisco limits photosynthesis, then

\[
A_v = V_{\text{cmax}} \cdot \frac{(C_i - \Gamma^*)}{(C_i + k'_c)}
\]

(3.4)

where \(A_v \) is the gross (Rubisco-limited) assimilation rate, \(V_{\text{cmax}} \) is the Rubisco capacity and \(k'_c = k_c (1 + [O_2]/k_o) \) where \(k_c \) and \(k_o \) are the Michaelis coefficients of Rubisco for CO\(_2\) and O\(_2\) respectively (Farquhar et al., 1980). Substituting this into equation (3.3) gives:

\[
J_v = 4V_{\text{cmax}} \cdot \frac{(C_i + \Gamma^*)}{(C_i + k'_c)}
\]

(3.5)

It should be noted that \(J \) in equation (3.1) is used as an estimate of \(J_{\text{tot}} \) and could be an underestimate (Singsaas et al., 2001; Niinemets, 2004). More details of the photosynthetic model, as used in this thesis, can be found in the supplementary material (S2). The term \(aI \) in equation (1) represents a ‘baseline’ of isoprene emission under the equilibrium conditions for carbon assimilation \((J = J_\chi, \text{ energy supply} = \text{Rubisco demand}) \), while \(b(J - J_\chi) \) represents variation in isoprene emission due to the disequilibrium between supply and demand. The function \(f(C_i) \) in equation (3.1) is
chosen to take the value C_i / Γ^* when $C_i \leq \Gamma^*$ and 1 otherwise. On account of this function, the model slightly differs from the one I proposed in Harrison et al. (2013). The function $f(C_i)$ reflects the idea that a minimum rate of supply of carbon chains is required for isoprene synthesis, and the common observation that isoprene emission ceases abruptly when $C_i < \Gamma^*$ (Wolfertz et al., 2003; Rasulov et al., 2009b, 2011; Monson et al., 2012; Sun et al., 2012). This fall-off of isoprene at low C_i is not always observed: emission of isoprene in CO$_2$-free air have been reported in a few studies (Monson & Fall, 1989; Affek & Yakir, 2003; Li & Sharkey, 2012), but comparable conditions are not found in natural environments.

Although based conceptually on the NADPH requirements of isoprene synthesis and the Farquhar photosynthesis model, my approach differs from that of Niinemets et al., (1999b) where isoprene production was assumed to be closely linked to the light-limited carbon assimilation rate (A_j). This difference has important consequences, as I will show.

3.3 Tests of the hypothesis

I consider the observed environmental responses of isoprene emission (I) and also the ratio of isoprene emission to carbon gross assimilation (I/A_{gross}), which is a sensitive indicator of the allocation of reducing power to the MEP pathway versus the Calvin cycle. I will also consider changes in the ratio of isoprene emission to carbon net assimilation (I/A_{net}).

3.3.1 Responses to PPFD

Equation (3.1) predicts an increase of isoprene emission with PPFD, but also an increase of the ratio I/A_{gross} (Fig. 3.2A). The predicted behaviour of I/A_{net} ($A_{net} = A_{gross} - R_d$, where R_d is mitochondrial respiration) is substantially different at low PPFD, as shown in Figure 3.2A. At saturating PPFD, the difference becomes less important. This is due to the introduction of the R_d term, which affects the assimilation independently from the allocation of reducing power between carbon fixation and secondary metabolism. Most laboratory experiments have reported only A_{net}; this should be kept in mind while interpreting the results.
The response of normalised I/A_{gross} (and I/A_{net}) with PPFD is predicted to take place in three stages (Fig. 3.2A).

Stage 1: light-limited carbon assimilation This stage occurs when PPFD absorbed is insufficient to generate an electron flux to satisfy Rubisco capacity. It is characterized by an initial steep increase of I/A_{gross} with PPFD, becoming gradually less steep at higher PPFD. For I/A_{net} the form of the response at low PPFD depends on the magnitude of R_d.

Stage 2: transition between light- and Rubisco-limited carbon assimilation This stage is characterized by a discontinuity (abrupt increase) in the slope of I/A_{gross} (and I/A_{net}) versus PPFD.

Stage 3: Rubisco-limited carbon assimilation When the electron requirement for carbon assimilation is fully satisfied, the additional reducing power generated by increasing PPFD allows I/A_{gross} to continue increasing while A_{gross} remains constant. In this stage, I/A_{net} follows a similar pattern of the I/A_{gross} and increases with PPFD. With still further increases in PPFD I/A_{gross} and I/A_{net} eventually saturates, as J tends to its maximal value (J_{max}).

Note that the PPFD flux where the transition between light- and Rubico limited assimilation occurs (Stage 2), as well as the rate of increase of I/A_{gross} with increasing PPFD, are dependent of both the photosynthetic and the isoprene model parameters.

I also examined the normalised responses of I/A_{gross} and I/A_{net} to changes in PPFD in the G93 and Niinemets models (Fig. 3.2B, C). Under light-limited conditions (Stage 1), the picture differs dramatically depending on the model. In the Niinemets model, isoprene emissions are tightly linked to A_j (see Chapter II) and therefore the response of I to PPFD necessarily has the same shape as that of A_j, irrespective of the chosen values of $V_{c\text{max}}$ or J_{max}. As a result, the ratio I/A_{gross} in this model is always constant under light-limited conditions, where carbon assimilation is equal to A_j. The ratio I/A_{net}, when simulated with the Niinemets model, always decreases with PPFD under light-limited conditions. In G93, by contrast, changes in I/A_{gross} with PPFD are strongly dependent on $V_{c\text{max}}$, J_{max} and temperature under light-limited conditions. Consequently, the increase followed by a decrease of I/A_{gross} under light-limited conditions, shown in Figure 3.2B, is one of the possible responses of I/A_{gross} for G93, obtained for the temperature and
photosynthetic parameters chosen for this simulation. Changing those parameters changes the shape of the response, and I/A_{gross} can decrease or increase at low PPFD. Introducing a dark respiration term affects the shape of the response of I/A_{net} with PPFD, as represented by the dashed lines in Figure 3.2B. Hence, G93 can potentially show an I/A response to PPFD similar to that of my model.

![Figure 3.2](image_url)

Figure 3.2 Modelled responses of the normalised ratio of isoprene to CO$_2$ assimilation to changes in PPFD for (A) my model, (B) G93, (C) the Niinemets model. T = 30°C, C_i = 273 µmol mol$^{-1}$, $V_{c_{\text{max}},25^\circ\text{C}}$ = 70 µmol m$^{-2}$ s$^{-1}$, $J_{\text{max},25^\circ\text{C}}$ = 130 µmol m$^{-2}$ s$^{-1}$ based on values from Arneth et al. (2007b)’s study. The solid line represents the ratio of isoprene emission to gross assimilation, the dashed line to net assimilation. Normalised ratio of isoprene to CO$_2$ net assimilation were simulated for two extreme values of dark respiration in order to illustrate the potential effect of the magnitude of R_d on how I/A_{net} varies with PPFD; grey short-dashed line, low R_d; $R_{d,25^\circ\text{C}} = 0.5$ µmol m$^{-2}$ s$^{-1}$; black long-dashed line, high R_d; $R_{d,25^\circ\text{C}} = 2$ µmol m$^{-2}$ s$^{-1}$. Isoprene model parameters a and b (Eq. 3.1) are based on data of Possell & Hewitt (2011) (Fig. 3.6).
Figure 3.3 The relationship between isoprene emission and NADPH availability for carbon assimilation with changing PPFD. (A) Increasing values of the isoprene to CO₂ net assimilation ratio with increasing PPFD, based on data digitized from Figure 2 in Sharkey & Loreto (1993). The solid line, the dot-dashed light grey line and the dashed dark grey lines represent simulations made with my model, G93, and the Niinemets model, respectively. (B) the linear regression between isoprene data and the light-limited electron flux (J). Plant-specific isoprene parameters (a, b) are estimated from this linear regression and parameters for assimilation (Vcmax, Jmax) were fitted to the assimilation observations by minimizing the residual sum of squares (RSS). In both panels, the availability of reducing power (NADPH) for CO₂ assimilation is illustrated by a colour scheme, from dark blue (deficit) to dark red (excess).

All three models predict increasing \(I/A_{\text{gross}} \) with PPFD under Rubisco-limited conditions. Indeed, in the Niinemets model, as isoprene emissions are linked to \(A_i \), they must continue to increase even when carbon assimilation is Rubisco-limited. In that sense, the Niinemets model implicitly allows consumption of extra NADPH above the needs for carbon assimilation (for the PPFD response only). For G93, isoprene emission approaches an asymptotic value at high PPFD, while the Farquhar model fully saturates under Rubisco-limited condition at high PPFD.
Figure 3.4 Observed responses of the normalised ratio (isoprene emission/net CO₂ assimilation) to changes in PPFD. Closed circles show where carbon assimilation is light-limited, open circles where it is light-saturated. Data digitized from (A) Sharkey & Loreto (1993), (B, C) Loreto & Sharkey (1990), (D) Monson & Fall (1989), (E-N) Lerdau & Keller (1997), (O-R) Sun et al. (2012). (O) Plants grown at ambient CO₂, chamber [CO₂] = 380 µmol mol⁻¹. (P) Plants grown at ambient CO₂, chamber [CO₂] = 780 µmol mol⁻¹. (Q) Plants grown at elevated CO₂, chamber [CO₂] = 380 µmol mol⁻¹. (R) Elevated CO₂, chamber [CO₂] = 780 µmol mol⁻¹.

Most studies reporting the fraction of assimilated carbon that is re-emitted as isoprene have found that it increases with PPFD, in line with my predictions (Sharkey & Loreto, 1993; Harley et al., 1996; Lerdau & Keller, 1997; Niinemets et al., 2010a). However, one study (Lerdau & Throop, 1999) found no significant increase in I/Anet with PPFD for most of the tropical taxa they investigated.

Figure 3.3A compares the relationships of I/Anet to PPFD in my model and in digitised data from Sharkey & Loreto (1990) on kudzu leaves (Pueraria lobata). Assuming Jr is constant (no variation in Ci; Fig. 3.3B), the observed isoprene emissions show a strong positive linear relationship with J (r² = 0.97). The model parameters a and b (Eq.3.1) have been estimated from this linear regression. The Farquhar model parameters were
estimated with a best data/model fit by minimizing the residual sum of squares (RSS). The comparison between my model and the data for I/A_{net} shows excellent agreement ($r^2 = 0.92$). In comparison, G93 and the Niinemets model both show poor agreement ($r^2 = 0.19$ and $r^2 = 0.06$ respectively). Yet the three models have a good agreement of the modelled isoprene alone (I) with data (my model: $r^2 = 0.97$; G93: $r^2 = 0.92$; Niinemets: $r^2 = 0.97$; results not shown).

I also compiled data on the response of I/A_{net} to PPFD from the limited number of published studies in order to assess the generality of the pattern (Fig. 3.4). The publications reported A_{net} rather than A_{gross}, and did not typically provide measurements of R_d. As the predicted response of I/A_{net} for low PPFD is dependent on R_d, it is not surprising to observe an initial decline in I/A_{net} with PPFD for some of the 18 experiments. More importantly, the great majority of the studies show increasing I/A_{net} up to the highest PPFD fluxes, especially when photosynthesis saturates (open circles in Fig. 3.4). In some studies a drop in assimilation rate at high PPFD contributed to this increase in I/A_{net} at high PPFD; this was probably due to stomatal closure at high PPFD, resulting in reduced C_i.

As shown in Figure 3.2, the Niinemets model cannot reproduce the positive response of I/A_{net} to PPFD that is generally observed under low PPFD. My model, along with G93, fully captures the shape of the observed response of I/A_{net} to PPFD over the full range of PPFD. But my model also provides a process-based explanation for this response.

In collaboration with T.F. Keenan (Macquarie University, Australia), I also examined the relationship between I/A_{gross} and PPFD at the canopy scale, at which isoprene emission is more likely to be controlled by the DMADP pool size than by isoprene synthase activity (Vickers et al., 2010). We used simultaneous CO$_2$ and isoprene flux measurements made at Harvard Forest, Massachusetts, USA (42.54° N, 72.17° W) (Urbanski et al., 2007; McKinney et al., 2011). Data used were obtained during the 2007 growing seasons using eddy covariance, with Proton Transfer Reaction Mass Spectrometry used to measure the isoprene mixing ratio (McKinney et al., 2011). Daytime data were selected for temperatures above 23°C where variations in isoprene emission were no longer significantly driven by temperature (Fig. 3A.2.1). Ecosystem respiration, estimated from night-time CO$_2$ flux measurements, was used to convert the daytime measured net ecosystem CO$_2$ exchanges into canopy-scale gross assimilation.
rates. Canopy-scale carbon assimilation shows a typical rectangular hyperbolic response to \(PPFD \), but the response of isoprene emission to \(PPFD \) is closer to linearity, and emissions do not saturate at high \(PPFD \) (Fig. 3.5A, B). Thus, above a \(PPFD \) threshold of \(\sim 300 \mu \text{mol m}^{-2} \text{ s}^{-1} \), \(\text{I/}A_{\text{gross}} \) increases with \(PPFD \) even at high \(PPFD \), where assimilation is light-saturated, consistently with my hypothesis.

Scaling from leaf to canopy involves additional processes, such as within-canopy chemistry and canopy structure effects (Grote, 2007; Keenan \textit{et al.}, 2011; Bryan \textit{et al.}, 2012). Therefore, a canopy model is needed to fully account for these results, especially for low \(PPFD \) where deposition processes can influence the observed above-canopy isoprene emissions and possibly explain the observed drop in \(\text{I/}A_{\text{gross}} \). Nevertheless these results, along with those of laboratory experiments, corroborate the notion that isoprene emission is related to the availability of electrons generated in photosynthesis, relative to the demand for them to be used in carbon assimilation.

![Figure 3.5](image)

Figure 3.5 Above canopy gross assimilation (A), isoprene emissions (B) and isoprene emission/gross assimilation (C), in relation to \(PPFD \). From flux measurements at Harvard Forest.
3.3.2 Responses to C_i

Responses of isoprene emission to ambient CO_2 concentration have been widely reported. Plants grown at high atmospheric CO_2 concentrations generally emit less isoprene than those grown at lower CO_2 concentrations. On short time scales, isoprene emission has also been shown to respond strongly and rapidly to C_i, with lower emission rates at higher C_i (Rosenstiel et al., 2003; Wilkinson et al., 2009; Possell & Hewitt, 2011; Sun et al., 2012). The fact that rapid changes in C_i evoke instantaneous responses in isoprene emission suggests that the driving mechanism must be tightly linked to processes in the chloroplast.

The mechanisms behind the decoupling between isoprene emission and carbon assimilation in the response to C_i are not well established. Niinemets et al. (1999b) hypothesized that the dependency of isoprene emission on C_i might be due to the partitioning of reducing power and ATP into the MEP pathway. However the model of Niinemets et al. (1999b) does not allow for any greater partitioning of reducing power to the MEP pathway at low C_i. Isotopic labelling studies have provided evidence for the existence of extra-chloroplastic sources of carbon to support isoprene production. Hence, competition for phosphoenolpyruvate (PEP) between cytosolic and chloroplastic processes has been proposed as an explanation for the drop in isoprene emission at high C_i due to the CO_2-dependence of PEP carboxylase activity (Karl et al., 2002; Rosenstiel et al., 2003; Possell & Hewitt, 2011; Trowbridge et al., 2012). But these experiments compared plants grown at different CO_2 concentrations. Gene expression involving changes in enzyme quantities cannot explain the observed fast (about 10-minute) responses to changes in C_i. I focus here only on the short-term responses to C_i, in which isoprene emission appears to be tightly coupled to changes in the pool size of DMADP (Rasulov et al., 2009b). Specifically, I examine whether the fast responses of isoprene emission to C_i could be explained in a simple way by my model, based on the same mechanisms I have proposed to explain the response to PPFD.
At low \(C_i \) carbon fixation is Rubisco-limited, resulting in an excess of NADPH (Fig. 3.1; Fig. 3.6A). The excess of NADPH can be smaller or larger depending on PPFD. This provides a simple explanation for why isoprene responses to changes in \(C_i \) are light-dependent (Loreto & Sharkey, 1990) (Fig. 3.7D). Moreover, my model can indeed reproduce the isoprene emission response to changes in \(C_i \). This is shown in Figure 3.6A using data on *Acacia nigrescens* from Possell & Hewitt (2011). Here, isoprene emission shows a strong negative linear relationship with the Rubisco-limited electron flux, \(J_e \) \((r^2 = 0.70) \), as shown in Figure 3.6B. The parameters \(a \) and \(b \) (Eq. 3.1) of my model were estimated from this linear regression (Table 3A.2.1). When plotted against \(C_i \), my model
shows a good agreement with the data ($r^2 = 0.70$). Figure 3.6A also shows the response of the G93, and the Niinemets model with and without a CO$_2$ inhibition effect (Arneth et al., 2007b; Pacifico et al., 2011). It is obvious from Figure 3.6A that these models do not reproduce the observed response of isoprene emission to C_i. Without an additional empirical function for CO$_2$ inhibition, isoprene emissions simulated with the Niinemets model are quite out of range. Instead the model shows a strong negative correlation with the data ($r^2 = 0.7$). The negative relationship can be explained by the fact that although the $PPFD$ and therefore the light-limited electron flux (J) are constant, light-limited assimilation (A_i) is strongly C_i-dependent. Adding an empirical function to represent the CO$_2$ inhibition effect, as in Arneth et al. (2007b), changes the shape of the response (allowing a decrease at high C_i) but still the simulated emissions agree poorly with the data.

![Figure 3.7](image.png)

Figure 3.7 Observed changes in the ratio of isoprene emission to net carbon assimilation with changes in (A) leaf-internal CO$_2$ concentration (C_i), (B) electron excess ($J-J_e$) (data from Possell & Hewitt (2011)). Observed changes with C_i of (C) the ratio of isoprene emission to carbon assimilation and (D) isoprene emission, for three $PPFD$ fluxes. Data digitized from Loreto & Sharkey (1990).
Figure 3.8 Modelled responses of isoprene emission versus C_i for three PPFD fluxes (80, 180, 700 μmol m$^{-2}$ s$^{-1}$). (A) My model, (B) G93, (C) the Niinemets model. Parameters values as in Fig. 3.2. Emissions were normalised to a standard emission rate at $T = 30^\circ$C, $C_i = 273$ μmol mol$^{-1}$, PPFD = 1000 μmol m$^{-2}$ s$^{-1}$.

Again using the data from Possell & Hewitt (2011), I plotted I/A_{net} versus C_i (Fig. 3.7A) and $[J – J_r]$ (Fig. 3.7B). These plots confirm that the fraction of assimilated carbon allocated to isoprene production increases under conditions of NADPH excess. This provides a simple explanation for the response of isoprene emission to C_i. The extremely steep rise in I/A_{net} when $[J – J_r]$ becomes positive is due to the combination of steeply increasing isoprene emission with decreasing assimilation rate as C_i declines.

Loreto & Sharkey (1990) measured changes in isoprene emission with changing C_i at different PPFD fluxes in Quercus rubra. Both I/A_{net} and isoprene emission are shown (Fig. 3.7C, D) to increase with PPFD, consistent with a dependence on NADPH availability, at all values of C_i. I compared the responses of G93 and the Niinemets model to C_i at different PPFD fluxes, together with my model (Fig. 3.8). Note that both G93 and the Niinemets model are applied here in their original formulations (see Chapter II for details), and therefore do not include additional parameterizations of the
CO₂ effect. A number of studies have used these same models with additional empirical functions, introduced specifically to account for the observed CO₂ inhibition (Arneth et al., 2007b; Heald et al., 2009; Pacifico et al., 2011). G93 in its original formulation simulates no change at all in isoprene emission with changes in Cᵢ, although it has isoprene emission depending on PPFD (Fig. 3.8B). The Niinemets model in its original formulation also simulates increasing isoprene emission with PPFD, but here the modelled emissions increase with increasing Cᵢ, due to the fact that this model tightly links isoprene emission to light-limited assimilation (Fig. 3.8C). Thus, additional functions are required in both models to account for the observed effects of varying Cᵢ.

In contrast, my model (Fig. 3.8A) can reproduce the form of the Cᵢ response shown in the data (Fig. 3.7D), as well as the effects of combined changes in Cᵢ and PPFD (Fig. 3.7D), without the need for any additional function.

