Functional characterisation of A_{2A} receptor thermostable mutants using a yeast signalling assay

Nicolas Bertheleme
Membrane Protein Crystallography Laboratory
Department of Life Sciences
Imperial College London

Thesis submitted for the Degree of Doctor of Philosophy
2014
Abstract

G-protein-coupled receptors (GPCR) are transmembrane proteins that play a crucial role in the communication of cells with their external environment. In the last few years, several GPCR crystal structures have been solved using genetically engineered protein. The turkey β1-adrenergic receptor, the human neutrotensin 1 receptor and the adenosine A$_{2A}$ receptor (A$_{2A}$R) structures involved the introduction of stabilizing mutations. The engineered mutant can be stabilized in an agonist or an antagonist bound conformation making the GPCR less flexible and therefore easier to crystallize. The aim of this study was to use functional characterization of the key thermostabilising mutants of the A$_{2A}$R in order to understand the molecular basis of the thermostabilisation. The different mutants were characterized using a yeast-based growth assay, which measures down-stream signaling in response to agonist and radioligand binding analysis using both an agonist and an antagonist. Point mutations leading to a reduction/loss of constitutive receptor activity have been identified. In addition, a single point mutation abolishing the ability of receptor to bind the agonist NECA has also been identified. Conformational stabilization of the receptor is thus achieved by reducing basal activity along with modifying the ligand-binding pocket leading to inability to bind agonist. Such markers can be used to screen for stable mutants for structural characterization. Since thermostabilising mutations are not directly transferable across receptors, the yeast based growth assay could serve as a quick and inexpensive way to screen for mutations for a wide range of GPCRs.
Declarations

Declaration of originality:

I declare that the work described in this thesis is my own and that it has not been accepted in any previous application for a higher degree. All sources of information are referred to as appropriate.

Declaration of copyright:

The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work.
Acknowledgments

First, I would like to thank Dr. Bernadette Byrne, my principal supervisor for taking me on board for this project, for her unconditional help and support and in making my PhD enjoyable.

I am also very grateful to Dr. Simon Dowell, my industrial supervisor, who is always very helpful. I thank him for his very pertinent advice as well as for his patience towards me.

All my gratitude also goes to Dr. Julia Hubbard who initiated this project and showed incredible patience while guiding me through my initial training in the GlaxoSmithKline laboratories.

I am thankful to Dr. Shweta Singh and Dr. Minghao Zhang for their constant help and advice. Without their contributions my work would not have been so fruitful to say the least.

Finally, I would like to thank Dr. James Leung, Dr. David Grose, Dr. Ashley Barnes, Dr. Mike Hann, Dr Kate Smith, Dr Danuta Mossakowska for helpful discussions and precious advise. I am particularly grateful to Prof Philip Strange for his insights into models of GPCR activation. I also wish to thank Sam for looking after us in the lab and for making it a safe place to work.
Table of Contents

1 INTRODUCTION .. 15

1.1 OVERVIEW .. 16

1.1.1 G-PROTEIN COUPLED RECEPTORS 16

1.1.2 STRUCTURAL CHARACTERISTICS OF GPCRS 17

1.2 GPCR ACTIVATION AND SIGNALLING PATHWAYS 20

1.2.1 LIGAND BINDING MODELS 20

1.2.2 G PROTEIN ACTIVATION AND SIGNALLING PATHWAYS 22

1.2.3 OTHER PROCESSES IN THE GPCR ACTIVATION CYCLE 29

1.3 BIASED AGONISM AND MULTIPLE ACTIVE CONFORMATIONS 33

1.3.1 G PROTEIN INDEPENDENT SIGNALLING 33

1.3.2 BIASED AGONISM .. 35

1.4 STRUCTURE DETERMINATION OF GPCRS 37

1.4.1 EXPRESSION OF GPCRS 38

1.4.2 STABILISATION OF GPCRS FOR STRUCTURAL STUDIES 41

1.5 STRUCTURAL INSIGHT .. 53

1.5.1 COMPARISON OF CRYSTALS STRUCTURES OBTAINED USING DIFFERENT APPROACHES 53

1.5.2 THE LIGAND-BINDING POCKET OF GPCRS 57

1.5.3 STRUCTURAL CHANGES IN GPCRS UPON ACTIVATION 61

1.6 THE ADENOSINE RECEPTORS FAMILY 68

1.7 AIM OF THE STUDY .. 70

2 DEVELOPMENT OF THE YEAST FUNCTIONAL ASSAY 72

2.1 INTRODUCTION .. 73

2.2 MATERIALS AND METHODS 77

2.2.1 MATERIALS ... 77

2.2.2 CONSTRUCT GENERATION 77
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3</td>
<td>Expression vector optimization</td>
<td>78</td>
</tr>
<tr>
<td>2.2.4</td>
<td>In-gel fluorescence</td>
<td>80</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Confocal microscopy</td>
<td>81</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Yeast cell growth assay</td>
<td>82</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Optimisation of assay conditions</td>
<td>83</td>
</tr>
<tr>
<td>2.3</td>
<td>Results</td>
<td>84</td>
</tr>
<tr>
<td>2.3.1</td>
<td>P306GPD vector is the most suitable vector for the yeast functional assay</td>
<td>84</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Incubation time and 3AT concentration are critical</td>
<td>86</td>
</tr>
<tr>
<td>2.4</td>
<td>Discussion</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>Functional characterizations of the RAG23, RANT5, RANT21 and some intermediate mutants</td>
<td>93</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>94</td>
</tr>
<tr>
<td>3.2</td>
<td>Material and Methods</td>
<td>96</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Material</td>
<td>96</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Site-directed mutagenesis</td>
<td>96</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Expression</td>
<td>97</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Membrane preparation</td>
<td>99</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Protein concentration</td>
<td>99</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Saturation binding assay</td>
<td>100</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Competition binding assay</td>
<td>101</td>
</tr>
<tr>
<td>3.2.8</td>
<td>Yeast cell growth assay</td>
<td>102</td>
</tr>
<tr>
<td>3.3</td>
<td>Results</td>
<td>103</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Expression levels</td>
<td>103</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Pharmacological profiles of the WT and mutants A2aR</td>
<td>105</td>
</tr>
<tr>
<td>3.4</td>
<td>Discussion</td>
<td>116</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Thermostabilisation and functional profiles</td>
<td>116</td>
</tr>
</tbody>
</table>
3.4.2 Constitutive versus agonist-induced activity 118
3.4.3 The role of T88 in agonist binding and receptor activation 120
3.4.4 The role of V239 in the loss of constitutive activity 121

4 Functional characterization of the intermediate mutants between the RAG23 and the wild-type A2AR 124

4.1 Introduction 125
4.2 Materials and methods 127
 4.2.1 Materials 127
 4.2.2 Site-directed mutagenesis 127
 4.2.3 Expression 128
 4.2.4 Yeast cell growth assay 128
4.3 Results 129
 4.3.1 Expression levels 129
 4.3.2 F79A enhances constitutive activity and potency 130
 4.3.3 R199A reduces constitutive activity and potency 134
 4.3.4 L208A mutation reduces constitutive activity and efficacy 136
 4.3.5 The effects of A184L and L272A are overcome by the other mutations 138
4.4 Discussion 141
 4.4.1 Structural basis of the effects of the F79A mutation 141
 4.4.2 Structural basis of the effects of the R199A and L208A mutations 144
 4.4.3 Structural basis for the effects of the A184L and L272A mutations 146

5 Discussion and future outlook 148

5.1 Agonist-induced and constitutive active conformations are distinct 150
5.2 Role of individual residues in receptor function and stabilisation 151
 5.2.1 T88 plays a crucial role for agonist-induced activity 151
 5.2.2 Role of individual residues on constitutive activity 152
5.3 THE YEAST FUNCTIONAL ASSAY AS A SCREENING TOOL 154
5.4 FUTURE OUTLOOK 155

6 APPENDIX 174

6.1 GRAPHICAL DATA FOR ALL THE RAG23 INTERMEDIATE MUTANTS 174
6.2 PERMISSION TO REPUBLISH THIRD PARTY COPYRIGHTED WORK FROM CHAPTER 3 178
6.3 YEAST TRANSFORMATION PROTOCOL 179
List of figures

Figure 1-1 Different types of ligands and their efficacies..19
Figure 1-2 The ternary complex model ...20
Figure 1-3 The extended ternary complex model ...21
Figure 1-4 The cubic ternary complex model ..22
Figure 1-5 Schematic of the activation steps of a GPCR ...24
Figure 1-6 Structure of the Gαi ..25
Figure 1-7 Crystal structure of a Gα subunit ..26
Figure 1-8 Structure of the βγ subunit of the Gi ..27
Figure 1-9 Crystal structure of the β2AR in complex with Gs29
Figure 1-10 GPCR desensitization, degradation and resensitization mechanisms. ...32
Figure 1-11 Superimposition of the β2AR structure fused to T4L with the β3R structure in complex with a Fab ...43
Figure 1-12 Structure of the β2R, the Nociceptin/orphanin FQ receptor and the corticotropin-releasing factor receptor ...45
Figure 1-13 Comparison of the active and inactive-state structures of the β2AR47
Figure 1-14 High resolution structure of the β2AR ..48
Figure 1-15 High resolution structures of thermostable mutants51
Figure 1-16 Comparison of the structures of the A2AR bound to ZM24138554
Figure 1-17 Superposition of the “bent” and “straight” conformations of the β1AR bound to the antagonist carazolol ...55
Figure 1-18 Comparison of the structures of the A2AR bound to ZM241385 and UK-432097 ..56
Figure 1-19 Ligand binding cradle of the human κ-opioid receptor57
Figure 1-20 Interactions between different ligands and the β1AR59
Figure 1-21 Extra interactions between bucindolol and the β1AR61
Figure 1-22 Superimposition of the structures of the A2AR bound to the agonist NECA and bound to the inverse agonist ZM241385 ..62
Figure 1-23 Superposition of the opsin and rhodopsin structures64
Figure 1-24 Superposition of the opsin and rhodopsin (cyan) ...65
Figure 1-25 Superimposition of the structures of β2AR in an inactive conformation and in an active conformation ..66
Figure 1-26 Snake plot showing the position of the mutations for the thermostable mutants ..71
Figure 2-1 Structure of the A2A R as a fusion protein with the T4L (A) and in complex with a Fab (B) ...73
Figure 2-2 Yeast growth functional assay ..76
Figure 2-3 Schematic representation of the adenosine A2AR constructs ...79
Figure 2-4 SDS-PAGE In-gel fluorescence analysis of Rant5 and Rag23. ...84
Figure 2-5 Confocal imaging for Rag23. ..85
Figure 2-6 Confocal imaging for Rant5 (B). ...86
Figure 2-7 Incubation time optimization using the Rag23 mutant. ...87
Figure 2-8 3AT concentration optimization ..88
Figure 2-9 Effect of ADA ..89
Figure 3-1 Dose-response curve illustrating the concepts of efficacy, potency and constitutive activity. ..95
Figure 3-2 Functional data for the thermostabilised A2A mutants Rag23, Rant5 and Rant21 compared to WT ..105
Figure 3-3 Pharmacological profiles of four different ligands. ..106
Figure 3-4 Saturation binding of [3H]ZM241385 ..107
Figure 3-5 Competition binding assay using NECA ..108
Figure 3-6 Saturation binding assay using [3H]NECA. ...110
Figure 3-7 Functional data for the thermostabilised A2A intermediate mutants ..111
Figure 3-8 Activity of the T88A mutant compared to wild-type A2AR ..113
Figure 3-9 Effect of high concentrations of adenosine ...114
Figure 3-10 Functional characterization of the A54L+V239I mutant ...115
Figure 3-11 An extended cubic ternary complex model ...119
Figure 3-12 Interaction between the Thr88 of the A2A R and NECA ..121
Figure 3-13 Superposition of helices III and VI of the inactive thermostabilized A2AR mutant.122
Figure 4-1 Functional profiles of constructs illustrating the major effects of the F79A mutation.131
Figure 4-2 Functional profiles of constructs illustrating the major effects of the R199A mutation. ...135
Figure 4-3 Functional profiles of constructs illustrating the major effects of the L208A mutation...137
Figure 4-4 Functional profiles of constructs illustrating the major effects of the A184L mutation...139
Figure 4-5 Functional profiles of constructs illustrating the major effects of the L272A mutation...140
Figure 4-6 Position of the F79, R199A, L208, A184 and L272 residues in the high-resolution crystal structure of the A2AR ...143
Figure 4-7 Structure of the β2AR in complex with Gs protein145
Figure 5-1 Position of the R199 residue of the A2AR or its equivalent R221 of the β2AR in an inactive conformation (A), in a partially active conformation (B) and in a fully active conformation (C)...153
List of tables

Table 1-1 Point mutations contained in the different thermostable constructs studied
.. 70
Table 2-1 Primers used to clone the A2A-R mutant genes in the pDDGFP vector by homologous recombination. The primer contains a gene specific sequence and an overhang region used for the homologous recombination into 2 µ S. cerevisiae GFP-fusion vector.. 78
Table 2-2 Mutagenic primers used to generate the intermediate mutant A2A-R constructs. ... 78
Table 3-1 Mutagenic primers used to generate the intermediate mutant and wild-type A2A-R constructs. ... 97
Table 3-2 Expression levels of the different A2A-R + eGFP constructs in the MMY24 strain. ... 103
Table 3-3 Pharmacological characteristics of the wild-type and mutants A2A forms. ... 106
Table 3-4 Kd and Ki values for the different A2A-R forms obtained from saturation and competition binding assay using [3H] ZM235481 and [3H]NECA as hot ligand and NECA and Adenosine as cold ligand... 110
Table 3-5 Pharmacological characteristics of the intermediate mutants. Data are presented as mean ± standard error means of at least two independent experiments performed in triplicate. .. 112
Table 3-6 Comparison of the NECA and adenosine binding and activation profile of T88A ... 113
Table 4-1 Mutagenic primers used to generate the Rag intermediate mutant A2A-R constructs. ... 127
Table 4-2 Expression levels of the thirty mutants and the wild-type calculated using the eGFP fluorescence as described by Drew et al. .. 129
Table 4-3 Constitutive activities, potencies and efficacies of the Rag intermediate mutants. ... 133
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3AT</td>
<td>3-Amino Triazole</td>
</tr>
<tr>
<td>β1AR</td>
<td>β1 Adrenergic Receptor</td>
</tr>
<tr>
<td>β2AR</td>
<td>β2 Adrenergic Receptor</td>
</tr>
<tr>
<td>A2A R</td>
<td>Adenosine A2A Receptor</td>
</tr>
<tr>
<td>A2B R</td>
<td>Adenosine A2B Receptor</td>
</tr>
<tr>
<td>ADA</td>
<td>Adenosine Deaminase</td>
</tr>
<tr>
<td>AMP</td>
<td>Adenosine MonoPhosphate</td>
</tr>
<tr>
<td>AOX</td>
<td>Alcohol Oxidase</td>
</tr>
<tr>
<td>AT1AR</td>
<td>Angiotensin 1A receptor</td>
</tr>
<tr>
<td>ATP</td>
<td>Adeonsine Triphosphate</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic Adenosine MonoPhosphate</td>
</tr>
<tr>
<td>CCD</td>
<td>Charge Couple Device</td>
</tr>
<tr>
<td>DDM</td>
<td>n-Dodecyl-β-D-Maltoside</td>
</tr>
<tr>
<td>DM</td>
<td>n-Decyl-β-D-Maltoside</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl Sulphoxide</td>
</tr>
<tr>
<td>DPM</td>
<td>Disintegration Per Minute</td>
</tr>
<tr>
<td>ECL</td>
<td>Extracellular loop</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic Acid</td>
</tr>
<tr>
<td>EGFR</td>
<td>Epidermal Growth Factor</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylene Glycol Tetraacetic Acid</td>
</tr>
<tr>
<td>EP4</td>
<td>Prostaglandin E receptor type 4</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-Regulated Kinase</td>
</tr>
<tr>
<td>FDGlu</td>
<td>Fluorescein-Di-β-glucopyranoside</td>
</tr>
<tr>
<td>GEF</td>
<td>Guanine nucleotide Exchange Factor</td>
</tr>
<tr>
<td>GDP</td>
<td>Guanine Diphosphate</td>
</tr>
<tr>
<td>GFP</td>
<td>Enhanced Green Fluorescent Protein</td>
</tr>
<tr>
<td>GPCR</td>
<td>G Protein Coupled Receptor</td>
</tr>
<tr>
<td>GRK</td>
<td>G protein coupled Receptor Kinase</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanine Triphosphate</td>
</tr>
<tr>
<td>HEK293</td>
<td>Human Embryonic Kidney 293 cells</td>
</tr>
<tr>
<td>ICL</td>
<td>Intracellular Loop</td>
</tr>
<tr>
<td>IP3</td>
<td>Inositol Trisphosphate</td>
</tr>
<tr>
<td>JNK3</td>
<td>c-Jun N-terminal Kinase 3</td>
</tr>
<tr>
<td>Kd</td>
<td>Dissociation Constant</td>
</tr>
<tr>
<td>Ki</td>
<td>Inhibition Constant</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen Activated Protein Kinase</td>
</tr>
<tr>
<td>NECA</td>
<td>5'-N-Ethylcarboxamidoadenosine</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>NTS1</td>
<td>Neurotensin receptor 1</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>OD<sub>600</sub></td>
<td>Optical Density at 600nm</td>
</tr>
<tr>
<td>PAR2</td>
<td>Protease-Activated Receptor 2</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PDB</td>
<td>Protein Data Bank</td>
</tr>
<tr>
<td>PI</td>
<td>Protease Inhibitor</td>
</tr>
<tr>
<td>PIP2</td>
<td>Phosphatidylinositol 4,5 bisphosphate</td>
</tr>
<tr>
<td>PKA</td>
<td>Protein Kinase A</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein Kinase C</td>
</tr>
<tr>
<td>PP2A</td>
<td>Protein Phosphatase 2</td>
</tr>
<tr>
<td>RFU</td>
<td>Relative Fluorescence Unit</td>
</tr>
<tr>
<td>RGS</td>
<td>Regulators of G protein Signalling</td>
</tr>
<tr>
<td>SAR</td>
<td>Structure Activity Relationship</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulfate</td>
</tr>
<tr>
<td>SDS PAGE</td>
<td>SDS Polyacrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>T4L</td>
<td>T4 Lysozyme</td>
</tr>
<tr>
<td>TCA</td>
<td>TriChloro Acetic Acid</td>
</tr>
<tr>
<td>TM</td>
<td>TransMembrane</td>
</tr>
<tr>
<td>WT</td>
<td>Wild Type</td>
</tr>
<tr>
<td>YNB</td>
<td>Yeast Nitrogen Base</td>
</tr>
<tr>
<td>YSB</td>
<td>Yeast Suspension Buffer</td>
</tr>
<tr>
<td>ZM241385</td>
<td>4-(2-[7-Amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol</td>
</tr>
</tbody>
</table>
1 Introduction
1.1 Overview

The plasma membrane plays a major role in maintaining cell integrity by separating the inside of the cell from its external environment. However, it is essential for the cell to be able to respond to changes in the extracellular environment. This is done through the action of integral membrane proteins, which span the phospholipid bilayer composing the plasma membrane. These receptors mediate the cellular responses to a range of bioactive molecules such as hormones, neurotransmitters and a large number of drugs.

1.1.1 G-protein coupled receptors

G-protein coupled receptors (GPCRs) form the largest family of integral membrane protein with ~800 members (Gloriam et al., 2007). Various external stimuli such as light, odorants, amino acids, nucleotides, nucleosides, neurotransmitters, hormones or peptides can interact with the extracellular side of the GPCRs and this triggers a conformational change of the receptor, allowing binding and activation of an intracellular heterotrimeric G protein. Once activated by the receptor, this G protein is able to interact with secondary effectors to induce a cellular response (Howard et al., 2001). It is estimated that between 30 and 50 % of all modern drugs and 25 % of the top 100 best selling drugs target GPCRs (Hopkins & Groom, 2002; Klabunde & Hessler, 2002). Their importance in terms of cellular function and as potential drug targets means that they have been subject to intense study.

GPCRs have previously been classified into five families based on their sequence homology and structural similarities. The first one is the rhodopsin family or
family A and is by far the largest family with a total of 701 members including 241 non-olfactory receptors. The second one is the secretin family or family B, which comprises 15 receptors. The glutamate family also known as family C is composed of 15 receptors. Finally, the adhesion and Frizzled/Taste2 families comprise 24 receptors each (Fredriksson et al., 2003).

1.1.2 Structural characteristics of GPCRs

All GPCRs share a very similar basic structure comprising seven transmembrane α-helices (7TM) separated by alternating intracellular and extracellular loop regions, an extracellular N-terminus and an intracellular C-terminus (Fredriksson, 2005). In addition to these common transmembrane domains, each family has its own characteristics. The receptors belonging to the rhodopsin subfamily share several features; a single conserved cysteine residue in the first two extracellular loops, three conserved residues known as the E/DRY motif located on helix III (Howard et al., 2001), the CWxPFF motif in the top region of helix VI (Shi & Javitch, 2002) and the NPxxY motif on helix VII (van Rhee & Jacobson, 1996). All these conserved features are believed to be involved in receptor stability or activation.