3.3.3 Responses to leaf temperature

The temperature dependence of isoprene emission differs from that of photosynthesis. Temperature optima for carbon assimilation are usually ≤ 30°C in C₃ plants, while isoprene emission peaks at ≈ 40°C (Guenther et al., 1993; Niinemets et al., 1999b; Sharkey & Yeh, 2001; Pacifico et al., 2009). An increase of I/A with temperature is usually observed (Sharkey & Loreto, 1993; Harley et al., 1996; Sharkey et al., 1996; Niinemets et al., 1999b; Sharkey & Yeh, 2001). The optimum for isoprene emissions rarely exceeds 40°C, so the temperature dependence of isoprene emission cannot be fully explained by the temperature dependence of isoprene synthase, which is maximally active between 45°C and 48°C (Monson et al., 1992; Lenhing et al., 1999; Niinemets et al., 1999b; Rasulov et al., 2010). The decrease in isoprene emissions above 40°C has long been considered to be linked to the behaviour of the photosynthetic electron transport rate (Guenther et al., 1991; Niinemets et al., 1999b). Rasulov et al. (2010) found that this decrease is associated with decline in the DMADP pool size and the energetic status of the leaf.

In G93 the temperature dependency of isoprene emission is fixed with a temperature optimum around 38°C. In the Niinemets model, it is assumed to be primarily controlled by IspS activity, with the fraction of electrons used for isoprene production exponentially increasing with temperature. The temperature optimum for isoprene
emissions in the Niinemets model is thus close to the optimum for IspS. Some global-scale studies have set an upper limit for the increase of ε with temperature, thereby reducing the temperature optimum to a value closer to 38°C (Pacifico et al., 2011).

My model is based on the hypothesis that the production of DMADP depends on photosynthetic electron flux and variations in electron availability for functions other than carbon assimilation. Thus my modelled optima for isoprene emissions are primarily driven by the behaviour of the light-limited electron flux. Figures 3.9 and 3.10 illustrate how a temperature response arises in my model. Carbon assimilation follows the lower of the temperature response curves of the Rubisco and light-limited assimilation rates. Rubisco activity usually has a higher temperature optimum than electron transport (Crafts-Brandner & Salvucci, 2000; Medlyn et al., 2002; Cen & Sage, 2005; Kattge & Knorr, 2007). At high PPFD an excess of NADPH can arise for temperatures below the optimum for electron transport (J), so isoprene emissions increase. Above this optimum ($T_{\text{opt}_{J}}$), J_c still increases even if assimilation is reduced, due to the higher affinity of Rubisco for O$_2$ at high temperatures. Both J and $[J - J_c]$ decrease for temperatures higher than $T_{\text{opt}_{J}}$ (as illustrated in Fig. 3.9B). My model thereby predicts a temperature optimum of isoprene emissions that is closer to the temperature optimum of the electron transport rate. Beyond this optimum, my model predicts a drop in the availability of reducing power, leading to a decrease of DMADP and consequently isoprene emissions. At low PPFD (light-limited condition), however, $[J - J_c]$ decreases with increasing temperature, compensating the increase of J. Predicted emissions are thus almost insensitive to temperature or even decrease with temperature (Fig. 3.10A, B). This behaviour is not realistic, so the model may be overestimating the effect of $[J - J_c]$ at low PPFD.

I infer that energetic control alone is insufficient to fully explain the observed temperature dependency of isoprene emission. In principle the activities of enzymes along the MEP pathway should also influence the production rate of DMADP, but very little is known about their temperature responses (Zimmer et al., 2000). Temperature optima for isoprene production are shifted toward higher temperature than $T_{\text{opt}_{J}}$ most likely because a decrease in DMADP pool size is compensated by an increase in IspS activity (Rasulov et al., 2010). Taking into account the temperature response of IspS, I can reproduce this shift (Figs. 3.9C, 3.10C). So I suggest that temperature effects on
enzyme activity may need to be considered, as well as temperature effects on electron availability.

Figure 3.9 Explanation of the predicted temperature dependency of isoprene emissions. (A) Responses to temperature of the light-limited A_l (dark grey short-dash line), the Rubisco limited A_r (light grey long-dash line) and the gross assimilation A_{gross} (solid black line); (B) associated electrons fluxes (left hand axis) and the associated electrons availability ($J - J_r$) (solid grey line; right hand axis). (C) Normalised responses to temperature of my model (solid grey line), normalised IspS activity (dotted-dashed black line) and the resulting product (solid black line). Temperature dependency of IspS is as described in Niinemets *et al.* (1999b) (Table 2.1). Parameters values of the model are taken as in Figure 3.2.
Figure 3.10 Responses to variation in temperature (in ºC) and PPFD (in µmol m⁻² s⁻¹) of electrons availability \((J – J_v)\) (in µmol m⁻² s⁻¹) (A), my model (B), and my model simulations multiply by a normalised function of enzymatic activity (C). Farquhar model parameters are for Quercus robur, as described in Medlyn et al. (2002). Isoprene model parameters a and b (Eq. 3.1) are based on data of Possell & Hewitt (2011) (Fig. 3.6). Model outputs in panel (B) and (C) are normalised to be unity at \(T = 30^\circ\text{C}\) and PPFD=1000 µmol m⁻² s⁻¹.

A further limitation of my model is the paucity of available information on the temperature responses of \(J_{\text{max}}\) and \(V_{\text{cmax}}\) (Medlyn et al., 2002; Kattge & Knorr, 2007). The experiments needed to quantify these responses are time-consuming, and in particular, few studies have included temperatures > 40°C. In general we would expect a decline in DMADP production for temperatures > 40°C due to thylakoid damage, while at temperatures above 45-48°C, irreversible damage to enzyme function will cause isoprene emission to cease.

Using data from Medlyn et al. (2000) and references therein, I checked variations with temperature of electron availability among isoprene emitting species at 1000 µmol m⁻² s⁻¹ PPFD (Fig. 3.11). I also tested the influence of the temperature response parameterization of \(V_{\text{cmax}}\) by contrasting an Arrhenius function with a peak function, as described in Medlyn et al. (2000). The temperature optima for the selected species are all higher for \(V_{\text{cmax}}\) than \(J_{\text{max}}\) (Medlyn et al., 2002; Kattge & Knorr, 2007). Consequently I predicted a decline in DMADP pool size above \(T_{\text{opt,} J}\), due to the decline of \(J\) being accompanied by a decline in \([J – J_v]\), but the shape of the decline depended on the parameterization adopted.
Figure 3.11 Left: temperature responses for different species of the light-limited electron flux (J) (dark grey dotted line), the Rubisco-limited electron flux (J_c) using an Arrhenius function for V'_cmax (J_c, Arrhenius, light grey dashed line), and the Rubisco-limited electron flux using a peak function for V_cmax (J_c peak, red dashed line). Right side: resulting temperature responses of ($J - J_\text{c}$), using an Arrhenius function for V_cmax (light grey solid line, left side y-axis), and a peak function for V_cmax (red solid line, right side y-axis). Farquhar parameters and calculation of V'_cmax are as described in Medlyn et al. (2000). For Quercus robur: GH, greenhouse experiment; ME, mini-ecosystem experiment (Medlyn et al., 2000). Simulations are done for $C_i = 273$ µmol mol$^{-1}$ and PPFD=1000 µmol m$^{-2}$ s$^{-1}$.

3.3.4 Discussion

I have used a conceptual model to ask whether variation in the availability of NADPH in the chloroplast can plausibly account for observed changes in isoprene emission with PPFD, C_i, and leaf temperature. The answer is yes. By modelling isoprene emission as proportional to a simple metric of the excess or deficit of electrons relative to the demands of carbon assimilation, I have provided a unifying explanation for the lack of close coupling of isoprene emission with carbon assimilation, the disparities in carbon allocated into isoprene production, high isoprene emissions at low C_i, and the shift of the temperature optimum for isoprene emission above that of carbon assimilation but below that of isoprene synthase.
To my knowledge, this is the first study that has attempted to model the flux of reducing power into the MEP production pathway based on the idea of a balance between electron supply and demand. My hypothesis invokes mechanisms that are incompletely understood and thus is to some extent speculative. Nevertheless, it appears to have significant predictive power in explaining the already documented responses of isoprene emission to PPFD, C_i and (with some caveats) temperature. Moreover, this hypothesis provides a parsimonious explanation for the response of isoprene emission to drought. Under moderate to mild drought where the photosynthetic apparatus is not damaged (Cornic & Briantais, 1991), carbon assimilation is first reduced by stomatal closure (and thus reduced C_i). Under higher drought severity, this reduction is greatly increased by decreased ATP in water-deficient leaves (Lawlor & Tezara, 2009), which reduces the photosynthetic metabolic potential (A_{pot}), even if C_i increases due to light respiration. The resulting oversupply of reducing power ensures that isoprene emissions continue at a high rate, although carbon assimilation is reduced (Niinemets, 2010). However, a decrease in ATP could also reduce isoprene emissions. Under extreme drought, however, damage to the photosynthesis apparatus eventually results in the cessation of both carbon assimilation and isoprene emission.

A strong diurnal cycle is observed in isoprene emission at canopy scales. Low emissions during early morning and late afternoon contrast with high emissions during the midday period (Hewitt et al., 2011; Keenan & Niinemets, 2012). My hypothesis explains this as a consequence of higher PPFD and temperature, and lower C_i due to partial stomatal closure associated with higher evaporative demand in the midday period. This simple explanation does not require the intervention of a circadian clock, as had been proposed by Hewitt et al. (2011).

It should be noted that I am not advocating a function of isoprene emissions as an ‘electron sink’ as was earlier proposed (e.g. Logan et al., 2000). It is clear from the findings of Li & Sharkey (2012) that the quantity of electrons used in isoprene synthesis is far too small for this function to be plausible. The low affinity of IspS for DMADP already argues strongly against this notion (Silver & Fall, 1995; Schnitzler et al., 1997). My model implies that the allocation of reducing power to this pathway occurs under those conditions when electron availability is in excess, which fortuitously occurs during
stress events when isoprene biosynthesis and emission is advantageous to the plant (e.g. Sharkey et al., 2001; Vickers et al., 2009a).

My results provide an alternative, robust approach to modelling isoprene emissions for global change applications. But more work is needed before implementing the model in a global context. Particular attention should be given to the influence of enzymatic activity on temperature responses of the modelled rates of isoprene. The values of the parameters \(a \) and \(b \) (Eq. 3.1), and their potential species and environmental dependencies, also call for further investigation at several scales:

1) For leaves, by setting up experiments that could test interactions among the short-term responses of isoprene emission to different environmental drivers, and associated variations in the excess of electrons (i.e. isoprene/assimilation responses to \(C_i \) at different PPFD fluxes, together with isoprene/assimilation response to PPFD at different \(C_i \)); and the influence of growth conditions on the parameters. Note that, as most of the process-based models are closely linked to photosynthesis models, information on the values of \(V_{\text{cmax}} \) and \(J_{\text{max}} \) associated with the isoprene standard emission rate would be valuable.

2) For ecosystems, by upscaling the model from the leaf scale to the canopy, with particular attention to the response of \(I/A_{\text{gross}} \). This step would require a representation of the canopy structure and vertical mixing as well as the canopy chemistry accounting for isoprene oxidation, deposition and OH regeneration.

3) At the global scale, with the possibility of using remotely sensed formaldehyde column concentrations to better constrain model parameters for different plant function types and environments. Formaldehyde is a product of isoprene oxidation. As it is observed by satellite, with global coverage, numerous studies have used formaldehyde data to investigate isoprene emission at larger scales (Palmer et al., 2003, 2006; Stavrakou et al., 2008; Barkley et al., 2008; Fortems-Cheiney et al., 2012).

A comprehensive approach to isoprene modelling would also have to account for longer-term acclimation over a time scale of weeks to months, including responses to antecedent temperatures (Guenther et al., 2006, 2012), phenological stages and differences between the short-term and acclimated responses to \(\text{CO}_2 \) (Sun et al., 2012), which are presumably mediated by transcriptional control of the MEP pathway.
enzymes. It would be of particular interest to examine whether these acclimatory changes in isoprene emission are correlated with acclimatory changes in reducing power. However, some acclimatory shifts are unlikely to be able to be explained by a model based on reducing power alone. For example, growth at higher temperatures leads to increased emission rates measured at a common temperature (Pétron et al., 2001; Niinemets et al., 2010b), whereas reducing power at a given temperature tends to be reduced by high growth temperatures due to a decline in the \(J_{\text{max}} : V_{\text{cmax}} \) ratio (Hikosaka et al., 1999; Onoda et al., 2005). Longer-term responses of isoprene emission to changes in growth temperature are therefore presumably governed by other factors, including transcriptional control of the MEP pathway enzymes.

3.3.5 Conclusion

A simple model of the biochemistry and physiology of isoprene emissions has been developed and used to test the hypothesis that the reducing power available to the synthesis pathway for isoprene varies according to demands of carbon assimilation. The model explains the observed response of isoprene production to environment and the coupling/decoupling between carbon assimilation and isoprene emission. The model has the potential to improve global-scale modelling of vegetation isoprene emissions, as well as emissions of isoprenoids that do not origin from storages.

Acknowledgments

I thank Karena McKinney for providing the original isoprene data for the Harvard forest site. I thank Russell Monson and Rüdiger Grote for their helpful and constructive comments on the *Annals of Botany* manuscript.
Annex 3A.1 – Comparison of Model 1 and Model 2

Here key figures from Morfopoulos et al. (2013) are redrawn using the latest version of the isoprene model, referred to as Model 2. In Model 2, the fraction of electrons allocated to isoprene biosynthesis is linearly related to the energetic status of the plant:

\[\varepsilon = c_1 + c_2 (J - J_v) \]
and

\[I = \varepsilon J \]

\[(3A.1.1) \]

\[(3A.1.2) \]

\(J \) and \(J_v \) are the light- and Rubisco-limited electron fluxes, respectively, calculated using the Farquhar equations; \(\varepsilon \) represents the fraction of \(J \) allocated to isoprene emission, and has a magnitude depending on \([J - J_v] \); \(c_1 \) and \(c_2 \) are constants.

Figure 3A.1.1 compares the relationships of the isoprene emission/net assimilation ratio (\(I/\text{A}_{\text{net}} \)) to photosynthetic photon flux density (\(\text{PPFD} \)) using digitized data from Sharkey & Loreto (1993) on kudzu leaves (\(\text{Pueraria lobata} \)). Assuming \(J_v \) is constant (no variation in \(C_i \); Fig. 3A.1.1B), observed isoprene emissions show a quadratic response in relationship with \(J \) (\(r^2 = 0.99 \)), as implied by Model 2. A quadratic function characterises the response of isoprene emission versus light better than the linear response previously assumed in Morfopoulos et al. (2013). Using Model 2 improves the agreement with data for \(I/\text{A}_{\text{net}} \) versus \(\text{PPFD} \) (Model 2: \(r^2 = 0.98 \); Model 1: \(r^2 = 0.92 \)).

Figure 3A.1.2 illustrates the short-term response of isoprene emission to changes in \(C_i \) using Model 2 and data on \(\text{Acacia nigrescens} \) from Possell and Hewitt (2011). Here, parameters \(c_1 \) and \(c_2 \) were obtained from a linear regression between \(\varepsilon = I/J \) and \([J - J_v] \). When plotted against \(C_i \), model 2 shows a good agreement with the data (\(r^2 = 0.70 \)). The response of Model 2 is close to that of Model 1. This is not surprising as the two models are equivalent when \(C_i \) varies under constant temperature and light flux. Indeed, at constant \(T \) and \(\text{PPFD} \), the light-limited electron flux \((J) \) is constant. Thus, and under these conditions only, both models take the form:

\[I = \text{Constant1} - \text{Constant2}. J_v \]

\[(3A.1.3) \]

Figures 3A.1.3, 3A.1.4, 3A.1.5, and 3A.1.6 are redrawn versions of Figures from Morfopoulos et al. (2013), showing normalised responses of the model to changes of the key drivers \((\text{PPFD},T, C_i) \) of isoprene emission using Model 2. Very few changes are detected between the shapes of the responses of Model 2 compared to Model 1. The key characteristics (decrease of emission with \(C_i \), increase of \(I/A \) with increasing \(\text{PPFD} \), temperature optimum for isoprene emission close to what is usually observed) are retained in the new formulation.
Figure 3A.1.1: The relationship between isoprene emission and NADPH availability for carbon assimilation with changing PPFD. (A) Increasing values of the isoprene to CO₂ net assimilation ratio with increasing PPFD, based on data digitized from figure 2 in Sharkey and Loreto (1993). Simulations made with Model 1 $[I = a J + b (J - J_v)]$, Model 2 $[I = \varepsilon J; \varepsilon = c_1 + c_2 (J - J_v)]$, G93, and the Niinemets model are as indicated in the key. (B) 2nd degree polynomial fit between isoprene data and the light-limited electron flux (J). Plant-specific isoprene parameters (c_1, c_2) are estimated from this polynomial fit and parameters for assimilation (V_{max}, J_{max}) were fitted to the assimilation data by minimizing the residual sum of squares (RSS). In both panels, the availability of reducing power (NADPH) for CO₂ assimilation is illustrated by a colour scheme, from dark blue (deficit) to dark red (excess).
Figure 3A.1.2: The relationship between isoprene emission and NADPH availability for carbon assimilation with changing internal CO$_2$ concentration C_i. (A) Decreasing isoprene emissions with increasing leaf-internal CO$_2$ concentration, C_i (data from Possell and Hewitt, 2011); $T = 30 \degree C$, PPFD = 1000 µmol m$^{-2}$ s$^{-1}$. Simulations made with Model 1 $[I = a \cdot J + b (J - J_v)]$, Model 2 $[I = \epsilon \cdot J; \epsilon = c_1 + c_2 (J - J_v)]$, G93 and the Niinemets model are as indicated in the key. The dashed black line represent the Niinemets model with an additional CO$_2$ effect represented by $f(C_i) = C_i / C_a$ where C_a is the atmospheric CO$_2$ concentration. The plain grey line represent the Niinemets model with an alternative additional CO$_2$ effect represented by $f(C_a) = [C_a = 390 \mu mol mol^{-1}] / C_a$. The terms $f(C_i)$ and $f(C_a)$ are adapted from Arneth et al. (2007b). Standard isoprene emission factor (I_s) is taken as the observed emission at $C_a = 390 \mu mol mol^{-1}$. (B) The linear regression between $\epsilon = I/J$ and energetic status of the leaf, approximated by the difference between light- and Rubisco limited electron fluxes $[J - J_v]$. Plant-specific isoprene parameters (c_1, c_2) are estimated from this linear regression and parameters for assimilation ($V_{c_{max}}, J_{max}$) were fitted to the observations by minimizing the residual sum of squares (RSS). In both panels, the availability of reducing power (NADPH) for CO$_2$ assimilation is represented by a colour scheme, from dark blue (deficit) to dark red (excess).
Figure 3A.1.3: Modelled responses of the normalised ratios of isoprene to CO₂ assimilation to changes in PPFD for (A) Model 2 \([I = \varepsilon J; \varepsilon = c_1 + c_2 (J - J_v)]\), (B) G93, (C) the Niinemets model. \(T = 30^\circ C, C_i = 273 \mu mol m^{-2} s^{-1}, V_{\text{max, } 25^\circ C} = 70 \mu mol m^{-2} s^{-1}, J_{\text{max, } 25^\circ C} = 130 \mu mol m^{-2} s^{-1}\) based on values from Arneth et al. (2007b)’s study. The solid line represents the ratio of isoprene emission to gross assimilation, the dashed line to net assimilation. Normalised ratios of isoprene to CO₂ net assimilation were simulated for two extreme values of dark respiration in order to illustrate the potential effect of the magnitude of \(R_d\) on how \(I/A_{\text{net}}\) varies with PPFD: grey short-dashed line, low \(R_d, R_{d, 25^\circ C} = 0.5 \mu mol m^{-2} s^{-1}\); black long-dashed line, high \(R_d, R_{d, 25^\circ C} = 2 \mu mol m^{-2} s^{-1}\). Isoprene model parameters \(c_1\) and \(c_2\) are based on data of Possell and Hewitt (2011) (Fig. 3A.1.2).
Figure 3A.1.4: Modelled responses of isoprene emission versus C_i for three PPFD (80, 180, 700 μmol m$^{-2}$ s$^{-1}$). (A) Model 2 [$I = \varepsilon J; \varepsilon = c_1 + c_2 (J - J_v)$], (B) G93, (C) the Niinemets model. Parameters values as in Fig. 3A.1.3. Emissions were normalised to a standard emission rate at $T = 30^\circ C$, $C_i = 273$ μmol mol$^{-1}$, PPFD = 1000 μmol m$^{-2}$ s$^{-1}$.

Figure 3A.1.5: Explanation of the predicted temperature dependency of isoprene emissions. (A) Responses to temperature of the light-limited A_j (dark grey short-dash line), the Rubisco limited A_c (light grey long-dash line) and the gross assimilation A_{gross} (solid black line); (B) associated electrons fluxes (left hand axis) and the associated electrons availability ($J - J_v$) (solid grey line; right hand axis). (C) Normalised responses to temperature of model 2 [$I = \varepsilon J; \varepsilon = c_1 + c_2 (J - J_v)$] (solid grey line), normalised IspS activity (dotted-dashed black line) and the resulting product (solid black line). Temperature dependency of IspS is as described in Niinemets et al. (1999b). Parameters values of the model are taken as in Fig. 3A.1.3.
Figure 3A.1.6: Responses to variation in temperature (in °C) and PPFD (in µmol m⁻² s⁻¹) of electron availability (\(J - J_v\)) (in µmol m⁻² s⁻¹) (A), Model 2 \(I = e J; e = c_1 + c_2 (J - J_v)\) (B), Model2 simulations multiplied by a normalised function of enzymatic activity (C). Farquhar model parameters are for Quercus robur, as described in Medlyn et al. (2002). Parameters values of the model are taken as in Fig. 3A.1.3. Model outputs in panel (B) and (C) are normalised to be unity at \(T = 30\)°C and PPFD = 1000 µmol m⁻² s⁻¹.
Annex 3A.2 – Supplementary table and figure to Chapter III

Table A3.1 Values of the parameters of Farquhar and isoprene models for Fig. 3.3 and Fig. 3.6

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
<th>Value (Fig. 3.3)</th>
<th>Value (Fig. 3.6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J\textsubscript{max25}</td>
<td>(\mu\text{mol m}^{-2}\text{s}^{-1})</td>
<td>99.53</td>
<td>54.32</td>
</tr>
<tr>
<td>V\textsubscript{cmax25}</td>
<td>(\mu\text{mol m}^{-2}\text{s}^{-1})</td>
<td>62.88</td>
<td>56.9</td>
</tr>
<tr>
<td>a</td>
<td>unitless</td>
<td>2.2 \times 10^{-4}</td>
<td>4.86 \times 10^{-5}</td>
</tr>
<tr>
<td>b</td>
<td>unitless</td>
<td>7 \times 10^{-5}</td>
<td>5 \times 10^{-6}</td>
</tr>
</tbody>
</table>

Figure A1.8: Above canopy isoprene emissions in relation to air temperature for three ranges of PPFD - Low (1000-1250 \(\mu\text{mol m}^{-2}\text{s}^{-1}\)), Medium (1250-1500 \(\mu\text{mol m}^{-2}\text{s}^{-1}\)) and High (1500-1750 \(\mu\text{mol m}^{-2}\text{s}^{-1}\)). Data from flux measurements at Harvard Forest.
4 Model evaluation at the leaf scale

This chapter describes the development of Model 2 following experiments conducted at CREAM (Spain) on Populus nigra L. The protocol of these experiments was designed to test the hypothesis that isoprene production rates are primarily controlled by the excess or deficit of electrons generated by Photosystem II, relative to the needs of carbon fixation. Changes in the balance between energy provided and energy required for carbon assimilation were obtained by varying CO₂ concentration and light intensity during the experiments.

The results presented in this chapter have been published in New Phytologist. After describing the data protocol, I explain how Model 2 was tested against the CREAM data, and additional data on hybrid aspen from Sun et al. (2012)’s study.

Using data acquired at CREAM, Model 1 was also tested. Model 1 captures well the observed CO₂ responses but it fails to reproduce the observed light responses by producing negative values at low light. This deficiency is described in the Annex to this chapter (Annex 4A.1).
Abstract

I present a unifying model for isoprene emission by photosynthesizing leaves based on the hypothesis that isoprene biosynthesis depends on a balance between the supply of photosynthetic reducing power and the demands of carbon fixation.

I compared the predictions from my model, as well as from two other widely-used models, with measurements of isoprene emission from leaves of Populus nigra L. and hybrid aspen (Populus tremula L. x P. tremuloides Michx.) in response to changes in leaf-internal CO$_2$ concentration (C_i) and photosynthetic photon flux density (PPFD) under diverse ambient CO$_2$ concentrations (C_a).

My model reproduces the observed changes in isoprene emissions with C_i and PPFD, and also reproduces the tendency for the fraction of fixed carbon allocated to isoprene to increase with increasing PPFD. It also provides a simple mechanism for the previously unexplained decrease in the quantum efficiency of isoprene emission with increasing C_a.

Experimental and modelled results support my hypothesis. My model can reproduce the key features of the observations and has the potential to improve process-based modelling of isoprene emissions by land vegetation at the ecosystem and global scales.
4.1 Introduction

Isoprene (2-methyl-1,3-butadiene; C_5H_8) is released into the atmosphere by its main source, the terrestrial vegetation. With a total annual emission around 0.5 Pg C a\(^{-1}\) (Guenther et al., 2006, 2012; Arneth et al., 2008a), this extremely volatile and reactive molecule is the most important biogenic volatile organic compound (BVOC) produced by plants.

Why do certain plants emit isoprene and others not? What is the advantage for emitters in losing 2% or more of their assimilated carbon in the form of isoprene? What are the controls over isoprene production and emission? These questions remain largely unresolved. However, some indications have emerged in recent years thanks to advances in diverse fields from cell physiology to phylogeny (Li & Sharkey, 2012; Monson et al., 2013; Niinemets & Monson, 2013; Sharkey, 2013). Isoprene appears to protect the photosynthetic apparatus from heat and oxidative damage by enhancing membrane stability at high temperatures, and by quenching reactive oxygen species (Sharkey & Yeh, 2001; Vickers et al., 2009b; Velikova et al., 2011, 2012; Possell & Loreto, 2013). Isoprene is produced in the chloroplast from its immediate precursor dimethylallyl diphosphate (DMADP), which is synthesized via the methylerythritol 4-phosphate (MEP) pathway (Lichtenthaler, 1999; Logan et al., 2000; Sharkey et al., 2008). Isoprene production is therefore controlled by the supply of DMADP, and by the activity of isoprene synthase (Rasulov et al., 2009a,b, 2010; Vickers et al., 2010; Li et al., 2011; Monson, 2013). The metabolic controls of the MEP pathway, in relation to isoprene biosynthesis are just beginning to be understood (Li & Sharkey, 2012; Banerjee et al., 2013; Weise et al., 2013), and the whole pathway controls cannot yet be included in isoprene emission models in a wholly mechanistic manner (Grote et al., 2013; Li & Sharkey, 2013).

In addition to its physiological interest, isoprene has sparked attention in climate science because of its impact on atmospheric chemistry and climate. Because of its abundance and reactivity, isoprene emission substantially affects the atmospheric content of tropospheric ozone, methane, and secondary organic aerosols (Poisson et al., 2000; Sanderson et al., 2003; Claeys et al., 2004; Heald et al., 2008; Pike & Young, 2009; Nozière et al., 2011; Paasonen et al., 2013). To investigate the potential impact of isoprene on air quality and climate, models for isoprene emission have been developed.
(Grote & Niinemets, 2008; Monson et al., 2012; Grote et al., 2013). Many recently published studies have used the MEGAN model (Guenther et al., 2012), which is based on the pioneering work of Guenther and co-workers (Guenther et al., 1991, 1993). In MEGAN, a species-specific standard isoprene emission (I_s) is modified by empirical functions that account for the observed variations in isoprene emissions due to various environmental controls. Although simple, this approach is vulnerable to model overparameterization due to interactions among environmental drivers (Niinemets et al., 2010a; Sun et al., 2012). Other models have been developed based upon the available knowledge about the underlying biochemical processes. These include the models of Niinemets et al. (1999b) and Martin et al. (2000), and the SIM-BIM model (Zimmer et al., 2000, 2003). Nevertheless, all isoprene emission models remain largely empirical, and the mechanistic content of current models admits considerable scope for improvement (Monson et al., 2012; Grote et al., 2013).

Although often invoked as a potential driver of isoprene production (Niinemets et al., 1999b; Rasulov et al., 2010; Li & Sharkey, 2012), few studies have quantitatively explored the impact of leaf energetic status on isoprene emissions. I define the leaf energetic status as the balance (or imbalance) between the supply of photosynthetic induced reducing power and the demands of carbon fixation and photorespiration. Here, I investigate the hypothesis that the rate of isoprene biosynthesis depends on the leaf energetic status. I used observations from *Populus nigra* L. grown in full sun (this study) and hybrid aspen (*Populus tremula* L. x *P. tremuloides* Michx.) grown at two CO$_2$ concentrations (Sun et al., 2012). For each dataset, the experimental protocol allowed us to study short-term variations of isoprene emission, and associated variations of the electron balance between photosynthetic supply and carbon assimilation requirements. Changes in both isoprene emission and energy balance were obtained by modifying the light and CO$_2$ conditions of the experiments. I used these datasets to test a new modelling framework, in which changes in leaf energetic status are approximated by the difference between the light- and Rubisco-limited electron fluxes for carbon assimilation. I use the same data to test the responses of two of the better-known among published isoprene models: the Guenther et al. (1993) algorithm that underlies MEGAN, and the “process-based” model developed by Niinemets et al. (1999b), Niinemets (2004) and modified by Arneth et al. (2007b).
Hypothesis

Isoprene is produced in the chloroplast by the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, in which glyceraldehyde 3-phosphate (G3P) and pyruvate (Pyr) are transformed into dimethylallyl diphosphate (DMADP). The process involves reduction steps that require reducing power in the form of NADPH and/or ferredoxin (Fd) (Charon et al., 1999; Hecht et al., 2001; Seemann et al., 2006; Li & Sharkey, 2012). DMADP is further transformed into isoprene by the enzyme isoprene synthase. Therefore, isoprene production is co-driven by enzymatic activity and NADPH and/or ATP availability (Lichtenthaler, 1999).

Figure 4.1: Schematic of the processes underlying the proposed hypothesis for isoprene emission modelling. The arrow colour scheme is as follow: red, total electron flux generated by light reaction in photosystem II (J_{tot}); green, electron flux used in reactions associated with carbon assimilation and photorespiration (J_{CO2+O2}); dashed grey, electron flux used in the MEP pathway (J_{iso}); dark grey, electron flux used for other redox reaction. Changes in fluxes intensities in situation of (a) high and (b) low demand for carbon assimilation are symbolically represented by changes in the arrows width. This schematic is illustrative only and the arrows are not fitted to scale. Symbols: ETC, electron transport chain; MEP, 2-C-methyl-D-erythritol 4-phosphate; NADPH, nicotinamide adenine dinucleotide phosphate.
Plastid NADPH is provided by the electron transport flux generated by the light reactions of Photosystem II. As reduction steps in carbon assimilation and photorespiration consume almost all of the NADPH generated, it is common to assume that the total electron flux \(J_{\text{tot}} \) (Fig. 4.1) is the same as the total electron flux used in carbon assimilation \(J_{\text{CO}_2+\text{O}_2} \). However, in reality \(J_{\text{tot}} \) is always somewhat larger than \(J_{\text{CO}_2+\text{O}_2} \). It has to be so in order to supply NADPH for additional redox reactions in the leaf (Niinemets et al., 1999b; Singsaas et al., 2001; Niinemets, 2004). The reduction steps along the MEP pathway constitute some of these additional reactions. Thus, \(J_{\text{tot}} \) can be expressed as \(J_{\text{tot}} = J_{\text{CO}_2+\text{O}_2} + J_{\text{iso}} + J_{\text{other}} \), where \(J_{\text{iso}} \) and \(J_{\text{other}} \) represent electron fluxes involved respectively in isoprene production and other redox reactions in the leaf.

I hypothesize accordingly that the additional reducing power available for isoprene production is dependent on the extent to which the NADPH requirements of the Calvin-Benson and photorespiratory cycles are satisfied (Harrison et al., 2013; Morfopoulos et al., 2013). As illustrated in Figure 4.1, the MEP pathway could be envisioned to act like a small branch circuit, with greatest influx occurring when the demand of carbon assimilation for reducing power is least (Rosenstiel et al., 2004; Owen & Peñuelas, 2005). But the MEP pathway alone does not have the capacity to absorb all of the excess of energy generated. Thus, my hypothesis also suggests that isoprene emissions might co-vary with other, more effective energy-quenching processes, including the Mehler reaction and the xanthophyll cycle.

Although the biochemical mechanisms controlling the partitioning of the NADPH fluxes inside the plastid are incompletely understood, the nature of the responses of isoprene emission to different environmental drivers suggest that this hypothesis is well founded (Morfopoulos et al., 2013). Indeed, the literature shows a persistent tendency for plants to increase isoprene emission (and the fraction of assimilated carbon transformed to isoprene) with increasing leaf energetic status. For example:

1) Isoprene emissions increase with decreasing \(\text{CO}_2 \) concentration (Rosenstiel et al., 2003; Wilkinson et al., 2009; Possell & Hewitt, 2011; Sun et al., 2012).

2) The fraction of assimilated carbon transformed to isoprene increases with increasing light intensity (Sharkey & Loreto, 1993; Harley et al., 1996; Lerdau & Keller, 1997).
3) The temperature optimum for isoprene emissions is lower than that of isoprene synthase (IspS) activity, and apparently co-controlled by the temperature dependencies of the electron transport rate and IspS activity (Monson et al., 1992, 2012; Rasulov et al., 2010).

4) Isoprene emissions decrease in plants fed with nitrate (which consumes NADPH in the process of nitrate reduction to ammonium), but increase if fed with ammonium directly (Rosenstiel et al., 2004).

5) Isoprene emissions increase when light use efficiency decreases (Peñuelas et al., 2013).

These observations all support the hypothesis that isoprene emissions are influenced by the balance of reducing power between what can be produced by light reactions, and what is needed for carbon assimilation and other major NADPH sinks.

Ideally, to represent this hypothesis quantitatively, I should model the total electron flux and the dynamics of all relevant electron sinks. But in reality, (i) process-based models that can simulate total electron transport rate (\(J_{\text{tot}}\)) are in an early stage of development (Ye et al., 2013), (ii) the partitioning of the additional reducing power between \(J_{\text{other}}\) and \(J_{\text{iso}}\) remains enigmatic, and (iii) the nanomole scale at which isoprene emission occurs (compared to the micromole scale of electron flux) makes it unrealistic to attempt a full mass balance of the competing processes. Accordingly, my pragmatic approach is to model the energetic status of the leaf using the Farquhar model (Farquhar et al., 1980) for photosynthetic carbon assimilation, thus approximating the energetic status of the leaf as the difference between the light-limited electron flux (\(J\)) and the electron flux required to support Rubisco-limited photosynthesis (\(J_r\)). \(J\) is an approximation of the amount of reductant that light reactions can supply, while \(J_r\) represents the capacity of Rubisco to absorb this reducing power. Therefore energy transfers to other processes than carbon assimilation \([J_{\text{tot}} - J_{CO_2+O_2} = J_{\text{other}} + J_{\text{iso}}]\) should be correlated to the magnitude of the difference \([J - J_r]\). Based on this proxy, I build a model of isoprene emissions that I will describe further in the text. I test the model with data on isoprene emission as a function of internal CO\(_2\) concentration (\(C_i\)) and photosynthetic photon flux density (PPFD).
I further test my hypothesis by examining observed and modelled changes in the fraction of assimilated carbon allocated to isoprene production. The ratio of isoprene emission to gross carbon assimilation (I/A_{gross}) is a sensitive indicator of the allocation of reducing power to the MEP pathway versus the Calvin-Benson cycle (Niinemets et al., 2013). Under a constant leaf temperature and CO$_2$ concentration, we would expect the fraction of assimilated carbon re-emitted as isoprene to be constant, if only enzymatic limitations were involved. But if indeed isoprene production depends on the energetic status of the leaves then I/A_{gross} would be expected to increase with increasing PPFD (Niinemets et al., 2013), as carboxylation becomes progressively Rubisco-limited, while electron transport continues to increase.

Finally, I examine changes in the quantum efficiency of isoprene emission (Φ_{iso}). Previous studies have reported changes with environmental conditions (Monson et al., 1992; Logan et al., 2000; Sun et al., 2012). Changes in the quantum efficiency of CO$_2$ assimilation (Φ_{CO_2}) cannot explain changes in Φ_{iso}. The processes controlling quantum yields for isoprene are not fully understood. I postulate that differences in the quantum efficiency of isoprene emission (Φ_{iso}) are driven by the energetic status of the leaves, and can thus be related to variation of $[J – J_e]$. Thus I expect the quantum yield of isoprene emission to be lower when the NADPH demand for carbon assimilation is higher.

I will show that my energetic status model is able to reproduce i) changes in isoprene emission induced by changes in C_i and PPFD, ii) the observed tendency of (I/A_{gross}) to increase with increasing PPFD and iii) the observed increase in Φ_{iso} with decreasing CO$_2$ concentration.

4.2 Materials and methods

Plant material and growing conditions

In this study I examine results from experiments conducted on two different species: Populus nigra L. and hybrid aspen (Populus tremula x P. tremuloides).

The first set of experiments was conducted on three saplings of Populus nigra, grown in 15 L pots with a substrate composed of peat and sand (2:1) in a nursery (Tres Turons S.C.P., Castellar del Vallès, Catalonia, Spain). Plants were grown in a sunny
environment under Mediterranean ambient conditions outdoors for 2 months prior to the measurement (2nd May to 7th July 2012). Typical Mediterranean climate is characterized by seasonal summer drought with warm temperatures and mild winters. This is reflected by the average monthly temperature of 22.8°C in August and 7.9°C in January. Mean annual precipitation and temperature are 723 mm and 15.1°C (1951-2010) (Ninyerola et al., 2000). Due to high temperature and low precipitation the plants were under conditions of high evaporative demand. However, regular irrigation ensured that the substrate was held at field capacity throughout this period. Here I used data from one leaf of each sapling, giving an overall dataset of three sun-exposed individuals.

The second set of experiments was conducted with two-year old saplings of hybrid aspen (*Populus tremula* × *P. tremuloides*) grown under two different ambient CO\textsubscript{2} concentrations (380 and 780 μmol mol-1). These experiments, along with a full description of the materials and methods used, are reported in Sun et al. (2012, 2013b), and here only a brief summary of the methods is provided. The plants were grown in a custom-made four-chamber open gas-exchange system. Each individual chamber experienced 12 h photoperiod at levels of light between 500 and 800 μmol m-2 s-1, day-night air temperature between 28-30/23 °C and air relative humidity of 60%. Two chambers (chamber 1 and 3) were kept at an ambient CO\textsubscript{2} concentration of 380 μmol mol-1 (HA-G380), while the other two chambers were treated with an elevated CO\textsubscript{2} concentration of 780 μmol mol-1 (HA-G780). Here I used data from three leaves of each chambers, giving an overall dataset of six individuals grown at ambient CO\textsubscript{2} concentration and six individuals grown at elevated CO\textsubscript{2} concentration.

For each dataset, results shown are averaged values across individuals.

Foliage Gas Exchange Analyses and Isoprene Emission Rates

Gas exchange measurements were conducted on individuals of *Populus nigra* using a Li-Cor LI-6400 portable photosynthesis system (an open gas exchange analyser using a 6 cm2 clamp-on leaf cuvette (LI 6400; LI-COR, Inc., Lincoln, NE, USA)). The calibration of the infrared gas analyser (IRGA) was done by the manufacturer less than one year prior to the measurements. The exhaust tube of the IRGA measure head was connected to a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) system (Ionicon Analytik, Innsbruck, Austria),
using tubing material made of Siltek-passivated stainless steel (Restek, Bellefonte, PA, USA). Analyses of emission rates for isoprene were done simultaneously with gas exchange measurements with the PTR-MS. The PTR–MS technique is based on chemical ionisation, specifically non-dissociative proton transfer from H$_3$O$^+$ ions to most of the common BVOCs, and has been fully described elsewhere (Lindinger et al., 1998). In my experiment on Populus nigra the PTR–MS drift tube was operated at 2.1 mbar and 60ºC, with an E/N (electric field/molecule number density) of around 130 Td (Townsend) (1 Td = 10$^{-17}$ V cm2). The primary ion signal (H$_3$O$^+$) was maintained at ~6 × 106 counts per second. The instrument was calibrated using an aromatic mix standard gas (TO-14A, Restek, Bellefonte, PA, USA) and isoprene standard gas with 100 nmol mol$^{-1}$ isoprene in N$_2$ (Abellô-Linde SA, Barcelona). Prior to data acquisition, the leaf cuvette was left empty in order to analyse the background concentrations of isoprene, and thereafter calculate the foliar emission rates. No significant drift in the background of isoprene was found during the experiments.