The receptors from the family B bind large peptides and their large N termini (~150-180 amino-acids) contain three conserved cysteine bridges (Wheatley et al., 2012). Furthermore, the structures of N termini of several Family B receptors in complex with their cognates ligand from different family B receptors allowed the identification of a common fold known as “the secretin family recognition fold” (Parthier et al., 2009) believed to be crucial for ligand recognition and binding.

The metabotropic glutamate receptors of family C also have large N termini (280 to 580 amino acids), containing the ligand recognition site. The N termini of the
receptors of the adhesion family can vary between 200 to 2800 amino acids in length and are usually rich in glycosylation sites and contain motifs believed to be involved in cell adhesion (McKnight & Gordon, 1998; Stacey et al., 2000).

The Frizzled/Taste2 family comprises two different groups of receptors. The main difference between the two groups is their N terminus, which is small and unlikely to contain a ligand recognition domain in the Taste2 receptor while it is much longer in the frizzled receptors. However, these two groups share several features such as an IFL motif in helix II, an SFLL motif in helix V and an SxKTL motif in helix VII (Fredriksson et al., 2003).

However, the overall sequence homology between GPCRs is low particularly in the extracellular loop regions, most likely as a result of the requirement for recognition and binding of a wide range of ligands (Peeters et al., 2010). GPCRs exhibit significant conformational flexibility reflecting a number of functional states (Kobilka & Deupi, 2007). Agonists cause full activation of the receptor whereas partial agonists induce submaximal activation of the G protein even at saturating concentrations. In addition, it is well documented that many GPCRs exhibit constitutive, agonist-independent activity, activating their cognate G proteins in the absence of agonist (Milligan et al., 1995; Strange, 2002). Antagonists inhibit ligand binding but do not affect constitutive activity, while inverse agonists decrease constitutive activity (Fig 1-1). This range of efficacies shows the complexity of the activation mechanism of GPCRs. These receptors were usually considered as switching between two states, active and inactive but now there is growing evidence to suggest multiple active and inactive states (Kahsai et al., 2011; Riitano et al., 1997; Rosenbaum et al., 2009; Scaramellini & Leff, 1998). The wide range of conformations adopted by the GPCRs make them particularly flexible and unstable.
proteins (Fredriksson et al., 2003).

Figure 1-1 The level of GPCR activation in the presence of different ligands. Many GPCRs have been reported to be constitutively active and hence show a basal level of activation (black line) even in the absence of ligands. Full activation of the receptor is achieved with full agonists (red line), whereas partial agonists are only able to partially activate the receptor (blue line). Inverse agonists (green line) are able to inhibit the basal level of activation of receptor. An antagonist (black line) binds to the receptor and inhibits an agonist from activating the receptor however it has no effect on the constitutive activity of the GPCR.
1.2 GPCR activation and signalling pathways

1.2.1 Ligand binding models

The interactions between the receptor, a G protein and an agonist have been described by the “Ternary complex model” (De Lean et al., 1980). Historically, this model was developed to account for the unique properties of agonist binding to the frog erythrocyte β-adrenergic receptor, which included low affinity and high affinity states. De Lean and co-workers explained these experimental data by the intervention of a third component: a G protein (Fig 1-2). The binding of the G protein to the receptor increases the affinity of the agonist for the receptor accounting for the high affinity state observed, while the low affinity state is when the agonist binds to the receptor unbound to the G protein.

![Diagram of ternary complex model]

Figure 1-2 The ternary complex model described the high and low affinity states of the receptor by introducing a third component: the G protein. The high affinity state corresponds to the receptor bound to the G protein while the low affinity state corresponds to the unbound receptor. The equilibrium constant \(J \) defines binding of agonist to the receptor while the constant \(K \) defines the binding of GPCR to G-protein. The \(\beta \) constant defines the differential affinity of the compound to bind to the active versus the inactive form of the GPCR (De Lean et al., 1980).

This model was later expanded to the so-called “extended ternary complex
model” (Samama et al., 1993). In this model (Fig 1-3), there is an equilibrium between an inactive R state and an active R* state. An agonist would stabilize the receptor in its active R* state, an antagonist has no influence on the equilibrium while an inverse agonist stabilizes the receptor in its inactive R conformation. According to this model only the R* state of the receptor is able to bind to the G protein and triggers the physiological response. This model explains the constitutive activity observed for some GPCRs by assuming the transition between the inactive R to active state R* carries a sufficiently low energetic cost that it is possible for some receptors to be in the R* state even in the absence of ligand.

Figure 1-3 The extended ternary complex model describes the different states of the receptor and its interaction with an agonist (A) and a G protein (G). The receptor undergoes a conformational change from R to R* defined by the constant J. The effect of agonist binding is defined by the constant α and the effect of G protein binding is defined by the constant M. (Samama et al., 1993)

The extended ternary complex model also suggests that the G protein is only able to bind the active R* state of the receptor. However recent evidence shows that the M₃ muscarinic acetylcholine receptor forms an inactive-state complex with G₉q protein in intact cells (Qin et al., 2011). This inactive-state complex is thought to increase the rate of G protein activation and differs from the active-state complex. However, there is also evidence for a “collision coupling” model for the α₂-adrenergic receptor (Hein et al., 2005). Using FRET experiments, the authors showed that the receptor and the G protein interact only upon agonist binding and that there is no pre-assembly of the α₂-adrenergic receptor with its G protein. This means that the
pre-assembly of a G protein with its GPCR could be a receptor specific event. These results strengthen the idea of a more complete model, the so-called cubic ternary complex (Fig 1-4). In this model the G protein can bind both the inactive and active states of the receptor (Weiss et al., 1996).

![Diagram](image)

Figure 1-4 The cubic ternary complex model describes the different states (active R* state and inactive R state) of the receptor and its interaction with the agonist (A) and the G protein (G). In this model the inactive R state of the receptor is able to interact with the G protein forming an inactive complex. (Weiss et al., 1996)

1.2.2 G protein activation and signalling pathways

1.2.2.1 G protein overview

Heterotrimeric G proteins are the molecular intermediates within the cells that switch on specific signalling cascades upon GPCR activation. Heterotrimeric G proteins are part of the large family of GTPases and they comprise three subunits: α, β and γ. There are 16 genes encoding for Gα subunits, 5 genes encoding for Gβ subunits and 12 genes encoding for Gγ subunits, forming over 20 different G proteins (Downes & Gautam, 1999). They are divided into four subfamilies according to their α subunits: Gαs, Gαi, Gαq and Gα12 (Hepler & Gilman, 1992). In their inactive form, G proteins bind GDP tightly through their α subunits. Once a GPCR has been
activated, a conformational change within its transmembrane domains allows it to interact with its G protein; binding to the receptor triggers a conformational change within the G protein resulting in the exchange of GDP for GTP. In turn, this exchange causes the dissociation of the α subunit from the βγ dimer. Both the α subunit and the βγ complex are then free to interact with effector proteins to propagate the signal and trigger a physiological response within the cell. The type of effector protein and the response are dependent on the G protein activated. The specific roles of the different Gα subunits are unclear but as a rule of thumb, Gαs activates adenylate cyclase while Gαi inhibits adenylate cyclase. Therefore Gαs and Gαi regulate the level of cyclic AMP (cAMP) within the cell. Gαq activates phospholipase Cβ, which hydrolyses phosphatidylinositol 4,5 bisphosphate (PIP2). Hydrolysis of PIP2 results in the formation of two important second messengers namely inositol trisphosphate (IP3) and diacylglycerol. IP3 activates calcium channels leading to release of Ca^{2+} from intracellular stores into the cytosol (Bockaert & Pin, 1999) while diacylglycerol activates protein kinase C. Gα_{12} activates Rho guanine nucleotide exchange factors (GEFs) (Simon et al., 1991). The βγ subunit has been shown to interact with Phospholipase A and C, ion channels and kinases (Milligan & Kostenis, 2006).

The autocatalytic activity of the α subunit then hydrolyses the GTP back to GDP allowing the heterotrimer to reform and end the signalling cascade (Fig 1-5). The duration of the signal depends on the rate of GTP hydrolysis by the autocatalytic α subunit (Cabrera-Vera et al., 2003).
1.2.2 The Gα subunit structure

The Gα subunit comprises two domains: a GTPase domain involved in binding and hydrolysing GTP and a helical domain, which binds the GTP to a site within the core of the G protein. The GTPase domain comprises a six-stranded β-sheet surrounded by five α-helices (Fig 1-6). The most conserved regions of this domain are the five loops containing the diphosphate-binding (P') loop (GxGESGKS), the Mg$^{2+}$-binding domain (RxxTxxGI and DxxG) and the guanine ring binding motifs (NKxD and TCAT). All α-subunits contain a post-translational lipid modification at the N terminus responsible for the membrane localisation of the α subunit (Chen & Manning, 2001; Smotrys & Linder, 2004).
The GTPase domain also contains three flexible loops near the c-phosphate binding site, named Switches I, II and III (Oldham & Hamm, 2006). Switch II is of particular interest as it plays a crucial role in the binding of effector proteins. When the GDP bound α subunit is in complex with the βγ dimer, the switch II forms a loop that is buried within the heterotrimer (Fig 1-7A). In contrast, in the active GTP bound state, the γ-phosphate stabilizes the α-helix formed by switch II, which then becomes available for interaction upon dissociation of the α subunit from the βγ complex (Fig 1-7B). The importance of this switch II α-helix for interaction with effector protein has been confirmed by the high-resolution structure of the GαS domain in complex with the catalytic domain of the mammalian adenylate cyclase (Tesmer et al., 1997) (Fig 1-7C). Upon hydrolysis of GTP to GDP, the helix formed by the switch II is no longer stabilised and becomes disordered (Fig 1-7D).
Figure 1-7 Crystal structure of a Gα subunit bound to (A) GDP and in complex the βγ subunits (pdb access code: 1GG2), (B) bound to GTPγS (pdb access code: 1AZT), (C) bound GTP and interacting with the catalytic domain of the adenylate cyclase (pdb access code: 1AZS) and (D) bound to GDP in its deactivated form (pdb access code: 1GDD). In each case, the switch II is shown in red.

1.2.2.3 The Gβγ subunit structure

The β subunit structure is a seven-bladed β-propeller structure with seven WD-40 repeats. Each blade comprises four anti-parallel β-strands and the N terminus forms an α-helix that interacts with the N terminus of the γ subunit through a coiled coil interaction, while the C terminus of the γ subunit interacts with the core of the β subunit (Garritsen et al., 1993) (Fig 1-8). The γ subunit is composed of two helices connected by a loop. Together with the β subunit they form a complex that does not dissociate except by denaturation. The γ subunit undergoes post-translational lipid
modifications, which allow the protein to associate with the membrane (Fukada & Kokame, 1994).