Foliage gas exchange analyses and isoprene emission rates on hybrid aspen were obtained using a Walz GFS-3000 portable gas-exchange system and a Fast Isoprene Sensor (FIS, Hills Scientific, Boulder Colorado, USA). More information about the methods can be found in Sun et al. (2012, 2013b).

Before each experiment, the leaf was enclosed in the gas-exchange system and left under baseline conditions until net assimilation (A_{net}), stomatal conductance (g_s) and C_i stabilised (typically 20-30 min). For Populus nigra, baseline conditions were of PPFD of 1000 µmol m$^{-2}$ s$^{-1}$, leaf temperature of 30 ºC, relative humidity of 50% (± 10%) and ambient CO$_2$ concentration of the leaf chamber (C_a) of 390 µmol mol$^{-1}$. For hybrid aspen, baseline conditions were of PPFD of 500 µmol m$^{-2}$ s$^{-1}$, leaf temperature of 30 ºC, relative humidity of 60%, C_a of 380 µmol mol$^{-1}$ for HA-G380 and C_a of 780 µmol mol$^{-1}$ for HA-G780. After preconditioning the leaf as explained above, two types of response curves were created, (i) the leaf net assimilation versus internal CO$_2$ concentration (A_{net}/C_i) and (ii) the leaf net assimilation versus PPFD ($A_{net}/PPFD$).
CO₂ response curves of net assimilation and isoprene emissions

C_i response curves were obtained at a leaf temperature of 30°C and a quantum flux density of 1000 μmol m$^{-2}$ s$^{-1}$ for *Populus nigra* and 500 μmol m$^{-2}$ s$^{-1}$ for hybrid aspen. The C_a values used to generate the A_{net}-C_i response curve were:

- 50 → 150 → 200 → 250 → 350 → 390 → 500 → 700 → 800 → 900 → 1200 → 2000 (μmol mol$^{-1}$), for *Populus nigra*;
- 380 → 200 → 150 → 100 → 50 → 20 → 0 → 380 → 780 → 1000 → 1500 → 2000 (μmol mol$^{-1}$), for HA-G380;
- 780 → 380 → 200 → 150 → 100 → 50 → 20 → 0 → 780 → 1000 → 1500 → 2000 (μmol mol$^{-1}$), for HA-G780.

At every C_a, values of A_{net}, isoprene emission rate (I) and stomatal conductance (g_s) were recorded when the gas-exchange rates were stable, typically 5–10 min after the change of C_a.

PPFD response curves of net assimilation and isoprene emissions

By applying sequential changes in PPFD, light response curves at different C_a were obtained. Three different C_a (200, 390 and 1000 μmol mol$^{-1}$) were applied for *Populus nigra*, and two different C_a (380 and 780 μmol mol$^{-1}$) were applied for hybrid aspen.

The following sequence of PPFD was applied:

- 2500 → 2000 → 1750 → 1500 → 1250 → 1000 → 700 → 500 → 250 → 150 → 75 → 0 (μmol m$^{-2}$ s$^{-1}$) for *Populus nigra*;
- 500 → 1500 → 1000 → 800 → 400 → 200 → 120 → 60 → 30 → 12 → 0 (μmol m$^{-2}$ s$^{-1}$) for hybrid aspen.

The waiting time between each light intensity was approximately 10 min. The data were logged when the rate of A_{net}, g_s, C_a and I were in the steady state, except for hybrid aspen at PPFD higher than 1500 μmol m$^{-2}$ s$^{-1}$ where the values were recorded after 5 to 8 min to avoid the development of photoinhibition.

Energetic status model
My isoprene model is modified in one small (but important) way from the one introduced in Harrison et al. (2013) and Morfopoulos et al. (2013) and deals with the issue of negative values for isoprene emission generated using the first version of the model (annex 4A.1). In these earlier papers, isoprene emission rate was assumed to be linearly related to the energy status of the leaf, whereas here the fraction of electrons allocated to isoprene biosynthesis is linearly related to the energetic status of the leaf:

\[\epsilon = c_1 + c_2 (J - J_v) \]

(4.1)

and

\[I = \epsilon J f(C_i) f(T) \]

(4.2)

where \(I \) is isoprene emission; \(f(C_i) \) is a function of internal CO_2 concentration; \(f(T) \) is a function of temperature taking in account response of enzymatic activity to temperature; \(J \) is the light-limited electron flux, taken to be a non-rectangular hyperbolic function of absorbed PPFD and the maximum electron flux \(J_{\text{max}} \), following Farquhar et al. (1980), and

\[J_v = 4V_{\text{emax}} \cdot \frac{(C_i + \Gamma^*)}{(C_i + k'_e)} \]

(4.3)

which is the electron flux required to support Rubisco-limited carbon assimilation. \(\Gamma^* \) is the CO_2 compensation point in the absence of mitochondrial respiration in the light, \(V_{\text{emax}} \) is the Rubisco carboxylation capacity, and \(k'_e = k_e (1 + [O_2]/k_o) \) where \(k_e \) and \(k_o \) are the Michaelis coefficients of Rubisco for CO_2 and O_2 respectively (Farquhar et al., 1980). The term \(\epsilon \) in equation (4.2) is not constant but varies depending on the energetic status of the leaf, estimated by \([J - J_v] \). The function \(f(C_i) \) in equation (4.2) is chosen to take the value \(C_i/\Gamma^* \) when \(C_i \leq \Gamma^* \) and 1 otherwise and reflects the common observation that isoprene emission ceases when \(C_i < \Gamma^* \) due to a minimum supply of carbon chains required for isoprene synthesis and/or to inhibition of electron transport rate below \(\Gamma^* \) (Dietz et al., 1985; Wolfertz et al., 2003; Rasulov et al., 2009b, 2011; Monson et al., 2012; Sun et al., 2012) This fall-off of isoprene at low \(C_i \) is not fully understood and not always observed: emission of isoprene in CO_2-free air has been reported in a few studies (Monson & Fall, 1989; Affek & Yakir, 2003; Li & Sharkey, 2012). However,
comparable conditions are not found in natural environments. Using the C_i response curves, changes in the fraction ε of the light limited electron flux (J) allocated to isoprene production (Eq. 4.1-4.2) were plotted against the corresponding difference between light- and Rubisco-limited electron fluxes $[J - J_c]$. Parameters c_1 and c_2 were obtained from a linear regression between ε and $[J - J_c]$ when $C_i > \Gamma^*$ (Fig. 4.2a; Fig. 4.3a-b). Because all the experiments were conducted at a leaf temperature of 30°C, I neglect here the temperature dependency due to IspS activity, and $f(T)$ is accordingly set equal to 1. Quantum efficiencies for isoprene production (Φ_{iso}) were calculated as the initial slope of isoprene emission versus PPFD, for PPFD lower than 250 μmol m$^{-2}$ s$^{-1}$. The uncertainties bounds of the energetic status model displayed in the figures represent uncertainties in the estimated values of V_{cmax} and J_{max} in the Farquhar model.

The G93 algorithm

The algorithm developed by Guenther and co-workers (Guenther et al., 1993), which is the basis of the isoprene module of the MEGAN model (Guenther et al., 2012), is the most widely used algorithm for prediction of isoprene emission by plants. Hereafter this algorithm is referred to as G93. In G93 the emission rates of isoprene are calculated by multiplying a species-specific standard emission rate (I_s) by a set of empirical equations taking into account changes in environmental variables. The standard conditions for I_s are a leaf temperature of 30°C and an incident PPFD of 1000 μmol m$^{-2}$ s$^{-1}$. Because in this study all the experiments were conducted at a constant leaf temperature of 30°C, I consider only changes driven by light intensity:

$$I = I_s C_L$$ \hspace{1cm} (4.4)

with

$$C_L = \frac{\alpha C_{L1} PPFD}{\sqrt{1 + \alpha^2 PPFD^2}}$$ \hspace{1cm} (4.5)

where C_{L1} and α are empirical coefficients. For each light response curve, in order to take into account the CO$_2$ effect on standard emission rates, the value of I_s was taken as the observed emission rate at a PPFD of 1000 μmol m$^{-2}$ s$^{-1}$, under the CO$_2$ conditions of the experiment.
The Niinemets model

The Niinemets model (Niinemets et al., 1999b) is based on quantifying the NADPH cost for isoprene synthesis. It builds on the Farquhar model of photosynthesis. The general concept is that a temperature-dependent fraction of the electron flux (ε_N) is used for isoprene production:

$$\varepsilon_N = \frac{J_I}{J_{tot}}$$ \hspace{1cm} (4.6)

where J_I is the electron flux required in order to produce a quantity of isoprene and J_{tot} is the total photosynthetic electron flux, approximated by J, using the Farquhar model:

$$J_{tot} = J = A_j \cdot \frac{(4C_i + 8\Gamma^*)}{(C_i - \Gamma^*)}$$ \hspace{1cm} (4.7)

where A_j is the gross assimilation under electron transport-limited conditions, C_i is the internal CO$_2$ concentration and Γ^* is the compensation point.

The total NADPH cost for isoprene production per mole CO$_2$ assimilated is 1.17 times higher for isoprene (2.33 NADPH per CO$_2$) than for sugar synthesis (2 NADPH per CO$_2$); and six molecules of CO$_2$ must be assimilated to produce one isoprene molecule.

Drawing a parallel with the Farquhar model, J_I is thus estimated as:

$$J_I = 6J \cdot \frac{2.33}{2} \cdot \frac{(4C_i + 8\Gamma^*)}{(C_i - \Gamma^*)} = 7.02 J \cdot \frac{(4C_i + 8\Gamma^*)}{(C_i - \Gamma^*)}$$ \hspace{1cm} (4.8)

Combining (6), (7) and (8), the overall model for isoprene emission becomes:

$$I = \varepsilon_N \cdot J \cdot \frac{(C_i - \Gamma^*)}{7.02 (4C_i + 8\Gamma^*)} = \frac{\varepsilon_N}{7.02} \cdot A_j$$ \hspace{1cm} (4.9)

Because all the experiments were conducted at a leaf temperature of 30°C, I neglect the temperature dependency of ε_N. The effect of changes in CO$_2$ concentration on ε_N is adapted from Arneth et al. (2007b):
where ε_{Ns} is the fraction of electrons used for isoprene production under the standard conditions of leaf temperature $T_s = 30^\circ C$, $PPFD = 1000 \, \mu mol \, m^{-2} \, s^{-1}$, and $C_{a,s} = 390 \, \mu mol \, mol^{-1}$. In this study, ε_{Ns} was estimated from experiment varying $PPFD$ at a C_a of 390 $\mu mol \, mol^{-1}$ for *Populus nigra* and 380 $\mu mol \, mol^{-1}$ for hybrid aspen.

The Farquhar model

The Farquhar et al. (1980) photosynthesis model describes the limitations on the C_3 net photosynthetic rate (A_{net}) by two main equations representing the limitations imposed by Rubisco-catalyzed carboxylation (V_{cmax}) and RuBP regeneration, which is limited by $PPFD$ and by the maximum electron transport rate (J_{max}). Under Rubisco limited conditions, A_{net} is expressed as:

$$
A_{net} = A_v - R_d = V_{cmax} \cdot \frac{(C_i - \Gamma^*)}{(C_i + k_v')} - R_d
$$

(4.11)

A_v is the gross assimilation under Rubisco-limited conditions, R_d is the mitochondrial respiration in the light and was assumed to be equal to dark respiration divided by 2 (Niinemets et al., 2005; Misson et al., 2010; St. Paul et al., 2012). Under electron transport limitation, A_{net} is expressed as

$$
A_{net} = A_j - R_d = \left(\frac{J}{4} \right) \cdot \frac{(C_i - \Gamma^*)}{(C_i + 2 \Gamma^*)} - R_d
$$

(4.12)

where J is the potential rate of electron transport. J in turn depends on $PPFD$ up to a maximum J_{max} (de Pury & Farquhar, 1997). For each C_a, the averaged value of observed C_i was used for the model simulations. Values of Michaelis-Menten constants, activation and de-activation energies, specificity for Rubisco and their temperature dependencies were taken from Bernacchi et al. (2002) and Medlyn et al. (2005) (supplementary material S2).

For the experiment on *Populus nigra*, probably due to the growing conditions of the plants (Mediterranean summer sunshine), the plants adapted their maximum Rubisco capacity (V_{cmax}) to the prevailing high levels of irradiance and temperature. As a result,
under most of the experimental conditions (including a large part of the \(A_{\text{net}}/C_i \) curve), the carbon assimilation was found to be limited by electron transport and not by Rubisco capacity. In order to estimate \(V_{\text{cmax}} \), I therefore used the light response curve for assimilation, at a \(C_a \) of 200 \(\mu \text{mol mol}^{-1} \) and \(PPFD \geq 1500 \mu \text{mol m}^{-2} \text{s}^{-1} \), where \(A_{\text{net}} \) was saturating. I calculated \(V_{\text{cmax}} \) by minimizing the residual sum of squares (RSS) between the Rubisco-limited equation and the observations. The capacity for photosynthetic electron transport (\(J_{\text{max}} \)) was obtained similarly by minimizing RSS between the light limited equation and the assimilation data from all experiments. For hybrid aspen, \(J_{\text{max}} \) and \(V_{\text{cmax}} \) were estimated from \(A_{\text{net}}-C_i \) curves by minimizing RSS between the Farquhar model and the observations.

Model parameters are summarized in Table 4.1. Statistical analyses were performed using the software R version 2.15.0.

Table 4.1: Model parameter values at a leaf temperature of 30°C.

<table>
<thead>
<tr>
<th>Data</th>
<th>Model</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populus nigra</td>
<td>Farquhar</td>
<td>(J_{\text{max}})</td>
<td>111(20−15)</td>
<td>(\mu \text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{cmax}})</td>
<td>169(35−32)</td>
<td>(\mu \text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\alpha_{\text{co2}})</td>
<td>0.27(0.03)</td>
<td>mol electron mol(^{-1}) photon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta)</td>
<td>0.01(0.36−0)</td>
<td>unitless</td>
</tr>
<tr>
<td>Energetic status model</td>
<td></td>
<td>(c_1)</td>
<td>0.309×10(^{-3})</td>
<td>unitless</td>
</tr>
<tr>
<td>Hybrid Aspen</td>
<td>Farquhar</td>
<td>(J_{\text{max}})</td>
<td>88(39−15)</td>
<td>(\mu \text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>HA-G380</td>
<td></td>
<td>(V_{\text{cmax}})</td>
<td>56(6−17)</td>
<td>(\mu \text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\alpha_{\text{co2}})</td>
<td>0.385*</td>
<td>mol electron mol(^{-1}) photon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta)</td>
<td>0.7*</td>
<td>unitless</td>
</tr>
<tr>
<td>Energetic status model</td>
<td></td>
<td>(c_1)</td>
<td>0.193×10(^{-3})</td>
<td>unitless</td>
</tr>
<tr>
<td>Hybrid Aspen</td>
<td>Farquhar</td>
<td>(J_{\text{max}})</td>
<td>95(29−24)</td>
<td>(\mu \text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>HA-G780</td>
<td></td>
<td>(V_{\text{cmax}})</td>
<td>59(15−0)</td>
<td>(\mu \text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\alpha_{\text{co2}})</td>
<td>0.385*</td>
<td>mol electron mol(^{-1}) photon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(\theta)</td>
<td>0.7*</td>
<td>unitless</td>
</tr>
<tr>
<td>Energetic status model</td>
<td></td>
<td>(c_1)</td>
<td>0.219×10(^{-3})</td>
<td>unitless</td>
</tr>
<tr>
<td>All</td>
<td>G93</td>
<td>(\alpha)</td>
<td>0.0027*</td>
<td>unitless</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(C_{L1})</td>
<td>1.066*</td>
<td>unitless</td>
</tr>
</tbody>
</table>

Farquhar model uncertainties (in brackets) were obtained by fitting the model to the maximum and minimum bounds of the assimilation curves. Parameters not fitted to data; \(J_{\text{max}} \), maximum electron flux; \(V_{\text{cmax}} \), maximum Rubisco carboxylation capacity; \(\alpha_{\text{co2}} \), quantum yield of electron transport; \(\theta \), curvature parameter of the light response curve; \(c_1 \) and \(c_2 \), parameters of my energetic status model; \(\alpha \) and \(C_{L1} \) parameters of the G93 algorithm.
4.3 Results

4.3.1 Experiments varying \(C_i \)

For each plant type, isoprene emissions showed a strong negative response to changes in \(C_i \) (Fig. 4.2b; Fig. 4.3c-d). For *Populus nigra* maximum isoprene emissions were approximately 33 nmol m\(^{-2}\) s\(^{-1}\) at low \(C_i \) (73 – 174 µmol mol\(^{-1}\)), declining to 8 nmol m\(^{-2}\) s\(^{-1}\) at high \(C_i \) (1280 µmol mol\(^{-1}\)). Maximum isoprene emission rates (at low \(C_i \)) represented up to 2.24% of assimilated carbon (Fig. 3A.2.1); this percentage drops to 0.17% at high \(C_i \). For hybrid aspen, averaged isoprene emissions peaked at low \(C_i \) (105 – 140 µmol mol\(^{-1}\)) with maxima about 21 nmol m\(^{-2}\) s\(^{-1}\) for HA-G380 and 25 nmol m\(^{-2}\) s\(^{-1}\) for HA-G780, declining below 4 nmol m\(^{-2}\) s\(^{-1}\) at high \(C_i \) (1400 µmol mol\(^{-1}\)). A decline in isoprene emissions for very low value of \(C_i \) was observed whatever the growing conditions. As highlighted in Sun et al. (2012), isoprene emissions reached higher rates for individuals grown under elevated CO\(_2\) concentrations, in contradiction to what is usually assumed. Maximum emission rates represented a loss of assimilated carbon into isoprene of 5.6% for HA-380 and 6.6% for HA-G780; this percentage drops to 0.09% for high value of \(C_i \).

For all experiments, a very strong, linear correlation was found between \([J–J_v]\) and the number of electrons \(\varepsilon \) engaged in the isoprene production pathway, with \(r^2 > 0.89 \) (Fig. 4.2a; Fig. 4.3a-b). Yet the response of \(\varepsilon \) versus \([J–J_v]\) seems to start saturating at very negative values of \([J–J_v]\) in each dataset. This behaviour might be due to an overall saturation of redox state of Q\(_A\) (the primary acceptor of Photosystem II) associated with a limitation of capacity of \(J_{\text{tot}} \) that can be observed under high \(C_i \) (Dietz et al., 1985).