Figure 1-8 Structure of the βγ subunit of the Gi (pdb access code: 1GG2). The β subunit in green forms a seven-bladed β-propeller structure. The γ subunit in blue comprises two helices connected by a loop

1.2.2.4 Receptor/G protein interaction

The recent structure of the β2 adrenergic receptor (β2AR) in complex with the Gs protein has provided unprecedented details of G protein/GPCR interaction (Rasmussen et al., 2011a). However, prior to that a number of different studies had highlighted a number of key regions of the G protein important for receptor/G protein interaction and specificity. The C terminus of the α subunit has been shown to play a crucial role in receptor/G protein interaction (Bourne, 1997; Conklin & Bourne, 1993; Martin et al., 1996; Wess, 1997). For example, an 11-amino acid peptide corresponding to the C terminus of the αi subunit is able to bind the activated
rhodopsin receptor and to compete with the Gi heterotrimer (Aris et al., 2001; Hamm et al., 1988). In addition, pertussis toxin uncouples the Gi protein from its GPCR by catalyzing the ADP ribosylation of a Cys residue located on the C-terminus of the Gαi subunit (Van Dop et al., 1984; West et al., 1985). Moreover, several reports of mutations in this region of the G protein affecting the receptor-G protein specificity have been published (Conklin et al., 1996; Osawa & Weiss, 1995; Sullivan et al., 1987). Although, the last 11 amino acids of the C terminus of the α subunit play a critical role, there are other regions of the G protein involved in receptor-G protein interactions. Indeed, within the last 11 amino acids of the C terminus of αi and αs, only one is different, yet the 5HT1B serotonin receptor selectively activates Gi. Other critical regions for receptor coupling specificity have been identified within the N terminus region of the α subunit (Kostenis et al., 1997) as well as several loops (Bae et al., 1999; Cai et al., 2001; Onrust et al., 1997). There is also evidence that the βγ subunits play a role in receptor binding either directly or indirectly through stabilization of the α subunit (Ford et al., 1998).

As mentioned earlier, a crystal structure of the β2AR in complex with a Gs protein has now been solved. This high-resolution structure shows details of the interaction between the receptor and the C terminus of the α subunit. The large movement of helices V and VI away from the core of the receptor allows the α subunit C terminus to penetrate within the transmembrane domain of the receptor where it forms primarily non-polar interactions except for the packing of Tyr391 of the G protein against Arg131 of the highly conserved DRY motif (Rasmussen et al., 2011a). There is also an extensive polar interaction network between the C terminus of the α subunit and the intracellular ends of helices III and V (Fig 1-9). The crystal structure also shows interaction between the N terminus of the α subunit and the ICL2
of the receptor. Interestingly, when comparing the structure of the α subunit in complex with the β2AR (pdb access code: 3SN6) with the structure of the α subunit bound to GTPγS (pdb access code: 1AZT), the main difference is a large rotation of the helical domain relative to the GTPase domain leaving the nucleotide-binding site open (Rasmussen et al., 2011a).

![Crystal structure of the β2AR (cyan) in complex with Gs (green) showing the polar interaction network between the C terminal tail of the Gαs subunit and the intracellular ends of helices H III and H V (pdb access code: 3SN6) (Adapted from Rasmussen et al., 2011)](image)

Figure 1-9 Crystal structure of the β2AR (cyan) in complex with Gs (green) showing the polar interaction network between the C terminal tail of the Gαs subunit and the intracellular ends of helices H III and H V (pdb access code: 3SN6) (Adapted from Rasmussen et al, 2011)

1.2.3 Other processes in the GPCR activation cycle

In addition to G protein activation, there are other essential processes in the GPCR activation cycle such as desensitization, internalization, degradation and resensitization. The desensitization of the receptor is essential to protect the cell from over-stimulation of the receptor and is achieved at different levels of the activation pathway (Luttrell & Gesty-Palmer, 2010). For instance, G protein signalling is terminated through the GTPase activity of the regulators of G protein signalling.
(RGS) family of proteins (Ross & Wilkie, 2000). These proteins enhance the intrinsic GTPase activity of the Gα subunit and therefore accelerate the reformation of the inactive G protein heterotrimeric complex. The most important desensitization mechanisms happen through receptor phosphorylation, either by second-messenger dependent kinases (cAMP-dependent protein kinase (PKA) and protein kinase C (PKC)) or by G protein-coupled receptor kinases (GRK). PKA and PKC are activated by increasing concentrations of second messengers such as cAMP, Ca^{2+} and diacylglycerol, due to GPCR activation (Ferguson, 2001). Phosphorylation of the receptor at the ICL3 or at the C-terminal tail by PKA and PKC decreases receptor/G protein coupling. This desensitization is called “heterologous” desensitization because it is independent of ligand binding. In contrast, “homologous” desensitization only occurs on activated receptors. GRKs only phophorylate activated receptors on serine and threonine residues within ICL3 and the C-terminal tail of the receptor. Phosphorylation by GRKs of the receptor triggers translocation of arrestins from the cytosol to the plasma membrane where they bind to the intracellular part of the receptor, preventing G protein binding (Stoffel et al., 1997). The recent high resolution structure of active β-arrestin 1 in complex with a V2 vasopressin-receptor-derived phosphopeptide shows detailed interactions between the phosphates of the peptide and arginine and lysine residues on the β-arrestin, highlighting the role of phosphorylation in β-arrestin binding (Shukla et al., 2013).

Binding of arrestin to the receptor upon phosphorylation by GRKs triggers another key event in GPCR regulation: internalization via clathrin-coated vesicles (Fig 1-10). There are seven GRKs and four arrestins. Two GRKs and two arrestins (arrestin 1 and 4) are expressed exclusively in the retina. The other GRKs and arrestins (arrestin 2 or β-arrestin 1 and arrestin 3 or β-arrestin 2) are ubiquitously
expressed. Upon binding to a phosphorylated receptor, the β-arrestins are able to bind to the heavy chain of clathrin and to the β2 adaptin subunit of the AP-2 complex (Goodman et al., 1996; Krupnick et al., 1997; Laporte et al., 2000; Laporte et al., 1999). Upon formation of this complex, the receptor is then clustered in clathrin-coated pits, which are pinched of the cell surface by the motor protein, dynamin (Pierce et al., 2002) (Fig 1-10). Once a receptor has been internalized, it is either rapidly recycled, targeted to endosomes and then slowly recycled or targeted to lysosomes for degradation. The rate of receptor recycling, or resensitization, is dependent on receptor subtypes. One class of GPCR, class A, forms transient complexes with arrestins that dissociate shortly after internalization at or near the cellular surface (Anborgh et al., 2000; Oakley et al., 2000). These receptors, including the β2AR, tend to resensitize rapidly. In contrast, members of family B, form tighter complexes with arrestins and are targeted to larger endosomes enriched in a GPCR-specific phosphatase activity (Ferguson, 2001; Oakley et al., 2000). These receptors are slowly recycled back to the plasma membrane. Finally, some GPCRs are not resensitized at all, but exclusively targeted to lysosomes where they are degraded (Bremnes et al., 2000; Trejo & Coughlin, 1999). Several studies have shown that the C-terminal tail of the receptor plays a key role in the intracellular sorting of GPCRs (Anborgh et al., 2000; Trejo & Coughlin, 1999; Zhang et al., 1999).
Figure 1-10 GPCR desensitization, degradation and resensitization mechanisms. Upon activation by an agonist, the receptor is phosphorylated on its ICL3 and C-terminal tail. Once phosphorylated, the receptor forms a complex with β-arrestin, which triggers internalization via clathrin coated vesicles. Once internalized, the receptor is either recycled back to the plasma membrane or targeted to lysosomes for degradation.

In addition to preventing G protein coupling and triggering receptor internalization, arrestins are also able to attenuate G-protein-dependent signalling by recruiting enzymes that degrade second messenger (Luttrell & Gesty-Palmer, 2010). For instance, the β2AR forms a complex with β-arrestin 2 and with a cAMP phosphodiesterase, increasing the rate of cAMP degradation (Perry et al., 2002). Similarly, the diacylglycerol produced upon activation of the muscarinic M1 receptor is degraded to phosphatidic acid by diacylglycerol kinase recruited by arrestin (Nelson et al., 2007)
1.3 Biased agonism and multiple active conformations

1.3.1 G protein independent signalling

It was originally thought that GPCRs signalled exclusively through G proteins and that β-arrestins were only responsible for receptor desensitization and internalization. However, it has now become evident that GPCRs are also able to signal in a G-protein-independent manner through β-arrestins. Several reports have shown that β-arrestins are involved in kinase activation (DeWire et al., 2007), transcriptional control (Ma & Pei, 2007) and transactivation (Buchanan et al., 2006).

The first example of GPCR signalling through a β-arrestin-dependent pathway was the recruitment of activated SRC, a tyrosine kinase, that led to the activation of extracellular signal-regulated kinase (ERK) (DeFea et al., 2000a; Luttrell et al., 1999). It was demonstrated that β-arrestins are able to scaffold specific components of the mitogen-activated protein kinase (MAPK) cascade. For instance, an agonist-induced β-arrestin 2, Raf-1, MEK1, and ERK1/2 signaling complex was described upon activation of the Angiotensin 1A receptor (AT1AR) (Luttrell et al., 2001). Furthermore, stimulation of the protease-activated receptor 2 (PAR2) resulted in the formation of a complex involving the activated receptor, β-arrestin 1, Raf-1 and phosphorylated ERK (DeFea et al., 2000b). Interestingly, ERK activation by β-arrestins seems to have different physiological consequences compared to ERK activation by G protein. Indeed, ERK activated by G protein triggers stimulation of transcription factors such as ELK1 in the nucleus (Tohgo et al., 2002) while ERK activated by β-arrestins are retained in endocytic vesicles (Luttrell et al., 2001) and
seems to have effects on chemotaxis and cytoskeletal rearrangements (Barnes et al., 2005; Ge et al., 2003). Not only are the effects of the two ERK pathways spatially distinct but they are also temporally distinct. Indeed, G-protein-activation of phosphorylated ERK reaches its maximum after 2 minutes while β-arrestin-activation of phosphorylated ERK is maximal after 30 minutes (Ahn et al., 2004; Rajagopal et al., 2010). In addition to ERK, β-arrestins have been involved with other MAPKs such as c-Jun N-terminal kinase 3 (JNK3) (McDonald et al., 2000; Miller et al., 2001) and p38 (Bruchas et al., 2006; Sun et al., 2002) as well as non-MAPK members including PI3K (Povsic et al., 2003) and Akt (Beaulieu et al., 2005).

Furthermore, β-arrestins have also been shown to interact with transcription factors such as NFκB. Both β-arrestin 1 and 2 form complexes with IκBα, a protein that binds NFκB preventing its nuclear translocation and therefore regulating its activity (Gao et al., 2004; Witherow et al., 2004). In addition, β-arrestin 1 has been shown to directly interact in the nucleus with the promoter region of several genes such as FOS and p27 following activation of δ-opioid receptor (Kang et al., 2005).