With parameters obtained from linear regression of \(\varepsilon \) versus \([J–J_v]\), my model simulated isoprene emissions in response to changes \(C_i \) with an excellent agreement to the observations (\(r^2 = 0.94, 0.87 \) and 0.93 for *Populus nigra*, HA-G380 and HA-G780 respectively) (Fig. 4.2b; Fig. 4.3c-d).
Figure 4.2: Isoprene emissions versus internal CO$_2$ concentration (C_i) at a leaf temperature of 30°C and a photosynthetic photon flux density of 1000 µmol m$^{-2}$ s$^{-1}$ for Populus nigra L. (a) Observed changes in the fraction of electrons used for isoprene production taken as the ratio of isoprene emission rate to light-limited electron flux for carbon assimilation ($\varepsilon = I/J$) in response to changes in the energetic status of the leaf taken as the difference between the light- and Rubisco-limited electron fluxes for carbon assimilation [$J - J_r$]. (b) Observed (black circles) and modelled (solid line) isoprene emission rates in response to changes in C_i. The grey shadowed area represents uncertainties of the isoprene model due to uncertainties in the values of the maximum Rubisco carboxylation capacity (V_{cmax}) and maximum electron flux (J_{max}) in the Farquhar model. Errors bars represent the maximum and minimum bounds of the isoprene curve.
Figure 4.3: Isoprene emissions internal CO\(_2\) concentration (CI) at a leaf temperature of 30°C and a photosynthetic photon flux density of 1000 \(\mu\text{mol m}^{-2}\text{s}^{-1}\) for hybrid aspen. Observed changes in the fraction of electrons used for isoprene production taken as the ratio of isoprene emission rate to light-limited electron flux for carbon assimilation (\(\varepsilon = I/J\)) in response to changes in the energetic status of the leaf taken as the difference between the light- and Rubisco-limited electron fluxes for carbon assimilation \([J - J_v]\) for hybrid aspen (Populus tremula L. \(\times\) P. tremuloides Michx.) grown under (a) ambient CO\(_2\) concentration (HA-G380; solid circles) and (b) elevated CO\(_2\) concentration (HA-G780; open circles). Observed (circles) and modelled (solid line) isoprene emission rates in response to changes in CI for hybrid aspen grown under (c) ambient CO\(_2\) concentration (solid symbols) and (d) elevated CO\(_2\) concentration (open symbols). The grey shadowed area represents uncertainties of the isoprene model due to uncertainties in the values of the maximum Rubisco carboxylation capacity (\(V_{\text{cmax}}\)) and maximum electron flux (\(I_{\text{max}}\)) in the Farquhar model. Errors bars represent the maximum and minimum bounds of the isoprene curves. The experimental details are reported in Sun et al. (2012; 2013b)
I also tested the response versus C_i of the Niinemets model corrected by the empirical CO$_2$ response function proposed by Arneth et al. (2007b) (Fig. 4A.2.2). The Niinemets model reproduced the data reasonably well but tended to underestimate isoprene emissions for *Populus nigra*, while it tended to overestimate isoprene emissions for the hybrid aspen experiments. It has also to be noted that without the CO$_2$ response function proposed by Arneth et al. (2007b), the Niinemets model would show an increase of isoprene emissions with increasing C_i, imitating the response of A_j.

4.3.2 Experiments varying PPFD

Isoprene emissions

For all experiments, isoprene emissions rates increased with increasing PPFD, with observed maxima for isoprene emissions inversely related to C_a (and consequently to C_i) – opposite to the net assimilation rates. Observed isoprene emissions versus J are found to have a quadratic type of response, in line with my model (shown for hybrid aspen in Fig. 4A.2.3).

For Populus nigra at each C_a, my model captured variations of isoprene emissions extremely well with $r^2 > 0.99$ (Fig. 4.4, Table 4.2). For C_a of 200 µmol mol$^{-1}$, however, my model systematically underestimated the observed values. The Niinemets model showed comparable r^2 values (Table 4.2) consistent with the fact that isoprene emission, both in my model and in the Niinemets model, is proportional to J. G93 was the only model with a component (I_3) fitted directly to the observations, yet G93 performed less well than the other two models. All models underestimated isoprene emission rates at the highest PPFD of 2500 µmol m$^{-2}$ s$^{-1}$.

For hybrid aspen, all models captured well the variation of isoprene emissions with PPFD with $r^2 > 0.88$. Yet my model tended to systematically underestimate isoprene emission for HA-G380 (Fig. 4.5).
Figure 4.4: Isoprene emission rates of *Populus nigra* versus photosynthetic photon flux density (PPFD) at a leaf temperature of 30°C, and three atmospheric CO$_2$ concentrations (C_a): (a) 200 μmol mol$^{-1}$, (b) 390 μmol mol$^{-1}$, (c) 1000 μmol mol$^{-1}$. The grey shadowed area represents uncertainties of the isoprene model due to uncertainties in the values of the maximum Rubisco carboxylation capacity (F_{cmax}) and maximum electron flux (J_{max}) in the Farquhar model. Errors bars represent the maximum and minimum bounds of the isoprene curves.

Figure 4.5: Isoprene emission rates for hybrid aspen (*P. tremula* x *P. tremuloides*) versus photosynthetic photon flux density (PPFD) at a leaf temperature of 30°C, at two atmospheric CO$_2$ concentrations (C_a): $C_a = 380$ μmol mol$^{-1}$ for individuals grown under (a) ambient (HA-G380) and (b) elevated (HA-G780) CO$_2$ concentrations; $C_a = 780$ μmol mol$^{-1}$ for individuals grown under (c) ambient (HA-G380) and (d) elevated (HA-G780) CO$_2$ concentrations. The grey shadowed area represents uncertainties of the isoprene model due to uncertainties in the values of the maximum Rubisco carboxylation capacity (F_{cmax}) and maximum electron flux (J_{max}) in the Farquhar model. Errors bars represent the maximum and minimum bounds of the isoprene curves.
Table 4.2: Isoprene emissions versus changes in photosynthetic photon flux density (PPFD) at different CO$_2$ concentrations (C$_a$).

<table>
<thead>
<tr>
<th>Data</th>
<th>C$_a$ (µmol mol$^{-1}$)</th>
<th>Energetic status model</th>
<th>G93</th>
<th>Niinemets model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>r^2</td>
<td>P</td>
<td>r^2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>~1</td>
<td><1e-5</td>
<td>0.88</td>
<td><1e-5</td>
</tr>
<tr>
<td>Populus n. 390</td>
<td>~1</td>
<td><1e-5</td>
<td>0.86</td>
<td><1e-4</td>
</tr>
<tr>
<td>1000</td>
<td>0.92</td>
<td><1e-4</td>
<td>0.56</td>
<td>0.311</td>
</tr>
<tr>
<td>HA-G380 380</td>
<td>~1</td>
<td><1e-5</td>
<td>~1</td>
<td><1e-5</td>
</tr>
<tr>
<td></td>
<td>0.99</td>
<td><1e-5</td>
<td>0.98</td>
<td><1e-5</td>
</tr>
<tr>
<td>HA-G780 380</td>
<td>0.98</td>
<td><1e-5</td>
<td>0.97</td>
<td><1e-5</td>
</tr>
<tr>
<td></td>
<td>0.96</td>
<td><1e-5</td>
<td>0.93</td>
<td><1e-5</td>
</tr>
</tbody>
</table>

Isoprene: assimilation ratios (I/A$_{gross}$)

Observed mean I/A$_{gross}$ increased with increasing PPFD regardless of the C$_a$, plant type or grown conditions. However, the range of I/A$_{gross}$ across individuals is considerable. The fraction of assimilated carbon re-emitted as isoprene was inversely related to the CO$_2$ concentration. The high ratios of I/A$_{gross}$ at low C$_a$ were due to a combination of high isoprene emission rates and low carbon assimilation rates.

My energetic status model can reproduce an increase of the fraction of carbon allocated to isoprene emission with increasing PPFD (Fig. 4.6; Fig. 4.7). It fails to reproduce absolute values of I/A$_{gross}$; however, note that the simulated I/A$_{gross}$ includes combined uncertainties of the isoprene model and the Farquhar model.

G93 shows versatility in the simulation of carbon allocated to isoprene emission with simulated I/A$_{gross}$ decreasing with PPFD for Populus nigra, while increasing for hybrid aspen.

With the exception of hybrid aspen at C$_a = 380$ µmol mol$^{-1}$, the Niinemets models failed to capture the changes in I/A$_{gross}$ with changing PPFD, showing no relationship between I/A$_{gross}$ and PPFD.
Figure 4.6: Ratios of isoprene emission to gross assimilation (A_{gross}) versus photosynthetic photon flux density (PPFD) at leaf temperature of 30°C for *Populus nigra* at atmospheric CO$_2$ concentration of (a) 200 µmol mol$^{-1}$, (b) 390 µmol mol$^{-1}$, (c) 1000 µmol mol$^{-1}$.

Figure 4.7: Ratios of isoprene emission to gross assimilation (A_{gross}) versus photosynthetic photon flux density (PPFD) at leaf temperature of 30°C for hybrid aspen (*P. tremula* x *P. tremuloides*) at atmospheric CO$_2$ concentration of 380 µmol mol$^{-1}$ for individuals grown under (a) ambient (b) elevated CO$_2$ concentration; and atmospheric CO$_2$ concentration of 780 µmol mol$^{-1}$ for individuals grown under (c) ambient and (d) elevated CO$_2$ concentration.
Isoprene quantum efficiencies

As predicted by my hypothesis, the observed quantum efficiencies for isoprene production were dependent on the CO$_2$ concentration (Fig. 4.8). Higher quantum efficiencies correspond to lower C$_a$, at which the demand for reductant by the Calvin-Benson cycle is lower. My model captured the observed decrease of Φ_{iso} with increasing C$_a$. However, the model overestimated Φ_{iso} at high C$_a$ and underestimated Φ_{iso} at low C$_a$ for *Populus nigra*. The model overestimated Φ_{iso} for HA-G380 and underestimated Φ_{iso} for HA-G780.

![Figure 4.8: Quantum efficiencies for isoprene emission (Φ_{iso}): modelled versus observed values at different atmospheric CO$_2$ concentrations for (a) *Populus nigra* and (b) hybrid aspen (*P. tremula* x *P. tremuloides*) grown under CO$_2$ conditions of 380 µmol mol$^{-1}$ (solid circles) and of 780 µmol mol$^{-1}$ (open circles). The solid line represents the best linear fit between the model and the data; the dashed line represents the 1:1 line.](image)

4.3.3 Global results

The overall performance of each model is illustrated in Figures 4.9 and 4.10. My energetic status model gave excellent results overall ($r^2 = 0.97$ for *Populus nigra*, $r^2 = 0.94$ for hybrid aspen). No major pattern was detected in the residuals although the model has the tendency to underestimate the observations (Fig. 4A.2.4; Fig. 4A.2.5). Moreover this model could reproduce the following key features of the observations:
1) A decrease in isoprene emissions with increasing C_i.
2) An increase in isoprene emissions with increasing $PPFD$, with maxima inversely proportional to CO_2 concentration.
3) An increase of the proportion of assimilated carbon diverted to isoprene production (I/A_{gros}) with increasing $PPFD$.
4) A decrease in the quantum efficiency of isoprene production with increasing CO_2 concentration.

With I_s adjusted for each experiment, G93 reproduces very well the observed variations of isoprene emission with $PPFD$, especially for hybrid aspen (C_i experiments are not included for G93). For *Populus nigra*, the bell-shape pattern observed in the residuals versus fitted values plot (Fig. 4A.2.4) suggests that the standard light response of the G93 is not adapted to fit the observations.

With no empirical adjustment included to account for the CO_2 effect, the Niinemets model ($r^2 = 0.09$ to 0.14) failed to reproduce the observed variations of isoprene emission with $PPFD$ and C_i. Including a CO_2 effect in this model however caused major improvements ($r^2 = 0.97$ to 0.89).

4.4 Discussion

I used the C_i and $PPFD$ response curves of assimilation and isoprene emissions for *Populus nigra* (this study) and *P. tremula* x *P. tremuloides* (hybrid aspen) (Sun *et al.*, 2012), where changes in balance between electron supply and electron demand for carbon assimilation purpose were driven by different environmental variables. I tested against these data a new model in which isoprene production is a function of the energetic status of the leaves, alongside two widely used isoprene models: the G93 algorithm (Guenther *et al.*, 1993) and the Niinemets model (Niinemets *et al.*, 1999b; Arneth *et al.*, 2007b). My new model showed excellent results and a visible improvement relative to the original Niinemets model (Figs. 4.9 and 4.10).
Figure 4.9: *Populus nigra* modelled isoprene emission rates versus observed isoprene emission rates for all the experiments. The solid line represents the best linear fit between the model and the data; the black dashed line is the 1:1 line. Solid circles represent my energetic status model. Squares represent the G93 algorithm, without (open) and with (solid) an adjustment of the standard emission rate to account for CO$_2$ concentration effects. Triangles represent the Niinemets model, without (open) and with (solid) a CO$_2$ effect based on Arneth *et al.* (2007b). Only experiments varying photosynthetic photon flux density are represented for G93 with adjustment of the standard emission rate to account for CO$_2$ concentration effects.
Figure 4.10: Hybrid aspen (*P. tremula* x *P. tremuloides*) modelled isoprene emission rates versus observed isoprene emissions rates for all the experiments. The solid line represents the best linear fit between the model and the data; the black dashed line is the 1:1 line. Solid circles represent my energetic status model. Squares represent the G93 algorithm, without (open) and with (solid) an adjustment of the standard emission rate to account for CO\textsubscript{2} concentration effects. Triangles represent the Niinemets model, without (open) and with (solid) a CO\textsubscript{2} effect based on Arneth *et al.* (2007b). Only experiments varying photosynthetic photon flux density are represented for G93 with adjustment of the standard emission rate to account for CO\textsubscript{2} concentration effects.

My model finds its origin in the Niinemets model based on 'energetic requirements for isoprene synthesis and leaf photosynthetic properties’. It keeps the major advantage of its simplicity and thus the evident potential for its use in large-scale modelling, where excessive complexity is to be avoided wherever possible. Yet, my new model diverges from its prototype in two fundamental ways. First, it links isoprene emission directly to the electron flux (\(J\)) rather than to light-limited assimilation. Second, it links isoprene emission to reductant availability and thus transcribes the original idea of (Niinemets *et al.*, 1999b) of a ‘competition for electrons between isoprene synthesis and Calvin and photorespiratory cycles’. The component of electron flux generated by photosystem II and not used for carbon assimilation and photorespiration is extremely hard to investigate experimentally (Singsaas *et al.*, 2001). Nevertheless, my hypothesis is supported by (i) the high positive correlations found between the observations and simulations made with my energetic status model, (ii) the fact that measured \(I/A_{\text{gross}}\) increases with increasing \(PPFD\), (iii) the fact that observed \(\Phi_{\text{iso}}\) is inversely proportional
to C_a, iv) strong linearity between the flux of electrons engaged in the isoprene production and $[J - J_c]$ and v) a quadratic type response of isoprene emission to J.

In fact, the first derivation of the Niinemets et al. (1999b) model predicted that the fraction of electrons going into isoprene synthesis varies with CO$_2$ concentration, but this variation was not explicitly formalized. In the later development of this model, Arneth et al. (2007b) included this effect empirically in the emission model. Still, reduction of isoprene emissions at intercellular CO$_2$ concentrations between 0-150 μmol mol$^{-1}$ (Loreto & Sharkey, 1990; Rasulov et al., 2009b, 2011; Sun et al., 2012) was not considered. Wilkinson et al. (2009), also included CO$_2$-dependence of isoprene emission, but did not consider the declining part of isoprene emission at low CO$_2$ concentrations. It has been shown that this reduction is associated with reduced availability of dimethylallyl diphosphate (DMADP) and suggested to indicate limited NADPH or ATP availability (Rasulov et al., 2009b, 2011). Here the model based on NADPH-limitation described well the entire CO$_2$-response curve (Fig. 4.2; Fig. 4.3), in line with the experimental observations of variation of DMADP pool size with [CO$_2$].

A limitation of the present study is that experiments were conducted under constant temperature. This has the advantage of decoupling effects related to NADPH production from effects of enzyme kinetics. However, isoprene emissions also respond strongly to temperature, both instantaneously and over longer periods (Guenther et al., 1991; Pacifico et al., 2009; Laffineur et al., 2011; Sun et al., 2013a). Improved understanding of the controls on isoprene emission for global or regional modelling purposes thus also requires that the hypothesis presented here be tested and analysed under variations of temperature, as well as PPFD and C_i.

Following the logic of the G93 algorithm, many studies (including mine) have examined isoprene emission under the standard conditions of a leaf temperature of 30 °C and a PPFD of 1000 μmol m$^{-2}$ s$^{-1}$. This might be a limitation, as interactions between different drivers are then neglected. As an example of the importance of this limitation, the recent study of Sun et al. (2013a) showed cancellation of the isoprene response to rapid changes in C_i at higher temperature. Thus, there is a need for a more complete experimental studies focusing on the interactions between the effects of simultaneous changes in temperature, PPFD and C_i.

120
In future model development it will also be important to consider the adaptation of model parameters to long-term variation in temperature and CO$_2$, and effects of changes due to leaf ontogeny – all of which could modify the expression of the isoprene synthase gene (Monson, 2013; Rajabi Memari et al., 2013; Rosenkranz & Schnitzler, 2013) and the pool size of DMADP (Sun et al., 2012; Rasulov et al., 2013). Consideration of such changes is needed to allow the inclusion of acclimation in isoprene emission on time scales from days to months, and thus eventually allow the responses of isoprene emissions to global change to be modelled in a more explicitly process-based manner than has been possible so far.
Annex 4A.1- Comparison Model1 and Model2

Here I describe tests of the first version of the isoprene model (Model 1) against data collected at CREAF on Populus nigra L. In Model 1, the rate of isoprene emission is linearly related to the energetic status \([J - J_v]\) of the leaf.

\[
I = a J + b (J - J_v) \tag{4A.1.1}
\]

\(J\) and \(J_v\) are the light- and Rubisco-limited electron fluxes, respectively, calculated using the Farquhar equations; \(a\) and \(b\) are constants.

For the \(C_i\) experiments, isoprene emission shows a strong negative linear relationship with the Rubisco-limited electron flux, \(J_v\) \((r^2 = 0.938)\), as shown in Fig. 4A.1.a. Parameters \(a\) and \(b\) (Eq. 4A.1.1) were estimated from this linear regression. When plotted against \(C_i\), Model1 shows excellent agreement with the data \((r^2 = 0.938)\) (Fig. 4A.1.b).

Using parameters \(a\) and \(b\) from \(C_i\) experiments, Model 1 was tested against observed isoprene light curves under three CO\(_2\) concentrations (200, 390, 1000 \(\mu\)mol mol\(^{-1}\)). The results of the comparison of Model 1 versus data are shown in Table 4A.1.1 and Figure A4.2. Although Model 1 manages to capture variations of observed isoprene emissions as suggested by the high correlation with the data \((r^2 > 0.8)\), it generates negative values at low PPFD, as revealed by Figure 4A.1.2. Therefore, this version of the model was discarded and replaced by Model 2.

Table 4A.1.1: Isoprene emissions versus changes in PPFD at different CO\(_2\) concentrations.

<table>
<thead>
<tr>
<th>Data</th>
<th>(C_a) ((\mu\text{mol mol}^{-1}))</th>
<th>Model1 (r^2)</th>
<th>Model2 (r^2)</th>
<th>G93 (r^2)</th>
<th>Niinemets model (r^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(P)</td>
<td>(P)</td>
<td>(P)</td>
<td>(P)</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.99</td>
<td>0.88</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>390</td>
<td>0.98</td>
<td>0.86</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>0.81</td>
<td>0.56</td>
<td>0.81</td>
<td>0.81</td>
</tr>
</tbody>
</table>
Figure 4A.1.1: Isoprene emissions versus internal CO$_2$ concentration (C_i) at a leaf temperature of 30°C and a photosynthetic photon flux density of 1000 µmol m$^{-2}$ s$^{-1}$ for *Populus nigra* L and using the conceptual model from Morfopoulos *et al.* (2013). (a) Observed changes in isoprene emission in response to changes in Rubisco-limited electron flux (J_v) (b) Observed (black circles) and modelled (solid line) isoprene emission rates in response to changes in C_i. The grey shadowed area represents uncertainties of the conceptual model from Morfopoulos *et al.* (2013) (Model1) due to uncertainties in the values of the maximum Rubisco carboxylation capacity (V_{cmax}) and maximum electron flux (J_{max}) in the Farquhar model. Errors bars represent the maximum and minimum bounds of the isoprene curves.

Figure 4A.1.2: Isoprene emission rates of *Populus nigra* versus photosynthetic photon flux density (PPFD) at a leaf temperature of 30°C, and three atmospheric CO$_2$ concentrations (C_a): (a) 200 µmol mol$^{-1}$, (b) 390 µmol mol$^{-1}$, (c) 1000 µmol mol$^{-1}$. The shadowed area represents uncertainties of the isoprene models due to uncertainties in the values of the maximum Rubisco carboxylation capacity (V_{cmax}) and maximum electron flux (J_{max}) in the Farquhar model: in grey for the energetic status model (this study), and in red for conceptual model from Morfopoulos *et al.* (2013) (Model1). Errors bars represent the maximum and minimum bounds of the isoprene curves.
Annex 4A.2 - Supplementary figures to Chapter IV

Figure 4A.2.1: *Populus nigra* net CO\textsubscript{2} assimilation rate \((A_{\text{net}}) \) versus (a) internal CO\textsubscript{2} concentration \((C_i) \) and (b) photosynthetic photon flux density \((PPFD) \) for three atmospheric CO\textsubscript{2} concentrations (200, 390 and 1000 µmol mol-1) at 30°C.