Finally, β-arrestins have been implicated in transactivation of the epidermal growth factor receptor (EGFR). This transactivation of EGFR via β-arrestin occurs upon activation of the prostaglandine E4 (EP₄) receptor (Buchanan et al., 2006). In a similar way, β-arrestins can activate the EGFR upon activation of the β₁ adrenergic receptor, resulting in the activation of cardioprotective pathways (Noma et al., 2007).
1.3.2 Biased agonism

It is clear that GPCRs are able to bind and signal through β-arrestins. In addition, there is also evidence that specific GPCR is able to couple to different G proteins and activate multiple signalling pathways (Hermans, 2003). For instance, the α2-adrenergic receptor has been shown to interact with both Goαs and Goαi (Eason et al., 1992). The ability of a ligand to favour one pathway over the others compared with the endogenous ligand, is called “biased agonism”. The muscarinic acetylcholine M1 receptor provided one of the first examples of biased agonism. Indeed, binding of the agonist carbachol resulted in activation of both Goαs and Goαq, whereas only PLC activity mediated through Goαq was observed when the agonist pilocarpine was used (Fisher et al., 1993; Gurwitz et al., 1994). The physiological consequences of biased agonism are not yet fully understood but might have important implications for clinical therapies. For instance, although morphine biases the activity of the μ-opioid receptor towards G protein activation compared with endogenous enkephalin peptides, it still triggers some β-arrestin-dependent pathways (Bohn et al., 1999). β-arrestin 2 knockout mice do not exhibit the side effects associated with morphine such as respiratory depression and constipation (Raehal et al., 2005) whereas the analgesic effects are still observed. Therefore, a purely G protein biased agonist should exhibit the desired analgesic effects without the side effects. The importance of understanding biased agonism is also demonstrated by the D2 dopamine receptor, which is involved in mental illness. Effects of antipsychotic drugs were believed to be mediated through inhibition of adenylyl cyclase upon activation of Goαi and Goαo (Enjalbert & Bockaert, 1983). However, recent studies have demonstrated the formation of a protein complex comprising the β-arrestin 2, AKT and protein
phosphatase 2 (PP2A) in response to dopamine. This complex is the target of Lithium, used to treat mental illness such as bipolar disorder (Beaulieu et al., 2005). Therefore, it is crucial to better understand the physiological relevance of each specific pathway in order to design drugs with retained efficacy but reduced side effects.

The ability of a receptor to signal through either the G protein or β-arrestin pathways appears to be dependent on receptor conformation induced upon binding “biased ligands”, which cause receptors to adopt active conformations preferentially signalling through one or the other pathway (Kenakin, 2007). However, more intriguingly it seems that receptors can adopt alternative active conformations even when binding different ligands with the same downstream effects (Kahsai et al., 2011). It is becoming increasingly clear that the number of active conformations of receptors is far greater than originally thought.
1.4 Structure determination of GPCRs

The numerous high-resolution structure determinations of rhodopsin, a non-typical GPCR with a covalently bound ligand (Li et al., 2004; Nakamichi & Okada, 2006; Okada et al., 2004; Palczewski, 2000; Salom et al., 2006; Standfuss et al., 2007) have been used as models for other GPCRs. However, these models have limitations and it was therefore necessary to obtain high-resolution structures of other GPCRs to further understand the precise molecular basis of receptor-ligand interaction and the basis of receptor and G protein activation. The high-resolution structure determination of bovine rhodopsin was facilitated by its natural abundance in bovine eye and by its intrinsic stability. It took another seven years for researchers to determine the structure of another GPCR that of the β2AR expressed in a recombinant system (Cherezov et al., 2007). This highlights the difficulties of obtaining high-resolution structures of GPCRs due to their highly dynamic nature and the challenges associated with overexpression of these proteins. However, in the last few years, there have been an astonishing 22 further independent X-ray high-resolution GPCR structures excluding Rhodopsin (overall total of 58 structures in different conformations or bound to different ligands). This has been made possible by the development of expression systems that produce sufficient quantities of functional protein for structural studies and a range of new methodological approaches, which stabilize the receptors sufficiently to allow purification and crystallization.
1.4.1 Expression of GPCRs

1.4.1.1 Escherichia coli

The use of *E. coli* as expression system offers several advantages such as rapid and inexpensive production of proteins. *E. coli* was used successfully for expression and purification of several GPCRs such as the cannabinoid CB$_2$ receptor (Yeliseev *et al.*, 2005), the adenosine A$_{2A}$ receptor (A$_{2A}$R) (Weiss & Grisshammer, 2002) and the serotonin 5-HT$_{1A}$ receptor (Bertin *et al.*, 1992). Although the lack of post-translational modification of *E. coli* allows the production of a homogenous population of protein, it can also lead to the misfolding and impaired trafficking of the GPCR. For instance, it has been shown that glycosylation is required for proper folding and therefore function of rhodopsin (Kaushal & Khorana, 1994). In addition, the lipid composition of *E. coli* membranes differs from that of eukaryotic cells. Lipid compositions of membranes have been shown to be crucial for proper folding and function of GPCRs such as the oxytocin and the µ-opioid receptors (Gimpl *et al.*, 1995; Hasegawa *et al.*, 1987; Lagane *et al.*, 2000).

However, expression of GPCRs in *E. coli* can be used for rapid expression of a large number of constructs for expression and stability screening (Grisshammer *et al.*, 1993). This method was used to develop thermostable mutants of the neurotensin receptor 1 (NTS1) (Shibata *et al.*, 2009), the A$_{2A}$R (Magnani *et al.*, 2008) and the turkey β$_1$ adrenergic receptor (β$_1$AR) (Serrano-Vega *et al.*, 2008). Furthermore, *E. coli* has been used to express the CXCR1 chemokine receptor as inclusion bodies. The protein was subsequently refolded and its structure determined by solid state NMR (Park *et al.*, 2012).
1.4.1.2 Yeast systems

In contrast to *E. coli*, yeasts are able to perform post-translational modifications, which makes them a more attractive system for GPCR overexpression. In addition, yeasts possess endogenous GPCR and G proteins, which means they possess the processing machinery needed for functional expression of GPCRs. Furthermore, yeasts have a short generation time and the ability to grow on simple media making them easy and inexpensive systems to work with. Expression plasmids, which can be maintained in episomal form or integrated into the host genome are readily available. These incorporate strong promoters such as GAL1 for *S. cerevisiae* and AOX1 for *P. pastoris* that drive overexpression where up to 80% of protein content can be the target protein (Sarramegna *et al.*, 2003).

However, the lipid composition of yeast membranes is different from mammalian membranes. Indeed, yeast produces ergosterol instead of cholesterol, which has been reported to be problematic for the proper folding of the target receptor (Lagane *et al.*, 2000).

The methylotrophic yeast *Pichia pastoris* was used to produce sufficient amount of A2aR and histamine H1 receptor for purification and crystallization. The high-resolution structures of both receptors were determined subsequently (Hino *et al.*, 2012; Shimamura *et al.*, 2011). To date no GPCR structures have been reported using protein from the other popular yeast expression system, *Saccharomyces cerevisiae*, although there are a number of reports of high-level functional expression of receptors in this system (O'Malley *et al.*, 2007).
1.4.1.3 Baculovirus/insect cell system

Most of the recent GPCRs structures were determined with protein expressed in insect cells using the Baculovirus system. The *Autographa californica* baculovirus is able to selectively infect insect cells. The gene of interest is cloned into a plasmid between sequences of high homology with the Baculovirus genome. When cotransfected with the virus in insect cells, the gene of interest is integrated to the virus genome by homologous recombination. The most frequently insect cells used are those of *Spodoptera frugiperda* (*Sf9* cell line). Due to their eukaryotic nature, they are able to perform post-translational modifications, which can be necessary for proper folding of the protein (Kaushal & Khorana, 1994) but can also lead to a heterogeneous population of receptor (Reilander *et al*., 1991). The relatively long generation time (up to 24 hours) and the complex media needed for the culture of *Sf9* cells make this system both more expensive and time-consuming than yeast or *E. coli*. However, the strong track record of high-resolution structures obtained from protein expressed in insect cells make it the standard expression system for structural studies of GPCRs.

1.4.1.4 Mammalian cells

Mammalian cell lines offer the closest environment to the GPCR native tissue and therefore present several advantages. Firstly, they can perform very complex post-translational modifications. Secondly, the lipid composition of their membranes is similar to that of the native environment of the receptor, which as discussed earlier can be critical for membrane protein folding (Lagane *et al*., 2000). Finally, they contain G proteins and secondary effectors, which mean they are suitable for functional studies. However, the low yield of protein typically obtained
from mammalian cells, though GPCR-dependent, make them less suitable for structural work (Sarramegna et al., 2003). Furthermore, generation of a stable cell line overexpressing recombinant GPCR is extremely time-consuming. To date, no high-resolution structure of GPCR has been reported using protein expressed in mammalian cells. However they have been extremely useful for biochemical and pharmacological characterisation of GPCRs.

1.4.2 Stabilisation of GPCRs for structural studies

1.4.2.1 Fusion protein approach

Researchers have made remarkable progress in structural studies through the development of GPCR fusion proteins, where a T4 lysozyme (T4L) replaces the conformationally dynamic third intracellular loop (ICL3). Although the ICL3 is necessary for GPCR function and interaction with G protein, it has been observed that proteolytic cleavage of this domain does not lead to the dissociation of the receptor. The two domains linked by ICL3 can even be expressed separately and assembled later to form a functional receptor (Kobilka et al., 1988). The dynamic nature of ICL3 was thought to play a key role in the problems associated with crystallisation and structure determination of GPCRs. Replacing ICL3 with a well-ordered and stable protein removed a dynamic domain, reduced the movement of the transmembrane domains and facilitated the formation of crystal contacts essential for growth of well diffracting crystals (Rosenbaum et al., 2007). The T4L fulfilled these criteria. In addition, the distance between the N and C termini of T4L is similar to the predicted distance between the two helices linked by ICL3, and thus can be introduced without
distorting the protein structure. Therefore ICL3 was replaced by the T4L. This approach has been successfully used to obtain high-resolution structures of a range of different GPCRs in complex with antagonists: β2AR (Cherezov et al., 2007; Rosenbaum et al., 2007); human A2AR (Jaakola et al., 2008); human dopamine D3 receptor (Chien et al., 2010); CXCR4 chemokine receptor (Wu et al., 2010); human histamine H1 receptor (Shimamura et al., 2011); δ-opioid receptor (Granier et al., 2012); human κ-opioid receptor (Wu et al., 2012); µ-opioid receptor (Manglik et al., 2012); the muscarinic M2 (Haga et al., 2012) and M3 (Kruse et al., 2012) receptors; the sphingosine-1-phosphate receptor (Hanson et al., 2012); the protease-activated receptor 1 (Zhang et al., 2012) and the corticotropin-releasing factor receptor (Hollenstein et al., 2013). In addition, this approach has also been successfully applied to the structure determination of two agonist-bound state GPCRs: A2AR (Xu et al., 2011) and neurotensin receptor (NTSR1) (White et al., 2012). In each case the insertion was essential for obtaining well-diffracting crystals, with the T4L mediating the crystal contacts.