Figure 4A.2.2: Observed (circles) and modeled (crosses), using the Niinemets model modified by Arneth et al. (2007b), isoprene emission rate changes in response to changes in internal CO\textsubscript{2} concentration \((C_i) \) for (a) *Populus nigra* and hybrid aspen grown under CO\textsubscript{2} atmospheric concentration of (b) 380 µmol mol-1 and (c) 780 µmol mol-1. For hybrid aspen, the poor correlation between model and data is mainly due to negative values (down to –384 nmol m-2 s-1) simulated by the model for \(C_i < I^* \).
Figure 4A.2.3: Observed isoprene emission rates versus light limited electron flux (J) for hybrid aspen grown under CO$_2$ concentration of 380 µmol mol$^{-1}$ and measured at a CO$_2$ concentration (C_a) of (a) 380 µmol mol$^{-1}$ and (b) 780 µmol mol$^{-1}$; hybrid aspen grown under CO$_2$ concentration of 780 µmol mol$^{-1}$ and measured at a CO$_2$ concentration of (c) 380 µmol mol$^{-1}$ and (d) 780 µmol mol$^{-1}$.
Figure 4A.2.4: Residuals against fitted values, normal Q-Q plot, square root of the standardized harvarhhCook’s distance for *Populus nigra* (using Model 2).
Figure 4A.2.5: Residuals against fitted values, normal Q-Q plot, square root of the standardized residuals against the fitted values and standardized residuals as a function of leverage, along with Cook’s distance for hybrid aspen (using Model 2).
5 Evaluation of the model at canopy scale using a multi-layer approach

Abstract

Having successfully tested the new model for isoprene emission at the leaf scale (Chapter IV, Morfopoulos et al., 2014), I investigate here the model’s ability to reproduce above-canopy isoprene emissions. Long-term time series of above-canopy fluxes of CO₂ and isoprene, measured continuously at two mixed-temperate forest sites located at the University of Michigan Biological Station, USA (UMBS) (Pressley et al., 2005, 2006) and Vielsalm, Belgium (Laffineur et al., 2011, 2013), are analysed. A simple approach is used to investigate responses of gross primary production (GPP) and isoprene emission rates to changes in photosynthetic photon flux density (PPFD) and air temperature (Tₐ). GPP was found be controlled primarily by PPFD while isoprene emissions showed equally strong responses to PPFD and Tₐ. This finding is consistent with the isoprene production being jointly controlled by the energetic status of the leaf and by enzymatic activity. GPP showed almost no response (UMBS), or even a decreasing response (Vielsalm), to increasing Tₐ. The percentage of carbon lost into the form of isoprene tended to increase with increasing PPFD, supporting the idea that the availability of reducing power influences isoprene emission.

Using a multi-layer method, I compared the global responses of GPP to those of the Farquhar model (Farquhar et al., 1980) and the general responses of isoprene emission to those of three leaf-level isoprene emission models: the Guenther et al. (1993) algorithm, the Niinemets et al. (1999b) model and the new model I developed based on the energetic status of the leaf (Morfopoulos et al., 2013, 2014). The Farquhar model reproduces well the variation in GPP, with the exception of the temperature responses at the Vielsalm site. All three isoprene-emission models reproduce well the general responses of isoprene emission to changes in PPFD and Tₐ. The isoprene emission model based on the energetic status of the leaf, however, captures best how the ratio of isoprene emission to GPP changes in response to changes in PPFD. This model improves the simulated responses of isoprene emissions when compared to the original
Niinemets et al. (1999b)’s model, confirming the advance made by this new modelling approach.
5.1 Introduction

This chapter explores the possibility of upscaling the new energetic status model from leaf to canopy. Only the second version of the model (Model 2) has been employed. To investigate whether the model still holds at the canopy scale, a simple multi-layer method is used. Long-term above-canopy measurements of both isoprene and CO₂ fluxes are rare. But information on CO₂ fluxes is essential for process-based isoprene emission modelling. To my knowledge, only three sites: Harvard forest (USA), the University of Michigan Biological Station (USA) and Vielsalm (Belgium) cover several growing seasons giving substantial datasets of both isoprene and CO₂ fluxes. Data at the University of Michigan Biological Station and Vielsalm have been used here, with the following questions in mind:

1- Can it be confirmed that the ratio of isoprene emission to carbon assimilation increases with light intensity, as observed at Harvard forest (Chapter III, Fig 3.5)?

2- How do the observed isoprene emission responses to changes in the main drivers (light and temperature) scale up from leaf to canopy?

3- Can the new modelling approach account for features of the data that are not reproduced by other isoprene emission models?

The work presented here is currently in the form of a thesis chapter only. I plan to include in this study analysis of the above-canopy measurements at Harvard forest as well, and later to submit this work as a co-authored journal article to Biogeosciences with the following co-authors: S. Pressley, Q. Laffineur, B. Heinesch, K.A. McKinney (for the data) and P.M. Cox, R. Grote, T.F. Keenan, L.M. Mercado, J. Peñuelas, I.C. Prentice, N. Unger.

5.2 Material and methods

5.2.1 Observations/site description

I used long-term measurements of above-canopy isoprene and CO₂ fluxes recorded continuously at two temperate forest sites, University of Michigan Biological Station (Pressley et al., 2005, 2006) (UMBS) and Vielsalm (Laffineur et al., 2011, 2013).
The UMBS site is located near Pellston, Michigan, USA (45°30’N, 84°42’W). Its climate is continental and its vegetation consists of a mixture of bigtooth aspen (*Populus grandidentata* Michx.), quaking aspen (*P. tremuloides* Michx.), American beech (*Fagus grandifolia* Ehrh.), paper birch (*Betula papyrifera* Marsh.), maple (*Acer rubrum* L., *A. saccharum* Marsh.) and red oak (*Quercus rubra* L.) – all deciduous broadleaved tree species. Eddy covariance flux measurements of isoprene, CO₂, momentum, latent and sensible flux, were performed continuously for the 1999 to 2003 and 2005’s growing seasons. In parallel, above-canopy air temperature (*Tₐ*) and photosynthetic photon flux density (*PPFD*) were recorded. CO₂ and H₂O mixing ratios were measured with an open-path infrared gas analyzer (IRGA) (Auble & Meyers, 1992) and isoprene mixing ratios were analysed with a fast isoprene sensor (FIS) (Hills & Zimmerman, 1990). Mixing ratios were converted to 30-min averaged CO₂ and isoprene fluxes using eddy covariance techniques. Estimates of vegetation area index (*VAI*) for the years 2000 to 2002 ranged between 3.2 and 3.7 m² m⁻² (Pressley *et al.*, 2005). At UMBS, isoprene was primarily emitted by aspen (76%) and red oak (24%), which represented about 69% of the living biomass within 1km radius from the measurement flux tower. More information about the materials and methods of the measurements at UMBS can be found in (Pressley *et al.*, 2005, 2006).

The Vielsalm site is located in the Ardennes, Belgium (50°18’N, 5°59’E). The climate is temperate maritime and the vegetation consists of a mixture of coniferous and deciduous species, mainly (non-native) Douglas fir (*Pseudotsuga menziesii* Mirb.), Norway spruce (*Picea abies* L.), silver fir (*Abies alba* Miller) and European beech (*Fagus sylvatica* L.). Isoprene fluxes were measured continuously above canopy using the disjunct eddy covariance technique by mass scanning with proton transfer reaction- mass spectrometry (PTR- MS) for the 2009 to 2011 growing seasons. Simultaneously, momentum, CO₂, latent and sensible fluxes, above-canopy *Tₐ* and *PPFD* were also recorded. The source of isoprene emission has been attributed to *P. abies* using footprint model techniques. More information on the measurements at Vielsalm can be found in Laffineur *et al.* (2011, 2013).

At both sites, gross primary productivity (*GPP*) was deduced by subtracting the total ecosystem respiration (*TER*) from the net ecosystem exchange (*NEE*) as measured by eddy covariance. Nighttime *TER* was estimated from nighttime *NEE* data, when *GPP* is
considered equal to zero (no carbon assimilation at night). Response to changes in soil
temperature of TER during the day was back-calculated following the algorithm of
Reichstein et al. (2005).

5.2.2 Data treatment/analysis

At both measurement sites, I investigated the overall above-canopy responses of GPP
and isoprene fluxes to changes in temperature and PPFD. I selected, for all years of
measurements, data from the period when foliage cover was fully developed but not
senescent (June, July and August), in order to attenuate the bias that seasonal
acclimation of both isoprene emission and photosynthetic capacities can induce. Since
PPFD and \(T_a \) are not fully independent, I studied general responses of GPP and isoprene
emission versus PPFD (or \(T_a \)) in narrow ranges of \(T_a \) (or PPFD). In this way, I expect
the influence of one parameter in the observed response of GPP or isoprene to changes
in the other parameter to be minimized. PPFD-responses were plotted for \(T_a \) increasing
from 15°C to 25°C by increments of 5°C; similarly, \(T_a \)-responses were obtained for
PPFD increasing from 100 to 1700 \(\mu \)mol m\(^{-2}\) s\(^{-1}\) by increments of 100 \(\mu \)mol m\(^{-2}\) s\(^{-1}\).
Figs. 5.1 and 5.2 give an example of the methodology used shown for the UMBS site.
After binning the data in this way, smooth response curves were estimated using
Michaelis-Menten type functions for GPP and isoprene PPFD-curves; and exponentials
for isoprene \(T_a \)-curves. Ratios of isoprene emission on GPP to PPFD were calculated
from those fitted functions.

I also tested the influence of the canopy temperature (\(T_c \)) on the results by processing the
data the same way that described above but using \(T_c \) instead of \(T_a \) (Figs. 5A.1 – 5A.2),
with \(T_c \) estimated as (Hoyaux et al., 2008):

\[
T_c = T_{ak} + \frac{H U}{\rho C_p u_*^2}
\]

(5.1)

where \(T_{ak} \) is the air temperature in K, \(H \) is the above-canopy heat flux in Wm\(^{-2}\), \(u_* \) and \(U \)
are respectively the friction and average wind velocity in m s\(^{-1}\), \(\rho \) is the air density in
kg m\(^{-3}\) and \(C_p \) is the mass air heat capacity in J kg\(^{-1}\) K\(^{-1}\).
5.2.3 **Leaf-level model of photosynthesis**

I used the Farquhar *et al.* (1980) model for carbon assimilation by photosynthesis as modified by Medlyn *et al.* (2002, 2005). Gross carbon assimilation is calculated as the minimum of light-limited or Rubisco-limited assimilation rates. Gross light-limited assimilation (A_j) is computed from electron flux (J) as:

$$A_j = \left(\frac{J}{4} \right) \cdot \frac{C_i - \Gamma^*}{C_i + 2 \Gamma^*} \tag{5.2}$$

where C_i is the CO$_2$ concentration inside the chloroplast and Γ^* is the compensation point in absence of dark respiration. The electron flux is dependent on PPFD and approximated as:

$$J = \frac{(\alpha_{CO_2} PPFD + J_{max}) - \sqrt{(\alpha_{CO_2} PPFD + J_{max})^2 - 4 \alpha_{CO_2} \theta PPFD J_{max}}}{2 \theta} \tag{5.3}$$

where J_{max} is the saturating electron flux, α_{CO_2} is the quantum efficiency for electron transport rate (ETR) in mol electron mol$^{-1}$ photon and θ is a curvature parameter of the light response.

Gross Rubisco-limited assimilation (A_v) rate is calculated as:

$$A_v = V_{cmax} \cdot \frac{(C_i - \Gamma^*)}{(C_i + k_c)} \tag{5.4}$$

where V_{cmax} is the Rubisco capacity and $k_c = k_c(1 + [O_2]/k_o)$ where k_c and k_o are the Michaelis-Menten coefficients of Rubisco for CO$_2$ and O$_2$ respectively. The resulting gross assimilation (A_{gross}) is thus equal to:

$$A_{gross} = \min\left(A_j, A_v\right) \tag{5.5}$$

Γ^*, J_{max}, V_{cmax} and K vary with temperature. The temperature dependencies of these components are detailed in the supplementary material (S2).

5.2.4 **Leaf-level models of isoprene**
Here, I analysed the responses of three leaf-level isoprene emission models and their capacity to catch the general trend of emission responses to changes in PPFD and T_a.

The Guenther et al. (1993) algorithm (G93)

The G93 algorithm estimates isoprene emission (I) from a species-dependent standardised isoprene emission rate (I_s, leaf temperature of 30°C and PPFD of 1000 μmol m$^{-2}$ s$^{-1}$). I_s is modulated by temperature- and PPFD- dependent functions to estimate I at a given temperature and PPFD. Thus, isoprene emission rate is determined as:

$$I = I_s C_L C_T$$ \hspace{1cm} (5.6)

The PPFD- and temperature- dependencies (C_L and C_T) are computed as:

$$C_L = \frac{\alpha C_{L1} PPFD}{\sqrt{1 + \alpha^2 PPFD^2}}$$ \hspace{1cm} (5.7)

and,

$$C_T = \frac{\exp \left(\frac{C_{T1} (T_k - T_{ks})}{RT_k T_{ks}} \right)}{C_{T3} + \exp \left(\frac{C_{T2} (T_k - T_{ks})}{RT_k T_{ks}} \right)}$$ \hspace{1cm} (5.8)

where T_k and T_{ks} are the leaf temperature in Kelvin under ambient and standard conditions, with $T_{ks} = 303.15$ K. α, C_{L1}, C_{T1}, C_{T2} and C_{T3} are empirical components characterising the PPFD- and temperature response shapes. These components were kept constant at $\alpha = 0.0027$, $C_{L1} = 1.066$, $C_{T1} = 95,000$, $C_{T2} = 230,000$ J mol$^{-1}$ and $C_{T3} = 0.961$ (Guenther, 1997).

Since the study of Guenther et al. (1993), this algorithm has been updated many times to take into account effects of seasonality, CO$_2$, past temperature- and past light- regimes, canopy depth on isoprene emissions (Guenther et al., 1995, 2006, 2012; Guenther, 1997). Here, I choose to use the simplest version of the model and thus neglect improvements that these updates can bring to the model.

The Niinemets et al. (1999b) model (N99)
The model proposed by Niinemets and co-workers built on the idea that isoprene emissions are co-limited by available energetic metabolites (NADPH) and isoprene synthase (IspS) activity. Here, a temperature-dependent fraction ε_N of the electron transport rate (J) is used for isoprene production. Isoprene emission rate is computed as:

$$I = \varepsilon_N J \alpha_N,$$

where $
\alpha_N = \frac{(C_i - T^\dagger)}{6 (4.67C_i + 9.33T^\dagger)}$ (5.9)

The fraction of electrons ε_N involved in isoprene synthesis has a temperature dependency taken as a combination of the temperature responses of both isoprene synthase activity and J. Here, I use the temperature function proposed by Arneth et al. (2007b) and based on the work of Niinemets et al. (1999b):

$$\varepsilon_N = \varepsilon_{Ns} \exp(a_T (T - 30))$$ (5.10)

where T is the leaf temperature in °C, ε_{Ns} is the fraction of electron for isoprene at the standard conditions of T at 30°C and PPFD at 1000 μmol m$^-2$ s$^-1$, and a_T is a scaling parameter set to 0.1 °C$^-1$.

The energetic status model (Morfopoulos et al., 2013, 2014)

This model built on N99 keeping the original idea that isoprene emissions are co-limited by DMADP (the immediate precursor of isoprene) and IspS activity. The DMADP pool size is posited to be dependent on NADPH (reducing power) availability. The model differs from N99 by mathematically incorporating the idea of a competition for electrons between primary and secondary metabolites. Accordingly, the proportion of electrons ε involved into the production of isoprene depends on the energetic balance between the energy produced through light reactions (supply) and the demand for energy of the Calvin and photorespiratory cycles (demand). Therefore, an energetic-status dependent fraction (ε) of J is diverted into DMADP production. An additional function takes into account the temperature dependency of IspS and consequently the transformation of the DMADP pool into isoprene. Overall the model expresses isoprene emission as:

$$I = \varepsilon J f(T), \text{ where } \varepsilon = c_1 + c_2 (J - J_\varepsilon)$$ (5.11)
and c_1 and c_2 are constants, J and J_v are respectively the light- and Rubisco- electron transport rate. $f(T)$ is a function taking into account the normalised temperature response of IspS activity:

$$f(T) = \frac{S_S}{S_{ss}}$$

(5.12)

where S_S describes IspS activity using values reported in Niinemets et al. (1999b) (Table 2.1 in Chapter II). S_{ss} is the IspS activity for a given standard T (here taken at 25°C). The standard temperature is set to be the one for which parameters c_1 and c_2 were estimated. J_v is computed from the Farquhar model as:

$$J_v = 4V_{cmax} \cdot \frac{(C_i + \Gamma^*)}{(C_i + k_c')})$$

(5.13)

5.2.5 Scaling up from leaf to canopy

I use a multi-layer modelling approach and assume that light penetrates into the canopy in the standard way, following the Beer-Lambert law:

$$PPFD_z = PPFD_0 \exp(-k L_z)$$

(5.14)

where L_z is the leaf area index above canopy level z, $PPFD_0$ is the $PPFD$ at the top of the canopy and k is an extinction coefficient set to 0.5, based on the assumption of a spherical leaf angle distribution.

Similar to light, the extinction of the maximum Rubisco capacity is assumed to follow a Beer-Lambert extinction law through the canopy:

$$V_{cmax,z} = V_{cmax,0} \exp(-k_v L_z)$$

(5.15)

where $V_{cmax,0}$ is the maximum Rubisco capacity at the top of the canopy and k_v represents the extinction of V_{cmax} through the canopy. The extinction of V_{cmax} through the canopy is usually found to be less that the one of the light and k_v was set equal to 0.15 (Lloyd et al., 2010).
The relationship between J_{max} and V_{cmax} at 25°C is usually found to be nearly constant across diverse species in the same environment. I assumed a constant ratio $J_{\text{max}}/V_{\text{cmax}}$ of 1.67 at 25°C throughout the canopy (Medlyn et al., 2002). However, the ratio $J_{\text{max}}/V_{\text{cmax}}$ is not constant for temperatures other than 25°C. Changes in the ratio with temperature were ruled by temperature dependencies of both J_{max} and V_{cmax} (note S2). In the interest of simplicity, and in the absence of direct observations, the following assumptions were made: the internal CO$_2$ concentration (C_i) was kept constant through the canopy and set at 266 µmol mol$^{-1}$; leaf temperature was assumed to be equal to air temperature (T_a) and kept constant through the canopy; and, with the exception of J_{max} and V_{cmax}, all model parameters were kept constant through the canopy. The leaf area index (LAI) at the bottom of the canopy was set to 3 at UMBS and 5 at Vielsalm. Integration through the canopy was performed in LAI increments of 0.1 m2 m$^{-2}$. Parameters of the photosynthetic and isoprene emission models were estimated by minimizing the residual sum of squares (RSS) between the models and the Michaelis-Menten type estimates of the observed PPFD-curves with T_a ranging from 24.5-25°C. These parameters are reported in Table 5.1. Results showing GPP or I modelled at different canopy depth (i.e. PPFD-curves reported in the canopy profile section) were obtained by forcing the PPFD and T_a conditions while keeping the Farquhar parameters constant at the canopy depth considered.

5.2.6 Model evaluation statistics

Explained variance of the linear regression between measured and predicted variables (r^2) is not enough to assess the performance of a model (Niinemets et al., 2013). Indeed, if (r^2) evaluates how well predictions and data vary together, it could mask a systematic bias. To reinforce model evaluation, I choose to use two additional statistical tools, which taken together cover model evaluation from different perspectives. Here, I describe briefly these statistics.

The first additional statistic I used is the Nash-Sutcliffe modelling efficiency (Nash & Sutcliffe, 1970) (N_E):
where \(y_i \) is the \(i \)th-observation, \(P_i \) is the \(i \)th-prediction and \(\bar{y} \) is the mean of observations. A perfect model would have a \(N_E \) of one; a value of zero indicates that the model predictions are as good as \(\bar{y} \); negative values indicates that \(\bar{y} \) is a better predictor than the proposed model. As pointed out by Niinemets et al. (2013), \(N_E \) suffers from being strongly influenced by model behaviour at high values of \(y_i \).