In the case of the β2AR, the presence of the T4L was shown to have little effect on the ligand binding properties of the receptor (Rosenbaum et al., 2007). In addition, comparison of the structures of the β2AR in complex with an antibody or fused to the T4L revealed that the two structures were very similar (Rasmussen et al., 2007) (Fig 1-11) indicating that the presence of the T4L had not greatly altered the structure of the receptor and demonstrating the validity of this approach.
Figure 1-11 Superimposition of the β_2AR structure fused to T4L (cyan; pdb access code: 2RH1) with the β_2R structure in complex with a Fab (green; pdb access code: 2R4R) reveals that the two structure are very similar.

Although the insertion of the T4L has proven highly successful for the high-resolution structure determination of a number of GPCRs, it has been shown that this approach is not suitable for every GPCR since some receptors exhibit decrease in expression or stability when fused to T4L (Chun et al., 2012). Five other potential fusion partners were identified by Ray Stevens’ group (Chun et al., 2012). The five proteins, a C-terminal fragment of T4L, flavodoxin, xylanase, rubredoxin and a thermostabilized cytochrome b_{562} (named cytochrome b_{562}RIL), were selected based on the key criteria of appropriate distance between the N and C-termini (between 6-14 Å) to allow accommodation between helices V and VI of the fusion partner and propensity to crystallise. Fusion proteins of both the β_2AR and the A_2AR were screened for expression, yield of isolated protein, thermostability and their propensity.
to crystallise. The b562RIL-receptor chimeric proteins were selected for further study based on their increased thermostability and their improved ability to diffuse through the lipidic cubic phase compared with the other chimeric receptors. Both the β2AR-b562RIL and A2AR-b562RIL produced crystals that diffracted to a resolution of 2.8 and 1.7 Å respectively. The A2AR-b562RIL structure was subsequently solved to a resolution of 1.8 Å, which revealed the presence of a number of water and lipid molecules in the structure and provided insights into the allosteric regulation of the receptor by sodium ions (Liu et al., 2012). The b562RIL fusion partner was subsequently used to obtain the high-resolution structure of the nociceptin/orphanin receptor FQ (Thompson et al., 2012), the 5-HT1B and 5-HT2B serotonin receptors (Wacker et al., 2013; Wang et al., 2013a), a member of the Frizzled family, the smoothed receptor (Wang et al., 2013b), and a member of the secretin family, the glucagon receptor (Siu et al., 2013).

Although b562RIL gave the best results for the β2AR and the A2AR when compared with the other fusion partners and allowed the high-resolution structure determination of several GPCRs, Rubredoxin gave better results in term of thermostability for the CCR5 chemokine receptor. This allowed the subsequent high-resolution structure determination of the CCR5 chemokine receptor to a 2.7 Å resolution (Tan et al., 2013).

Whilst most of the fusion proteins have involved replacement of the flexible ICL3, it is possible to attach the fusion partner to the N-terminus of the receptor (Zou et al., 2012) or to replace the ICL2 (Congreve, 2012 #289) (Fig 1-12C). This approach was used for the β2 adrenergic receptor + G protein complex (Rasmussen et al., 2011a), the nociceptin/orphanin receptor FQ (Thompson et al., 2012) (Fig 1-12B),
the smoothed receptor (Wang et al., 2013b) and the glucagon receptor (Siu et al., 2013). Thus there is flexibility with the fusions with respect to the attachment point as well as the fusion partner that can be used (Fig 1-12).

![Figure 1-12](image)

Figure 1-12 (A) Structure of the β2R with the T4L inserted between helices V and VI (pdb access code 2RH1), (B) Structure of the Nociceptin/orphanin FQ receptor with b56RIL attached at the N-terminus (pdb access code: 4EA3), (C) Structure of the corticotropin-releasing factor receptor with the T4L inserted between helices III and IV (pdb access code: 4K5Y)

1.4.2.2 Complex formation with antibody fragments

Although agonist-bound structures have been solved using the fusion partner approach, the receptors were either in an inactive state (Warne et al., 2011) or only partially active state (Lebon et al., 2011a; Lebon et al., 2011b; Xu et al., 2011). In order to obtain a crystal structure of a fully activated receptor a different approach was needed. This was achieved using antibody fragments. Protein specific antibody fragments bind to the receptor of interest and increase the size of the soluble part of the molecule, facilitating crystal formation. In addition, the antibody fragment is not only protein specific but also conformation specific. This means that the formation of
the protein-antibody complex stabilises the receptor in a specific conformation and therefore reduces the conformational flexibility of the protein. The first high-resolution structure of a non-rhodopsin GPCR, the β₂AR was determined in an inactive conformation using a Fab (Rasmussen et al., 2007). The structure was solved to approximately 3.4 Å and revealed the first insights into the precise structure of a receptor ligand binding site as well as providing some information on the overall architecture of the helices and loops.

Subsequently, Rasmussen and co-workers developed a camelid antibody fragment, called a nanobody. The nanobody is a single domain protein engineered from heavy chain only camelid antibodies and was raised by injecting the β₂AR bound to the high affinity, slow off-rate agonist (BI71067) into a llama. The nanobody exhibits G-protein-like behaviour and stabilises the active-state of the β₂AR. The β₂AR was subsequently crystallised with the nanobody with and without the T4L inserted between helices V and VI. However, only the receptor containing the T4L produced a high-resolution structure at 3.5 Å (Rasmussen et al., 2011b). Comparison of the active-state structure of the β₂AR with the inactive-state structure provides details on the conformational change undergone by the receptor upon activation (Fig 1-13).
A nanobody also contributed to the structure determination of the β2AR-Gs protein complex (Rasmussen et al., 2011a). The high affinity agonist, BI71067, was used to allow the formation of the β2AR-Gs protein complex. Crystallogenesis was improved by replacement of the unstructured N-terminus of the receptor with T4L. The α-helical component of the Gαs protein was shown to have a variable position relative to the rest of the complex. The addition of the pyrophosphate mimic, foscarnet, stabilized the α-helical component of the Gαs subunit without disturbing the β2AR-Gs complex. Finally, in order to further stabilise the β2AR-Gαs complex, a nanobody, Nb35, which bound to both the Gαs and Gβs subunits was also used. Both the nanobody and the T4L were involved in the formation of crystal contacts essential for crystal lattice formation. This was the first and so far only structure revealing details of the precise molecular interactions between a receptor and a heterotrimeric G protein (Fig 1-13).
Figure 1-14 High resolution structure of the β₂AR (cyan) in complex the Gs protein. The T4L fused to the N terminus of the receptor is shown in blue, the α subunit is shown is magenta, the β subunit is shown in green, the γ subunit is shown in yellow and the Nb35 nanobody is shown in red. (pdb access code 3SN6)

Furthermore, the use of a mouse monoclonal antibody has allowed the resolution of the A₂A R crystal structure (Hino et al., 2012). The protein, expressed in *Pichia pastoris* with its full length ICL3, is bound to an antagonist and therefore locked in an inactive conformation.
1.4.2.3 Mutagenesis approach

Finally, another technique, developed by Chris Tate and co-workers, involves alanine-scanning mutagenesis coupled with radioligand binding analysis following heat treatment of the receptor in order to identify mutants with retained functional expression but increased thermostability. The stability of the mutants is tested using an agonist and/or an antagonist. This strategy produces mutants stabilized in either an agonist conformation or an antagonist conformation, hence reducing the conformational instability inherent to GPCRs. This in turn facilitates the formation of well-diffracting crystals. This approach has been applied to four receptors to date, the turkey β1 adrenergic receptor (β1AR) (Serrano-Vega et al., 2008), the A2AR (Magnani et al., 2008), the NTSR1 (Shibata et al., 2009) and the human corticotropin-releasing factor receptor type 1 (Hollenstein et al., 2013). In each case combinations of a small number of point mutations resulted in a dramatic increase in the Tm of the receptor. Mutants obtained are much more stable in small chain detergents than the wild-type form.

More specifically, for the A2AR, each residue of the A2AR-A316 truncated receptor, between Pro2 and Ala316 were mutated to an alanine or to a leucine if the original residue was an alanine. Each mutant is then expressed in E. coli and solubilised in n-Dodecyl-β-D-maltopyranoside (DDM). Thermostable mutants were determined by heating the receptors at 30°C for 30 min in the absence of ligand, and then a ligand binding assay was performed using either the agonist [3H]NECA or the inverse agonist [3H]ZM241385. In these conditions, the WT A2AR had a residual activity of 50%. Thermostable mutations were selected on the basis of a residual activity greater than 70% and 65% and expression levels greater than 30% and 40%
of the WT for agonist and antagonist screening respectively. Iterative rounds of mutagenesis combining different thermostabilizing mutants resulted in two receptor constructs, Rag23, in an agonist conformation, containing five point mutations and a T_m 9°C higher than the WT and Rant21, in an antagonist conformation, containing four point mutations and a T_m 17°C higher than the WT. Despite these increases in T_m, Rag23 and Rant21 were not considered stable enough for crystallisation and a slightly different technique was used to further improve the stability of the receptor. Instead of heating the partially purified receptor in the ligand free state, it was heated in the presence of either the agonist $[^3H]$NECA or the inverse agonist $[^3H]$ZM241385.

In the case of the agonist conformation, this process resulted in the identification of GL26, which has a T_m of 45°C in n-Decyl-β-D-maltopyranoside (DM) and contains four point mutations different from those contained in Rag23 (Lebon et al., 2011a). In the case of the antagonist conformation, it resulted in the identification of four additional point mutations to form A$_{2A}$R-Star2, which has a T_m of 47°C in DM. For both mutants, an extra mutation (N154A) was added to remove a glycosylation site.

Using this approach, the thermostabilised turkey β$_1$AR was successfully crystallised and a number of high-resolution structures of the receptor in complex with a range of ligands or without ligand were solved (Huang et al., 2013; Moukhametzianov et al., 2011; Warne et al., 2012; Warne et al., 2011; Warne et al., 2008). The adenosine A$_{2A}$R was also crystallised resulting in a range of agonist-bound and antagonist-bound structures (Dore et al., 2011; Lebon et al., 2011b). The NTSR1 was also recently crystallised resulting in an agonist-bound structure (White et al., 2012). However, in that case, the mutant not only contained six thermostabilising mutations but also the T4L inserted between helices V and VI.
One issue with this method is that while the thermostabilising mutations are transferable between highly homologous receptors, e.g., the β_1AR and the β_2AR (Serrano-Vega & Tate, 2009) it has so far not been possible to transfer mutations between more distantly related receptors and thus a complete alanine scan must be completed for each receptor. One other issue with this approach is the need for a reliable ligand-binding assay.