Other model evaluation statistic is the mean absolute error:

\[
\sigma_A = \frac{1}{n} \sum_{i=1}^{n} |y_i - P_i|, \tag{5.17}
\]

\(\sigma_A \) measures the average magnitude of the errors in a set of predictions, without considering their direction and thus provides information on the deviance of the predicted values compared to the observations. All statistics were performed using the software R version 2.15.0.

5.3 Results

5.3.1 General PPFD- and temperature responses

I analysed PPFD- and \(T_a \)-curves of GPP and isoprene emission at the UMBS and Vielsalm sites (Figs. 5.1- 5.4). The UMBS site experiences larger GPP and isoprene emission compared to the Vielsalm site presumably due to lower latitude (and associated higher PPFD) and differences in species. Median GPP was equal to 21.6 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) at the UMBS site in comparison with 16 \(\mu \text{mol m}^{-2} \text{s}^{-1} \) at the Vielsalm site. Similarly, isoprene emission median values were higher at UMBS (6.9 nmol m\(^{-2}\) s\(^{-1}\)) than at the Vielsalm site (0.8 nmol m\(^{-2}\) s\(^{-1}\)).

PPFD-curves across \(T_a \)

At both sites, GPP and isoprene emission PPFD-curves were fitted using Michaelis-Menten type fits. Statistics related to these fits are displayed in Table 5.2. These fits
explain 51% and 47% of the variance in GPP and isoprene emission, at the UMBS site; and 77% and 71% at the Vielsalm site.

Estimated PPFD-curves of both GPP and I are presented in Figs. 5.3A,B for UMBS and Figs. 5.4A,B for Vielsalm. At both sites, isoprene PPFD-curves show an almost linear response and a strong influence of T_a. Maxima of isoprene emissions show a clear increase with T_a, and, I increases by 37% at UMBS and 43% at Vielsalm when T_a increases from 15 to 24°C at a PPFD of 1000 µmol m$^{-2}$ s$^{-1}$. In comparison, T_a has a lesser influence on the GPP responses to PPFD. At UMBS, at a PPFD of 1000 µmol m$^{-2}$ s$^{-1}$, the maximum increase in GPP is 11% for T_a increasing from 16°C to 21°C; at Vielsalm, the maximum increase in GPP is 13% for T_a decreasing from 24 to 15°C. This latter observation is notable as for the temperature range considered here, observed instantaneous responses of assimilation increase with increasing temperature (Medlyn et al., 2002).

The observed decrease in GPP with increasing temperature for a given PPFD at Vielsalm (Fig. 5.4A) could be partly explained by a reduction in the ratio of internal on ambient CO$_2$ concentration (C_i/C_a) driven by higher vapour water deficit at higher temperature that are likely to occur in summer under a European continental climate.

Table 5.1: Parameters of the models at UMBS and Vielsalm; G93, the Guenther et al. (1993)’s algorithm; N99, the Niinemets et al (1999b)’s model; Energetic status model, this study.

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter</th>
<th>Units</th>
<th>UMBS</th>
<th>Vielsalm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farquhar</td>
<td>σ_{co2}</td>
<td>mol electron mol$^{-1}$ photon</td>
<td>0.23</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>θ</td>
<td>-</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>V_{max}</td>
<td>µmol m$^{-2}$ s$^{-1}$</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>G93</td>
<td>I_s</td>
<td>nmol m$^{-2}$ s$^{-1}$</td>
<td>13.81</td>
<td>3.4</td>
</tr>
<tr>
<td>N99</td>
<td>c</td>
<td>-</td>
<td>12.12×10^{-3}</td>
<td>6.13×10^{-3}</td>
</tr>
<tr>
<td>Energetic status</td>
<td>c_1</td>
<td>µmol isoprene µmol$^{-2}$ electron</td>
<td>1.3×10^{-4}</td>
<td>6.10×10^{-4}</td>
</tr>
<tr>
<td>model</td>
<td>c_2</td>
<td>µmol isoprene m2 s µmol$^{-2}$ electron</td>
<td>6.9×10^{-7}</td>
<td>1.4×10^{-8}</td>
</tr>
</tbody>
</table>
Figure 5.1: GPP (top panels, green symbols), isoprene emission rate (middle panels, red symbols) and ratio of isoprene to GPP (bottom panels) versus PPFD observed at the UBMS site. Data are shown for four air temperature 0.5 °C bins spanning the 15°C to 25°C full range analysed here. The relationships of GPP and isoprene emission rate to changes in PPFD were estimated by Michaelis-Menten type functions (dashed lines) fitted to the data. Ratios of isoprene to GPP displayed in the bottom panel result from these fits.

Figure 5.2: GPP (top panels, green symbols), isoprene emission rate (bottom panels, red symbols) versus air temperature at the UMBS site. Data are shown for four PPFD 100 µmol m⁻² s⁻¹ bins spanning the 100 µmol m⁻² s⁻¹ to 1700 µmol m⁻² s⁻¹ full range analysed here. The relationships of GPP and isoprene emission rate to changes in air temperature were estimated with exponential functions (dashed lines) fitted to the data.
Figure 5.3: Responses of (A) GPP and (B) isoprene emission rate to changes in PPFD at air temperature ranging from 15 to 25 °C, and (C) responses of isoprene emission rates to changes in air temperature, at PPFD ranging from 100 to 1600 μmol m⁻² s⁻¹ at the UMBS site. PPFD response curves were fitted to the data using a Michaelis-Menten type functions. Air temperature response curves were fitted to the data using exponential functions.

Figure 5.4: Responses of (A) GPP and (B) isoprene emission rate to changes in PPFD at air temperature ranging from 15 to 25 °C, and (C) responses of isoprene emission rates to changes in air temperature, at PPFD ranging from 100 to 1600 μmol m⁻² s⁻¹ at the Vielsalm site. PPFD response curves were fitted to the data using a Michaelis-Menten type functions. Air temperature response curves were fitted to the data using exponential functions.
The ratio of assimilated carbon lost in the form of isoprene ranges from 0.05% to 0.35% at UMBS and from 0.02% to 0.18% at Vielsalm. Ratios of isoprene emission to GPP tend to increase with increasing PPFD at both sites. However, if instead of T_a data are sorted by narrow ranges of canopy temperature (T_c) estimated from sensible heat fluxes, the systematic increase of the ratio I/GPP with increasing PPFD is markedly attenuated (data not shown).
Temperature-curves across PPFD

Figure 5.2 shows examples of T_a-curves of GPP and I at the site of UMBS. At both sites (UMBS and Vielsalm), GPP and I respond in a quite different manner to changes in T_a. GPP shows almost no response to T_a, as confirmed by high p-values calculated for GPP versus T_a (not shown). On the other hand, isoprene emission responds extremely strongly to changes in T_a. The response of both GPP and I to changes in temperature remains whether canopy or air temperature is used (data not shown).

Responses of isoprene emission to changes in T_a were approximated for both sites using exponential fits. Statistics for these fits are shown in Table 5.3. Exponential fits explain about 52% of observed variance in isoprene emission at UMBS and 68% at Vielsalm. Figures 5.3C and 5.4C show exponential fits to isoprene emission T_a-curves under different PPFD regimes. At a T_a of 25°C, I increases by 75% at UMBS and 138% at Vielsalm when PPFD increases from 100-to 1600 µmol m$^{-2}$ s$^{-1}$.

5.3.2 Model evaluation

Parameters of the Farquhar and isoprene emission models, estimated from the PPFD-curves of GPP and isoprene emission at a T_a ranging from 24.5 to 25°C, are reported in Table 5.1. For both sites, carbon assimilation was always found to be light-limited, whatever the canopy position. Also, for both sites, estimated quantum efficiencies for electron transport (α_{CO_2}) and the curvature parameter (θ) of the Farquhar model are rather small. At UMBS, the Farquhar model captures extremely well the estimates of PPFD responses of GPP, explaining almost 100% of the variance and showing a mean model efficiency of 0.97 and a mean absolute error of 1.3 µmol m$^{-2}$ s$^{-1}$ across all temperatures (Table 5.4, Figs. 5.5-5.6). As in the observations, the Farquhar model also shows a limited response to changes in T_a (Fig. 5.6). The picture is somewhat different at Vielsalm, where although the Farquhar model has a good (r^2) of 0.99 across all temperature and thus captures the observed pattern of variation in GPP versus PPFD, it fails to capture the observed increase in GPP with decreasing temperature as revealed by the poor modelling efficiency score of 0.2 and a mean absolute error of 5.38 µmol m$^{-2}$ s$^{-1}$ (Table 5.4). Here again, the Farquhar model upscaled to the canopy simulates almost no response of GPP to changes in T_a (data not shown).
Canopy-scale simulations, completed with the three isoprene models used in this study (G93, N99 and the energetic status model), are presented in Figs 5.5-5.6 (for UMBS) with associated model evaluation statistics summarised in Figs. 5.7-5.8. All models capture very well the isoprene emissions PPFD- and T_a-responses and explain on average more than 90% of the variance (r^2) in the (smoothed) data (not shown). For the emissions PPFD- responses, model efficiencies are good for all the isoprene models, with averaged values for respectively G93, N99 and the energetic status model of 0.84, 0.76, 0.92 at UMBS and 0.9, 0.65, 0.91 at Vielsalm. The energetic status model shows a slight improvement when compared to the N99 from which it originates, especially for PPFD- responses at low temperatures. Mean absolute errors of simulated PPFD- responses are low whatever the isoprene model, and do not exceed 3.1 nmol m^{-2} s^{-1} at UMBS and 1.1 nmol m^{-2} s^{-1} at Vielsalm.

The picture is different for isoprene emission T_a- responses. Model efficiencies are less good compared to the PPFD- responses and span over a large range of −21 to 0.97 across models and sites. For all isoprene models, mean absolute errors of simulated T_a- responses are larger when compared to PPFD- responses with averaged values across the range of PPFD of 5.62, 7.86, 5.54 nmol m^{-2} s^{-1} at UMBS and 2.98, 3.62, 2.52 nmol m^{-2} s^{-1} at Vielsalm for G93, N99 and the energetic status model respectively. Interpretation of these mean absolute errors would need further investigation, particularly the impact of large value of exponential fits at high temperature should be analysed. Nonetheless, the energetic model outperforms the original N99 model.

The behaviour of the PPFD-response of the ratio of isoprene emission to GPP is divergent among models (shown for UMBS in Fig. 5.5). For N99, this ratio is always constant across the whole range temperature, indicating that modelled carbon assimilation is always under light-limited regime; using G93, I found a systematic increase of I/GPP with PPFD at Vielsalm and a behaviour depending on T_a at UMBS with a decrease in I/GPP with increasing PPFD observed at higher temperatures; at both sites, the energetic status model consistently shows an increase in the ratio I/GPP with PPFD, as observed.
Table 5.4: Evaluation statistics of modelled GPP PPFD-curves against observations smoothed using Michaelis-Menten type functions fitted to data at the UMBS and Vielsalm sites.

<table>
<thead>
<tr>
<th>Farquhar model</th>
<th>15.5</th>
<th>16.5</th>
<th>17.5</th>
<th>18.5</th>
<th>19.5</th>
<th>20</th>
<th>21</th>
<th>21.5</th>
<th>22</th>
<th>22.5</th>
<th>23</th>
<th>23.5</th>
<th>24</th>
<th>24.5</th>
<th>25</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMS</td>
<td></td>
</tr>
<tr>
<td>Explained variance (r²)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>Modelling efficiency (Vₑ)</td>
<td>0.95</td>
<td>0.99</td>
<td>1.00</td>
<td>0.95</td>
<td>0.97</td>
<td>0.93</td>
<td>0.96</td>
<td>0.95</td>
<td>0.96</td>
<td>0.95</td>
<td>0.96</td>
<td>0.95</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Mean absolute error (mₑ)</td>
<td>1.01</td>
<td>0.99</td>
<td>0.95</td>
<td>1.03</td>
<td>1.40</td>
<td>2.19</td>
<td>1.96</td>
<td>1.76</td>
<td>2.00</td>
<td>1.52</td>
<td>1.87</td>
<td>2.21</td>
<td>1.71</td>
<td>1.10</td>
<td>0.87</td>
<td>0.94</td>
</tr>
<tr>
<td>Vielsalm</td>
<td></td>
</tr>
<tr>
<td>Explained variance (r²)</td>
<td>0.97</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>Modelling efficiency (Vₑ)</td>
<td>-0.38</td>
<td>-0.38</td>
<td>-0.19</td>
<td>-0.07</td>
<td>-0.31</td>
<td>-0.07</td>
<td>-0.23</td>
<td>-0.06</td>
<td>0.02</td>
<td>0.08</td>
<td>0.26</td>
<td>0.40</td>
<td>0.39</td>
<td>0.59</td>
<td>0.85</td>
<td>0.76</td>
</tr>
<tr>
<td>Mean absolute error (mₑ)</td>
<td>0.95</td>
<td>0.40</td>
<td>0.55</td>
<td>0.70</td>
<td>0.66</td>
<td>0.80</td>
<td>0.81</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Figure 5.5 Modelled responses of GPP (top panels), isoprene emission rate (middle panels) and ratio of isoprene to GPP (bottom panels) to changes in PPFD at the UBMS site. Data are shown for four air temperature 0.5 °C bins spanning the 15°C to 25°C full range analysed here. Dashed black lines represent the fits to observations using Michaelis- Menten type functions; green solid lines represent the Farquhar model (top panels); blue, orange and red solid lines, in the middle and bottom panels, represent simulations made using respectively G93, N99, and the energetic status model. GPP modelled with the Farquhar model were used for the simulations of the isoprene on GPP ratio (bottom panels). Parameters of the models were estimated by minimising RSS on the estimates of GPP and isoprene rate at the temperature range of 24.5-25°C (red box).
Figure 5.6: Modelled responses of GPP (top panels), isoprene emission rate (bottom panels) to changes in air temperature at the UMBS site. Data are shown for four PPFD 100 μmol m$^{-2}$ s$^{-1}$ bins spanning the 100 μmol m$^{-2}$ s$^{-1}$ to 1700 μmol m$^{-2}$ s$^{-1}$ full range analysed here. In the top panels, green dots represent the observed GPP and the green solid lines represent simulations using the Farquhar model. In the bottom panels dashed lines represent fits to observations using exponential functions; blue, orange and red solid lines represent isoprene emission simulated with respectively G93, N99, and the energetic status model.
Figure 5.7: Evaluation statistics of modelled PPFD-curves against observations smoothed using Michaelis-Menten type functions fitted to data. Difference in model efficiency (N_E, top panels) and mean absolute error (σ_A in nmol m$^{-2}$ s$^{-1}$, bottom panels) between isoprene models are shown at air temperature ranging from 15 to 25 °C for the UMBS site (left panels) and the Vielsalm site (right panels). For each circle, starting from top right and clockwise, sectors correspond to N99, G93, and the energetic status model (ESM). Actual values of N_E and σ_A are given in each sector. For both panels red/white colours mean poor/good model behaviour.
Figure 5.8: Evaluation statistics of modelled T_c-curves against observations smoothed using exponentials fitted to data. Difference in model efficiency (N_A, top panels) and mean absolute error (σ_A in nmol m$^{-2}$ s$^{-1}$, bottom panels) between isoprene models are shown at PPFD ranging from 100 to 1600 µmol m$^{-2}$ s$^{-1}$ for the UMBS site (left panels) and the Vielsalm site (right panels). Starting from top right and clockwise, sectors correspond to N99, G93, and the energetic status model (ESM). Actual values of N_A and σ_A are given in each sector. For both panels red/white colours mean poor/good model behaviour.
Canopy profiles

Figures 5.9 and 5.10 show the within-canopy extinction of modelled gross carbon assimilation, light-limited minus Rubisco-limited electron fluxes \([J − J_v]\), and isoprene emission (computed from the energetic status model), at a \(T_a\) of 25°C and a PPFD of 1000 \(\mu\text{mol m}^{-2} \text{s}^{-1}\) applied at the top of the canopy. Due to light extinction through the canopy, assimilation, \([J − J_v]\) and \(I\) diminish from the top to the bottom of the canopy by (respectively) 61%, 25% and 64% at UMBS, and 74%, 200% and 79% at Vielsalm. At both sites, driven by the extinction of photosynthetic parameters through the canopy, ‘standard’ isoprene emission, computed from the energetic status model for \(T_a\) and PPFD standardized at 25°C and a of 1000 \(\mu\text{mol m}^{-2} \text{s}^{-1}\), decreases with canopy depth by 21% at UMBS and 47% at Vielsalm (Figs 5.9D and 5.10D).

Modelled carbon assimilation and isoprene emission PPFD-curves at the top, middle and bottom of the canopy are shown in Figs. 5.11 and 5.12. Both simulated assimilation and isoprene emission maxima decrease with canopy depth at both sites. Isoprene rate and carbon assimilation at UMBS show no clear saturation at higher PPFD whatever the position in the canopy. Carbon assimilation at Vielsalm is found to saturate at high PPFD suggesting that Rubisco-limited conditions are reached, with a PPFD transition threshold from light- to Rubisco- saturation decreasing with canopy depth.
Figure 5.9: Canopy profiles of (A) carbon assimilation rate, (B) isoprene emission rate, (C) energetic status of the leaf approximated by \([J - J_v]\) and (D) isoprene emission rate \((E_s)\) under standard conditions of temperature and PPFD at the UMBS site. Simulations of assimilation and isoprene emission rate were done using the Farquhar model and the energetic status model respectively. Simulations in panels (A), (B) and (C) were performed for air temperature at 25 °C and PPFD at 1000 \(\mu\text{mol m}^{-2}\text{s}^{-1}\) at the top of the canopy. The simulation in panel (D) was performed under standard conditions of an air temperature at 25 °C and PPFD at 1000 \(\mu\text{mol m}^{-2}\text{s}^{-1}\) kept constant across the canopy.
Figure 5.10: Canopy profiles of (A) carbon assimilation rate, (B) isoprene emission rate, (C) energetic status of the leaf approximated by \([J - J_v]\) and (D) isoprene emission rate \((E_s)\) under standard conditions of temperature and PPFD at the Vielsalm site. Simulation of assimilation and isoprene emission rate were done using the Farquhar model and the energetic status model respectively. Simulations in panels (A), (B) and (C) were performed for air temperature at 25 °C and PPFD at 1000 \(\mu\)mol m\(^{-2}\) s\(^{-1}\) at the top of the canopy. The simulation in panel (D) was performed under standard conditions of an air temperature at 25 °C and PPFD at 1000 \(\mu\)mol m\(^{-2}\) s\(^{-1}\) kept constant across the canopy.

Figure 5.11: Modelled responses of (A) assimilation rate, (B) isoprene emission rate and (C) normalised isoprene emission rate to changes in PPFD at the top, middle and bottom of the canopy at air temperature 25 °C at the UMBS site. Assimilation and isoprene emission rates are modelled with the Farquhar model and the energetic status model respectively.
Figure 5.1: Modelled responses of (A) assimilation rate, (B) isoprene emission rate and (C) normalised isoprene emission rate to changes in PPFD at the top, middle and bottom of the canopy at air temperature of 25 °C at the Vielsalm site. Assimilation and isoprene emission rates are modelled with the Farquhar model and the energetic status model respectively.

5.4 Discussion

The simple multi-layer approach adopted here neglects many factors potentially influencing GPP and isoprene emission. Among these are the effects of sun position (diffuse versus direct radiation and variations in the extinction coefficient for PPFD), canopy structure, leaf orientation, true leaf temperature, interannual and seasonal variation of both photosynthetic and isoprene capacities, within-canopy gradient in isoprene emission capacity, and within-canopy chemistry. Any of these factors could influence above-canopy GPP and/or isoprene fluxes (Harley et al., 1996; Sharkey et al., 1996; De Pury & Farquhar, 1997; Huber et al., 1999; Mayrhofer et al., 2005; Grote, 2007; Niinemets et al., 2010b; Keenan et al., 2011; Bryan et al., 2012; Laffineur et al., 2013). Moreover, although the entire vegetation of the studied ecosystem influences GPP (all species participate in the CO₂ fluxes), only a few species contribute to the observed isoprene fluxes. Nonetheless, we can derive key conclusions from a simple approach, with has the benefits of transparency and tractability.

The first observation is that all the three isoprene models tested here are very similar in term of model efficiencies, as revealed by the model evaluation statistics (Figs 5.7-5.8). Niinemets et al. (2013) made the same observation for monoterpene predictions using a different ‘canopy scaling’ approach and comparing the simulations with flux measurement of Quercus ilex L. Although using a different approach, different measurements and to a certain extent different photosynthetic and isoprene emission
models, my approach thus yields the same conclusion reached by Niinemets and co-authors about the ‘striking’ similarity in the models’ performances. In particular it appears that the three isoprene models (G93, N99 and the energetic status model) have very similar temperature and PPFD responses. The models overall capture about 50% of the signal in isoprene emissions.