However, this method has several advantages over the insertion of the T4L between helices V and VI or the use of an antibody fragment. Firstly, the ICL3 is intact which means the receptor is still able to interact with its G protein. Since the protein is still capable of binding to its G protein, it is therefore possible to use a signalling assay to investigate the functional profiles of the engineered protein.
Consequently, it is possible to determine the physiological relevance of such constructs. That is not the case when the T4L fusion technique is used. Secondly, as described earlier, the stabilization of the protein occurs through the insertion of several point mutations while when using the T4L technique, stabilization mainly occurs by the use of high affinity binding and slow off-rate ligands as demonstrated by the structure of the A\(_{2A}\)R fused to the T4L (Jaakola \textit{et al.}, 2008; Xu \textit{et al.}, 2011). This means that the thermostabilising mutation strategy is more relevant to help drug design than the T4L fusion strategy. Indeed, in order to be a useful tool for drug design, high-resolution structures need to be obtained with different ligands to fully explore the structure/activity relationship (SAR) of a family of small molecules (Congreve \textit{et al.}, 2012). That includes ligands with low affinity and fast off-rate. By definition this would not be possible with the T4L fusion strategy.
1.5 Structural insight

1.5.1 Comparison of crystals structures obtained using different approaches

As described in the previous section, in the last few years, technical advances have allowed the determination of the high-resolution structures of a number of GPCRs bound to a number of ligands. However, all of the high-resolution structures obtained were of highly engineered receptors. It is therefore crucial to understand what impact these modifications have on the crystal structures. The A2A R provides useful information in that regard since its structure bound to the inverse agonist ZM241385 has been determined using the three different techniques: the T4-lysozyme fusion strategy (Jaakola et al., 2008), the thermostabilisation approach (Dore et al., 2011) and in complex with a mouse antibody (Hino et al., 2012). Comparison of these three structures shows interesting features. Although all the critical interactions between the ligand and the receptor seem conserved, the position of the phenol group of the antagonist differs according to the structures (Fig 1-16C). The overall architecture is maintained across the three structures especially within transmembrane domains 1, 2, 3, 4 and 7. The main differences lies in TM5 and 6. These transmembrane domains are more ordered and extended in the mutant and antibody structures compared with the T4L structure, which is certainly due to the replacement of the ICL3 by the T4L (Fig 1-16A). In addition, the fusion of the T4L and the antibody seem to have disturbed the ionic lock present in the thermostable mutant structure and also present in the inactive state of Rhodopsin (Fig 1-16B). This is in accordance with the increased affinity for agonist relative to the WT displayed by the T4L receptor fusion protein (Rosenbaum et al., 2007).
Figure 1-16 Comparison between the three independent high-resolution structures of the A$_{2A}$R bound to the antagonist ZM241385 (sticks): A$_{2A}$R fused to the T4-lysozyme (green, PDB 3EML), the thermostable A$_{2A}$R mutant (cyan, PDB 3PWH) and the A$_{2A}$R in complex with a mouse antibody (magenta, PDB 3VG9). (A) Differences between TM5 and TM6. (B) The ionic lock in the Rhodopsin structure (grey, PDB access code: 1F88) and in the three independent high-resolution structures of the A$_{2A}$R. The distances shown are between R102 from the DRY motif on H III and E228 on H VI. (C) Differences in the position of the phenol group of the antagonist in the structures.

However, the mechanism underlying the formation of the ionic lock seems to be more complicated than originally thought. For instance, the ionic lock is present in the high-resolution structure of the human dopamine D3 receptor despite the insertion
of the T4L between helices V and VI. Furthermore, the recent structure of the β1AR bound to the antagonist carazolol, showed that the receptor can adopt two inactive conformations (Moukhametzianov et al., 2011). In the “bent conformation”, the ionic lock is present and in the “straight conformation”, helices III and VI are too far apart to allow the formation of the ionic lock (Fig 1-17). Surprisingly, the two structures are monomers obtained from a single crystal. A similar observation was made with cyanopindolol from two different crystals.

Figure 1-17 Superposition of the “bent” (Cyan) and “straight” (green) conformations of the β1AR bound to the antagonist carazolol (pdb access code: 2YCW. In the bent conformation, the cytoplasmic end of HVI is bent towards HIII allowing the formation of the ionic lock. In the case of the straight conformation, HVI and HIII are too far apart to allow the formation of the ionic lock.

The high-resolution structure of the A2A R was also obtained bound to the agonist UK-432097 with the T4L inserted between helices V and VI (Xu et al., 2011) and bound to the agonists NECA and adenosine as a thermostable mutant (Lebon et al., 2011b). Although, the structures were obtained with an agonist bound, it is proposed that the receptor is in an intermediate active conformation rather than the
fully active conformation. Again, this allows comparison of the influence of the two different techniques on the overall structure of the receptor. Although, the agonist-bound structures were co-crystallised with different ligands, they are very similar especially in the transmembrane regions. However, they show small differences in the extracellular region, probably due to the difference in the ligands and the absence of density for residues 149-157 (Fig 1-18).

Figure 1-18 Structural alignment of the thermostabilised A$_{2A}$R mutant bound to the agonist NECA (green, PDB 2YDV) with the A$_{2A}$R-T4-lysozyme fusion protein bound to the agonist UK-432097 (cyan, PDB 3QAK).
1.5.2 The ligand-binding pocket of GPCRs

Crystal structures obtained owing to the technological advances made in the recent years have provided unprecedented details on GPCRs. The ligand-binding pocket is of particular interest in regard to drug design. A systematic comparison of residues involved in ligand binding of all the GPCR structures revealed some common features in the binding pockets of the different receptors (Venkatakrishnan et al., 2013). The following “topologically equivalent residues” located in helices III, VI and VII are involved in ligand binding in almost all the receptors: 3.32, 3.33, 3.36, 6.48, 6.51, 7.39. Of these residues, two pairs (3.36-6.48 and 6.51-7.39) are in contact in most receptors and seem to form “a ligand binding cradle” (Fig 1-19) (Venkatakrishnan et al., 2013). Residues from other helices form contacts with specific ligands in specific receptors. Interestingly, helix I does not seem to be directly involved in ligand binding.

![Figure 1-19 Ligand binding cradle of the human κ-opioid receptor (pdb access code: 4DJH). The ligand is represented as green sticks and the residues forming the ligand binding cradle as cyan sticks. The dashed lines show the interactions between the residues.](image_url)
The work done by Chris Tate’s group on the turkey β₁AR provides valuable details on the ligand-binding pocket and insight into how small changes into the ligand-binding pocket can induce a much larger conformational modification in the receptor. In addition, their work provides the platform to compare the different binding modes of pharmacologically different ligands since they published the high-resolution crystal structure of the turkey β₁AR in complex with antagonists (Moukhametzianov et al., 2011; Warne et al., 2008), full agonists, partial agonists (Warne et al., 2011) and biased agonists (Warne et al., 2012).

Although all the different ligands bind in a similar way, a detailed comparison of the structure of the receptor in complex with the full agonist carmoterol, the antagonist cyanopindolol, the partial agonist salbutamol and the biased agonist bucindolol reveals three significant differences which are the rotamer conformation changes of S212 and S215 and the contraction of the binding pocket by ~1 Å (Warne et al., 2011). It is proposed that the rotamer conformation change of S215 upon binding of full agonists disrupts interactions between Helices IV and V and thus facilitates the formation of the active state of the receptor (Warne et al., 2011). Furthermore, the rotamer conformation change of S215 observed upon full agonist binding, allows formation of a hydrogen bond between the ligand and the receptor (Fig 1-20A), whereas when the receptor is bound to the antagonist cyanopindolol, S215 forms a hydrogen bond with T126 (Fig 1-20B). This interaction between helices III and V is also present in the structures of the receptor bound to partial agonists and to biased agonists (Fig 1-20C and D). The disruption of this interaction between helices III and V is probably another factor facilitating the formation of the active state of the receptor. In contrast, the rotamer conformation change of S212 results in the strengthening of interactions between helices V and VI.
as demonstrated by the formation of a hydrogen bond between S212 and N310. This interaction is formed upon binding of full, partial and biased agonists but not in the case of antagonists (Fig 1-20).

Figure 1-20 Interactions between different ligands and the β1AR. (A) The full agonist carmoterol interacts with S215 and induces the rotamer conformation change of S212 leading to the interaction between S212 and N310 (pdb access code: 2YO2). (B) The antagonist cyanopindolol does not disrupt the interaction between helices III and V and does not induce the rotamer conformation change of S212 (pdb access code: 2VT4). (C) The partial agonist salbutamol does not disrupt the interaction between helices III and V but induces the rotamer conformation change of S212 leading to the interaction between S212 and N310 (pdb access code: 2YO4). (D) The biased agonist bucindolol does not disrupt the interaction between helices III and V but induces the rotamer conformation change of S212 leading to the interaction between S212 and N310 (pdb access code: 4AMI).

In addition, the contraction of the ligand binding pocket observed is specific to full and partial agonists. It is proposed that this contraction relies on strong hydrogen bonds between the catechol (or equivalent) moiety and helices V and VI on one hand and between the secondary amine and the β-hydroxyl group in the agonist
and the amino acid side chains in helices III and VII on the other hand (Warne et al., 2011). While this is the case for the full agonists, it is also true, though weaker for the partial agonists, which is probably due to a reduced number of hydrogen bonds compared with the full agonist. However, this contraction is not observed in the cases of the antagonists and biased agonists. This is certainly due to the increased distance between the catechol (or equivalent) moiety and the secondary amine within the ligands. The two biased agonists co-crystallised with the β1AR have previously been shown to be β1AR antagonists but they are able to activate G-protein-independent pathways (Warne et al., 2012). It is therefore not surprising that they exhibit at least partially similar binding characteristics to the antagonist cyanopindolol. However, both biased agonists have aromatic substituents on the secondary amine. These substituents are able to make additional interactions with helices 2, 3 and 7 of the receptor as well as with extra-cellular loop 2 (Fig 1-21). It is therefore only logical to propose that the G-protein-independent signalling properties of these compounds are due to these extra interactions since they are unique to the biased agonists (Warne et al., 2012).
1.5.3 Structural changes in GPCRs upon activation

Although some of the crystal structures of the β₁AR described in the previous section were obtained in complex with agonists, the receptor was in an inactive, non-signalling conformation formed on initial agonist binding. Despite the valuable details these structures provided on the ligand-binding pocket and the ligand binding mechanisms, they did not provide any information on the conformational changes undergone by the receptor upon activation. However, the high-resolution structures of the A₂₅AR bound to agonists, the bovine ligand-free opsin receptor in an active conformation and the β₂AR in complex with Gₛ or a nanobody, have provided some of the missing information.
1.5.3.1 *The A$_{2A}$R structures*

Three different structures of the A$_{2A}$R bound to agonists were obtained. The first one was solved in complex with the high affinity slow off-rate agonist UK-432097 with the T4L inserted between helices V and VI (Xu *et al.*, 2011), the other two were obtained from a thermostabilised mutant in an agonist binding conformation and in complex with either adenosine or NECA (Lebon *et al.*, 2011b). All three structures are very similar and the structure of the A$_{2A}$R in complex with NECA will be used for further discussion in this paragraph. Comparison of the active conformation with the structure of the A$_{2A}$R thermostabilised in an antagonist conformation bound to ZM241385 (Dore *et al.*, 2011), reveals three major differences in the overall architecture of the receptor. Firstly, the interaction between Thr88 and the ribose ring of the agonist, as well as non polar interactions with Val84 and Leu85 result in a ~2 Å upward movement of helix III along the helical axis (Fig 1-22A).