If different models are found to perform equally well (in this study and in Niinemets et al., 2013), the question can be raised as to how (and why) these models may diverge in future climate projections. To my knowledge only one study (Keenan et al., 2009) reported future projections using different isoprene models at a regional scale. Keenan and co-authors showed that despite similar results for the present climate, isoprene emissions diverge strongly for predicted future climates due to the slight differences in the parameterisation of the emission responses to changes in temperature, PPFD and CO₂ concentrations.

The second observation concerns the GPP inferred from CO₂ flux measurement. The relative lack of responsiveness of above-canopy GPP to changes in temperature ranging from 10 to 30°C is notable. As the assimilation was always under light limited conditions in my simulations, this lack of responsiveness seems to indicate stability with temperature in the functioning of the electron transport rate. This result also suggests that the temperature response of isoprene emission, at least between 10°C and 30°C, is primarily controlled by IspS and not by the electron transport rate. All models capture this response well.

The fact that assimilation was found to be always light-limited tends, within the limitation of my approach, to support the hypothesis that Rubisco capacity acclimates seasonally to light intensity. The capacity of the plant to regulate its capacity to assimilate CO₂ according the light intensity it receives is still debated. This theory is important for dynamic global vegetation models (DGVM). The BIOME3 biogeography model and the Lund-Postdam-Jena dynamic global vegetation model (Haxeltine & Prentice, 1996; Sitch et al., 2003) assume acclimation of Rubisco capacity to light intensity; others don’t. Solving the question of acclimation or not is crucial for accurate future predictions of carbon uptake by terrestrial vegetation.
Finally, at canopy scale the site with higher isoprene emissions rate (UMBS) was also the one with the larger GPP and V_{cmax}. Due these differences in V_{cmax}, modelled across-canopy assimilation $PPFD$-curves at UMBS do not saturate at any $PPFD$ (Fig. 5.11A) while assimilation $PPFD$-curves at Vielsalm show saturation with increasing $PPFD$, indicating that Rubisco-limited conditions have been reached (Fig. 5.12A). This result along, with the measurements on *Populus nigra* at CREAF reported in chapter IV where Rubisco limited-condition were extremely hard to reach, seems to indicate that high isoprene emitters species might have developed an especially high capacity for electron transport.

Without any need to postulate within-canopy acclimation in the IspS capacity (i.e. parameter c_1 of the model, Eq. 5.11), the model manages to simulate a decrease in isoprene standard emission factor (here standardized at a T_a of 25˚C) with canopy depth of the type usually observed (Sharkey et al., 1996; Niinemets et al., 2010a). $PPFD$-curves at different canopy positions computed from the energetic status model are also promising, and resemble the first adjustment made by Guenther and co-authors when attempting to account for the within-canopy behaviour of emissions (Guenther et al., 1999; Monson et al., 2012).

This work presents the first attempt to upscale the energetic status model of Morfopoulos et al. (2013, 2014) from leaf to canopy. The model manages to predict changes in isoprene emission to changes in $PPFD$ and T_a with a very good agreement when compared to general $PPFD$- and T_a isoprene curves inferred from observations. The ability of the model to reproduce the general responses of isoprene to T_a indicates that the newly introduced temperature function accounting for IspS activity (and tested against data for the first time here) is appropriate. The results show a slight improvement on the Niinemets et al. (1999b) model (N99); the new model succeeds in capturing the higher carbon investment in isoprene production at higher $PPFD$, while N99 doesn’t. This signifies that improvements at the leaf level made by the new model on isoprene emission’s responses to changes in $PPFD$ and temperature (Chapter III, Chapter IV) still stand at the canopy scale.

Another difference between N99 and my model comes from the capacity of the latter to predict changes in isoprene emission with changes in C_i. It is possible that a more elaborate canopy model, taking into account water exchanges with the atmosphere,
would be able to perform even better through consideration of C_i variations through the canopy and through the seasons.
Figure 5A.1.1: Canopy temperature versus air temperature for the UMBS site.

\[T_c = -0.07 + 1.03 T_a \]
Figure 5A.1.2: Canopy temperature versus air temperature for the Vielsalm site

\[T_c = -0.4 + 1.06 T_a \]
6 Conclusions

Quantitatively, isoprene is the most important BVOC released by terrestrial vegetation into the atmosphere (Laothawornkitkul et al., 2009; Guenther et al., 2012). Isoprene degradation to its oxidation products happens fast in the troposphere (Atkinson, 2000). This high chemical reactivity, combined with the large amount emitted, raises questions about potential impacts on atmospheric chemistry and physics that can result from isoprene emissions by plants, whether at the local, regional or global scale. At the local scale, the influence of isoprene on tropospheric ozone concentration is important both for human health and for the growth of plants, especially food crops. At larger scales, isoprene not only affects ozone production (or depletion, depending on the atmospheric background), but also the total oxidation capacity of the atmosphere. Isoprene thereby influences the abundances of other trace gases including methane, slowing down their degradation and increasing their lifetimes and concentrations. Isoprene thus indirectly affects the radiative forcing of the Earth’s climate through its effect on the concentration of methane, a powerful greenhouse gas. Finally, products of isoprene oxidation can lead to the production of secondary organic aerosols (SOA) that act as cloud condensation nuclei (CNN), affecting the sky albedo and the fraction of diffuse radiation as well as the hydrological cycle (Arneth et al., 2010; Peñuelas & Llusia, 2003).

Isoprene emission is primarily controlled by vegetation type, photosynthetic photon flux density (PPFD), leaf temperature (T) and CO₂ concentration. A warming climate and further changes in land use will affect the balance among different drivers of isoprene emission in ways that are non-trivial to predict. Robust, quantitative, process-based modelling is necessary, in order to investigate how isoprene emission may be expected to change and what the consequences might be for air quality and climate. It is therefore important to understanding the physiological processes that control isoprene emission by plants, and their response to changes in environmental drivers.

Isoprene is formed in chloroplasts though the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, which combine glyceraldehyde 3-P (G3P) and pyruvate into the isoprene precursor dimethylallyl diphosphate (DMADP) (Lichtenthaler, 1999; Vickers et al., 2009a). In the presence of the enzyme isoprene synthase (IspS), DMADP is transformed into isoprene, which promptly escapes from the leaf due to its high volatility. Thus isoprene synthesis is jointly driven by DMADP production and IspS
activity. The MEP pathway is also important for the formation of ‘essential’ isoprenoids such as carotenoids and tocopherol, which play photoprotective and antioxidant roles for the photosynthetic apparatus (Owen & Peñuelas, 2005).

Similarities in the responses of isoprene emission and CO₂ assimilation to PPFD, and in \(^{13}\)C labelling experiments, show that isoprene emission and CO₂ assimilation are mechanistically linked (Delwiche & Sharkey, 1993; Loreto et al., 2004). However, whereas the benefit of carbon assimilation is clear (the transformation of inorganic carbon to organic compounds used for plant growth and function), the adaptive significance of isoprene production is much less clear. It is now established nonetheless that isoprene protects the photosynthetic apparatus both from transient heat stress and from damage due to ROS, whether generated internally or externally to the leaf (Sharkey & Singsaas, 1995; Singsaas et al., 1997; Fares et al., 2006; Siwko et al., 2007; Velikova et al., 2005, 2011). Similarly Rubisco, an essential enzyme for carbon assimilation, is present in all leaves but this is not the case for IspS; only some species of plants have the capacity to produce isoprene, indicating that it is not essential to plant function in general. The challenge is to find an effective way of modelling the complex and incompletely understood metabolic pathway that leads to isoprene synthesis in the absence of a comprehensive explanation for its utility to plants, and with incomplete information about the distribution of isoprene emission ability at a global scale. At a minimum we need to define which are the key controllers of isoprene production, how isoprene responds to these key factors, and which ones really matter at larger spatio-temporal scales.

So far only one ‘process-based’ model has been used in global-scale studies investigating the impact of isoprene emission on the Earth system: the physiological model of isoprene emission developed by Niinemets and co-workers in 1999 (Niinemets et al., 1999b). This model considers that production of isoprene is driven jointly by electron availability and IspS activity. I started my thesis work by analysing this model. My analysis revealed some inconsistencies between the authors’ hypotheses concerning the controls of isoprene production, and the mathematical formulation of the model. In particular, Niinemets et al. (1999b) linked isoprene synthesis strongly to light limited carbon assimilation rather than to the part electron transport rate (ETR) engaged in the MEP pathway.
In order to improve the Niinemets model, I asked how the specific part of the total ETR generated by Photosystem II (PSII) that is available to the MEP pathway could be represented in a model. This portion of the ETR is not very well known, mostly because of the difficulties in measuring it. I made the pragmatic assumption, based on available knowledge of the processes involved, that the magnitude of this electron flux should depend on the energetic status of the leaf, balancing the requirement of electrons for carbon assimilation against the maximum ETR as predicted by the Farquhar model. Approximating the energetic status of the leaf by the difference between light- (supply) and Rubisco (demand) electron fluxes, I developed a new, conceptually simple model and tested its predictions against published observations of isoprene emission variations in response to PPFD, temperature and leaf-internal CO₂ concentration (Cᵢ). This first test was extremely promising, and indicated that my hypothesis has the major advantage of providing a unifying explanation for isoprene responses to all three environmental drivers. Moreover, it can explain the observed (and otherwise mysterious) lack of correlation between carbon assimilation and isoprene production responses to changes in Cᵢ (Morfopoulos et al., 2013).

In order to test the hypothesis further, I conducted leaf-scale experiments on *Populus nigra* L. during a secondment at Centre for Ecological Research and Forestry Applications (CREAF), Spain. The experimental protocol was designed to show how variations in the balance between electron supply and demand for carbon assimilation, driven by changes in the PPFD and CO₂ conditions of the experiment, combine to influence isoprene emission. Using the data that I collected at CREAF, and additional data on hybrid poplar from the study of Sun et al. (2012) (which followed a similar protocol), I tested my model and compared the results with those obtained using two pre-existing models: the empirical Guenther et al. (1993) algorithm, and the Niinemets model. Overall, my model reproduces the observations best of the three, without the need for any additional empirical functions. In particular, my model captures extremely well the response of isoprene to changes in Cᵢ and gives an explanation for (otherwise unexplained) changes in the quantum efficiency of isoprene production at different concentrations of CO₂ (Morfopoulos et al., 2014).

Finally, I tested my new model, along with the models of Guenther et al. (1993) and Niinemets et al. (1999b), at the canopy scale. I used a simple multi-layer approach and
compared the simulations against general PPFD- and air temperature isoprene-emission response curves, obtained using long-term measurements of both isoprene and CO₂ fluxes above canopy level in two mixed temperate forests. Differences between observed gross primary production (GPP) and isoprene emission highlighted the importance of temperature as a driver of isoprene emission. All models gave comparable results at this scale. Nevertheless, my model yielded better results than the Niinemets model from which it was developed.

To summarise, in comparison to the Niinemets et al. (1999b) model, my model improves:

1. The response of isoprene emission to C_i
2. The response of isoprene emission to PPFD
3. The response of isoprene emission to T
4. The quantum efficiency of isoprene emission at different CO₂ concentrations.
5. The mismatch between carbon assimilation and isoprene emission in response to changes in PPFD, T and C_i.

An important future direction of research will be to try to upscale this new model to the global scale, in order to estimate changes in large-scale emissions induced by future climate changes, and how these changes in isoprene emission feed back on the climate system. This would be a non-trivial task and poses many challenges. First among these challenges is: what parameter values to apply to plant functional types (PFTs), which are the entities through which vegetation is represented in global vegetation models? Large datasets of the isoprene emission factor (I_s), (the isoprene emission rate measured at a leaf temperature of 30°C and PPFD of 1000 µmol m$^{-2}$ s$^{-1}$) are available, but the link between isoprene emission and photosynthetic parameters ($J_{\text{max}}, V_{\text{cmax}}$) is not represented in the current datasets.

My model accounts for instantaneous responses of isoprene emission to changes in its main drivers (PPFD, T, C_i), but acclimation processes in the plant capacity to emit isoprene may exist and are not described yet. We know that plants’ capacity for emitting isoprene varies through ontogeny, and with prior conditions of temperature and PPFD, drought events, and CO₂ growth conditions. Understanding how and why the leaf acclimates its isoprene emission capacity (as also its photosynthetic capacity) to external
conditions is crucial to improve process-based modelling of isoprene emission. One particularly important task is to better understand (and include in models) the response of isoprene emission capacity to the CO₂ concentration at which the plants were grown. This point is essential. It is generally recognized now that increased atmospheric CO₂ concentration inhibits the capacity of the plant to emit isoprene. At the global scale, CO₂ inhibition seems (according to modelling studies performed so far) to effectively cancel the otherwise expected increase of emissions due to warming (Possell et al., 2005; Young et al., 2009; Heald et al., 2009; Pacifico et al., 2012). CO₂ inhibition is usually represented by downscaling \(I_s \). But some recent studies, conducted by Z. Sun, Ü. Niinemets and co-workers, have shown that the long-term CO₂ inhibition effect also depends on the conditions of PPFD, temperature or \(C_i \) at which isoprene emission is measured (Sun et al., 2013). As yet we have no comprehensive framework to predict such complexities.

I conclude this thesis with two isoprene-related ‘wishes’. My first wish is to see, through a closer collaboration between experimentalists and modellers, the construction of a dataset exploring leaf-scale responses of isoprene emission to changes in \(T \), PPFD, \(C_i \), and growth CO₂ concentration measured together. Such a dataset would allow more systematic testing of alternative modelling hypotheses. My second wish is to see a renewed focus on large-scale modelling of isoprene emission, which would explicitly test the impact of alternative hypotheses on the amount and the spatial distribution of future isoprene emissions.
Bibliography

Arneth A, Monson RK, Schurgers G, Niinemets Ü, Palmer PI. 2008a. Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)? *Atmospheric Chemistry and Physics* 8: 4605–4620.

Delwiche CF, Sharkey TD. 1993. Rapid appearance of 13C in biogenic isoprene when 13CO\textsubscript{2} is fed to intact leaves. Plant, Cell and Environment 16: 587–591.

under present-day climate conditions. *Atmospheric Chemistry and Physics* **11**: 4371–4389.

Sun Z, Niinemets U, Hülve K, Rasulov B, Noe SM. 2013b. Elevated atmospheric CO₂ concentration leads to increased whole-plant isoprene emission in hybrid aspen (*Populus tremula* × *Populus tremuloides*). *The New phytologist* **198**: 788–800.

Supplementary material

S1. The Guenther et al. (1993) algorithm

In the Guenther et al. (1993) algorithm (G93) isoprene emission rate of isoprene \((I) \) is calculated by multiplying a species-specific standard emission rate \((I_S) \) by a set of empirical equations taking in account changes in environmental factors. The standard conditions for estimation of \(I_S \) are a leaf temperature of 30°C and a \(PPFD \) of 1000 \(\mu \)mol m\(^{-2}\) s\(^{-1}\). Guenther et al. (1993) solely considered changes in \(PPFD \) and temperature:

\[
I = I_S C_L C_T, \quad \text{(s1.1)}
\]

with

\[
C_L = \frac{\alpha C_{L1} PPFD}{\sqrt{(1 + \alpha^2 PPFD^2)}} \quad \text{(s1.2)}
\]

and

\[
C_T = \frac{\exp \left(\frac{C_{T1} (T_k - T_{ks})}{RT_k T_{ks}} \right)}{C_{T3} + \exp \left(\frac{C_{T2} (T_k - T_{ks})}{RT_k T_{ks}} \right)} \quad \text{(s1.3)}
\]

where \(T_k \) (K) is the leaf temperature, \(T_{ks} \) is the temperature at standard conditions (= 303 K), \(R \) is the gas constant (= 8.314 J K\(^{-1}\) mol\(^{-1}\)), \(PPFD \) is the photosynthetic photon flux density. \(C_{L1}, \alpha, C_{T1}, C_{T2}, C_{T3} \) and \(T_m \) are empirical coefficients; \(C_{L1} = 1.066, \alpha = 0.027, C_{T1} = 95 \text{ 000 } J \text{ mol}^{-1}, C_{T2} = 230 \text{ 000 } J \text{ mol}^{-1}, C_{T3} = 0.961 \text{ J mol}^{-1} \) and \(T_m = 314 \text{ K} \).
S2. Model of photosynthetic carbon assimilation (Farquhar et al., 1980)

The model for photosynthetic carbon assimilation is based on the Farquhar model (Farquhar et al., 1980). Temperature responses of the different parameters are described in Medlyn et al. (2002), and based on previous work from (Harley et al., 1986, 1992; Long, 1991; Harley & Baldocchi, 1995; Lloyd et al., 1995; Bernacchi et al., 2001).

Calculation of the light limited electron flux (J):

\[
J = \frac{(\alpha \text{PPFD} + J_{\text{max}}) - \sqrt{(\alpha \text{PPFD} + J_{\text{max}})^2 - 4\alpha \theta \text{PPFD} J_{\text{max}}}}{2\theta} \tag{s2.1}
\]

\[
J_{\text{max}} = J_{\text{max}_{25}} \exp \left(\frac{1}{\frac{1}{298.15 - \frac{T_k}{R}} - \frac{1}{J_{\text{max}_{25}}}} \right) \cdot \left(\frac{J_1}{J_2} \right) \tag{s2.2}
\]

\[
J_1 = 1 + \exp \left(\frac{298.15 \cdot \Delta S - E_{\text{dij}}}{298.15 \cdot R} \right) \tag{s2.3}
\]

\[
J_2 = 1 + \exp \left(\frac{T_k \Delta S - E_{\text{dij}}}{RT_k} \right) \tag{s2.4}
\]

\(J_{\text{max}_{25}}\) is the value of \(J_{\text{max}}\) at 25°C, \(\alpha\) taken at 0.385 mol electron mol\(^{-1}\) photon (if not adjusted to data), \(\theta\) is a curvature parameter for the light response and \(T_k\) is the temperature in K. Other symbols are summarized in Table S2.1

Calculation of the Rubisco capacity \((V_{\text{cmax}}, \Gamma^*, k_c\) and \(k_o)\):

\[
V_{\text{cmax}} = V_{\text{cmax}_{25}} \exp \left(\frac{1}{\frac{1}{298.15 - \frac{T_k}{R}} - \frac{1}{J_{\text{max}_{25}}}} \right) \tag{s2.5}
\]

\[
k_c = 404.9 \exp \left(\frac{79430}{298.15 RT_k} \right) \tag{s2.6}
\]

\[
k_o = 278.4 \exp \left(\frac{36380}{298.15 RT_k} \right) \tag{s2.7}
\]
\[I^* = 42.75 \exp \left(\frac{37830(T_k - 298.15)}{298.15 RT_k} \right) \]
\[(s2.8) \]

\(V_{\text{cmax25}} \) is the value of \(V_{\text{cmax}} \) at 25°C, \(k_c \) and \(k_o \) are the Michaelis coefficients of Rubisco for CO\(_2\) and O\(_2\) respectively and \(I^* \) is the CO\(_2\) compensation point in the absence of dark respiration. Other symbols are summarized in Table S2.1

Table S2.1 Description and values of the parameters of Farquhar model used in standard simulations (Medlyn *et al.*, 2005)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_a)</td>
<td>Activation energy for (V_{\text{cmax}})</td>
<td>kJ mol(^{-1})</td>
<td>58.520</td>
</tr>
<tr>
<td>(E_d)</td>
<td>Deactivation energy for (V_{\text{cmax}})</td>
<td>kJ mol(^{-1})</td>
<td>200</td>
</tr>
<tr>
<td>(E_{aJ})</td>
<td>Activation energy for (J)</td>
<td>kJ mol(^{-1})</td>
<td>38.670</td>
</tr>
<tr>
<td>(E_{dJ})</td>
<td>Deactivation energy for (J)</td>
<td>kJ mol(^{-1})</td>
<td>200</td>
</tr>
<tr>
<td>(\Delta S)</td>
<td>Entropy term</td>
<td>kJ mol(^{-1}) K(^{-1})</td>
<td>0.6381</td>
</tr>
</tbody>
</table>
S3. List of publications

I did it! I did it!

Somehow I imagined this experience would be more rewarding.