![Figure 1-22](image)

Figure 1-22 Superimposition of the structures of the A$_{2A}$R bound to the agonist NECA (green, pdb access code: 2YDV) and bound to the inverse agonist ZM241385 (cyan, pdb access code: 3PWH). (A) 2 Å upward movement of helix III upon binding of the agonist NECA. (B) Movements of helices V and VI upon binding of the agonist NECA viewed from cytoplasmic side.
Secondly, the interaction of the agonist with helices III and VII, thought to be involved in receptor activation, leads to the inward shift of helix VII and the upward movement of helix III resulting in the formation of a bulge in helix V (Lebon et al., 2011b). The formation of the bulge is prevented by the binding of the inverse agonist ZM241385, demonstrating its importance in the activation mechanism. Finally, there is also a modification in the conformation of the intracellular ends of helices V, VI and VII (Fig 1-22B). Indeed, there is a 40° rotation and a 3 to 4 Å outward tilt of helix VI. As a result, helices V and VI are closer to each other by about 2 Å in the active conformation. However, it is believed that the receptor bound to NECA is not in the fully active conformation. Indeed, the outward movement of helix VI observed is not enough to open up the G protein-binding cleft.

1.5.3.2 *The rhodopsin structures*

In this regard, the crystal structures of the bovine opsin receptor both alone or in complex with a synthetic peptide corresponding to the C-terminus of the Gα, in the fully active Ops* conformation provide useful information (Park et al., 2008; Scheerer et al., 2008). Comparison of the rhodopsin and the opsin structures reveals several key conformational changes upon receptor activation (Hofmann et al., 2009). It is worth noting that very few changes are observed in the extracellular end of the receptor. Furthermore, helices I to IV form a stable helical bundle that is unchanged in the Ops* structure (Fig 1-23).
Figure 1-23 Superposition of the opsin (green) and rhodopsin (cyan) structures (pdb access code: 3CAP and 1F88 respectively) showing the similarity in helices I to IV that form a stable helical bundle. Helices V, VI and VII are shown in wheat.

The main conformational modifications are observed in helices V, VI and VII. Indeed, the intracellular part of helix VI undergoes an outward movement of 5 to 6 Å. In addition, helix 5 is extended by 1.5 to 2.5 turns and moves towards helix VI by 2 to 3 Å. Consequently, helices V and VI move closer to each other and away from the helix bundle, resulting in opening of the G protein-binding cleft as observed in the structure of opsin in complex with the Gα peptide (Park et al., 2008). In the Ops* structure, the highly conserved DRY and NPxxY motifs form new interactions. Helices III and V interact through the formation of a hydrogen bond between Arg135 and Tyr223 and similarly, helices V and VI interact through the formation of a hydrogen bond between Lys231 and Glu247. This means that in this conformation,
the “ionic lock” is broken and the new position of helix VI is stabilised through this new interaction with helix V. In addition, the conformational change of the intracellular end of helix VII results in the rotation of Tyr306, which prevents helix VI to move back towards helix III (Fig 1-24).

Figure 1-24 Superposition of the opsin (green) and rhodopsin (cyan) (pdb access code: 3CAP and 1F88 respectively) showing the large conformational changes of helices V, VI and VII viewed from cytoplasmic side. Helix V moves towards helix VI, which moves outward, allowing a hydrogen bond formation between K231 and E247. Movement of helix V also allows interaction between Y223 and R135, while rotation of Y306 prevents helix VI from moving back towards helix III.

1.5.3.3 The β2AR structures

The most exciting addition to the growing collection of high-resolution structures of GPCRs is most certainly the structure obtained by Brian Kobilka’s group of the β2AR in the active state in complex with the Gs protein (Rasmussen et al., 2011a). Although prior to this one, an other structure of the β2AR in an active conformation in complex with a nanobody was solved (Rasmussen et al., 2011b), the β2AR-Gs complex structure will be used for further discussion in this paragraph. The
changes observed in the structure of the β2AR receptor in the active conformation compared with the receptor in an inactive conformation bound to the antagonist carazolol are very similar to that observed between the Ops* and rhodopsin structures. Indeed, the major modification in the β2AR-G₆ structure is an outward movement of helix VI of 14 Å compared with the β2AR in complex with carazolol (Fig 1-25). In addition, as previously observed, the rotation of Tyr326 on the intracellular end of helix VII, stops helix VI from moving back towards helix III (Fig 1-25) and the ionic lock is broken. However, while the arginine of the DRY motif in the opsin structure interacts with helix V, in the case of the β2AR, the arginine interacts with the G protein.

![Figure 1-25](image)

Figure 1-25 Superimposition of the structures of β2AR in an inactive conformation bound to the inverse agonist carazolol (green, pdb access code: 2RH1) and in an active conformation bound to an agonist and in complex with G₆ (cyan, pdb access code: 3SN6) viewed from cytoplasmic side.

As seen in the A₂AR, helix V forms a bulge centred on Ser207, which moves towards the binding pocket by 2.1 Å. This leads to the rotation and subsequently to the tilt of helix VI. Finally, one key observation is that the active conformation is stabilised by extensive interactions with GαRas while there are no direct interactions between the receptor and the Gβ or Gγ subunits.
1.5.3.4 Molecular signatures

Ventakakrishnan and colleagues performed a systematic comparison of all GPCRs structures regardless of their conformation. They identified “a consensus network of 24 inter-TM contacts mediated by 36 topologically equivalent amino acids” (Venkatakrishnan et al., 2013). Interestingly, helix III seems to play a central role in maintaining the helical bundle scaffold as it does in the ligand-binding pocket. This is indeed confirmed by mutagenesis studies that demonstrated that in general mutation in helix III causes either constitutive activity or receptor inactivation (Han et al., 2012; Jiang et al., 1997; Jiang et al., 1996).
1.6 The adenosine receptors family

The adenosine receptor family is part of the class A GPCR family and is comprised of four proteins, the A₁, A₂A, A₂B and A₃ receptors, which all bind the endogenous ligand adenosine (Fredholm et al., 2001). These receptors are classified based on their affinities for adenosine analogues and their mechanism of signal transduction (Klinger et al., 2002a). Both A₂A and A₂B activate adenylyl cyclase via Gₛ resulting in an increase of cyclic AMP levels (Hide et al., 1992). The A₁ and A₃ receptors interact with Gᵢ and Gₒ proteins, leading to inhibition of cAMP production (Klinger et al., 2002a).

The A₂AR is highly expressed in the spleen, thymus, leukocytes, blood platelets, striatopallidal GABAergic neurons and the olfactory bulb. It is also expressed at lower levels in the heart, lung and blood vessels (Fredholm et al., 2001). It is therefore not surprising that the A₂AR has been linked to a number of various diseases such as neurodegeneration (Stevens et al., 2002), Parkinson’s disease (Hauser & Schwarzchild, 2005; Volpini et al., 2009; Xu et al., 2005), sleep disorder (Satoh et al., 1998), respiratory disorder (Fozard et al., 2002), hypertension (Fredholm et al., 2001) and ischaemia (Chen et al., 1999; Gui et al., 2009) among others. In addition, the role and function of the A₂AR is further complicated by its propensity to form heterodimers with other GPCRs. The A₂AR has been shown to form dimers with the cannabinoid CB1 receptor (Ferre et al., 2009), the glutamate mGluR5 receptor (Ferre et al., 2002) and finally the dopamine receptors D2 (Fuxe et al., 2005) and D3 (Torvinen et al., 2005), which have important implications in the treatment of Parkinson’s disease. This underlines the importance of the adenosine receptors as therapeutic targets and the need to obtain selective agonists and
antagonists. A large number of pharmaceutical companies have developed or are developing A2A R selective agonists or antagonists with various successes. Of these, Regadenoson is an FDA approved A2A R selective agonist used in cardiac stress tests, Preladenant is a selective A2A R antagonist that showed great results in Parkinson’s disease animal model but failed to show efficacy over placebo in phase III clinical trials and Tozadenant is a selective A2A R antagonist for the treatment of Parkinson’s disease that was discontinued due to toxicology issues (de Lera Ruiz et al., 2013). The abundance of publications and patents is proof that the A2A R is still actively investigated by pharmaceutical companies. This is one of the reasons why so much effort has been invested in the structure determination of A2A R. Five independent structures of this GPCR have now been solved: a thermostabilised A2A R mutant bound to two different agonists (Lebon et al., 2011b), a thermostabilised A2A R mutant bound to a range of antagonists (Dore et al., 2011), the A2A R-T4-lysozyme fusion protein bound to an agonist (Xu et al., 2011) and an antagonist (Jaakola et al., 2008) and finally the full length A2A R in an inactive complex with a mouse antibody (Hino et al., 2012).
1.7 Aim of the study

Despite the significant progress made towards structure elucidation of GPCRs in the last few years, the mechanisms of ligand recognition and receptor activation are still unclear. Although the high-resolution structures of the non- rhodopsin GPCRs published so far show surprising similarities, it is still necessary to obtain further structures. In addition, it is important to understand at a molecular level the specificity of each receptor as well as the difference of efficacies of the ligands as it becomes clearer that the GPCRs adopt a much greater range of conformations than originally described by the classical models of GPCR activation.

As discussed previously, one way of stabilising a given GPCR is to generate thermostable mutants through alanine-scanning mutagenesis coupled with radioligand binding analysis. This technique has been used to produce thermostable mutants of the A2AR (Magnani et al., 2008). In the present study, three of the most stable mutants, at that time, were selected for further functional characterisation, namely Rag23, Rant5 and Rant21 (fig 1-26, Table 1-1). Two of these mutants are in a preferentially antagonist conformation (Rant5 and Rant21) and the other one in an agonist conformation (Rag23). All these receptors contain several point mutations. The intermediate mutants between Rant5 and WT as well as between Rag23 and WT have also been characterised.

Table 1-1 Point mutations contained in the different thermostable constructs studied

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rag23</td>
<td>F79A, A184L, R199A, L208A, L272A</td>
</tr>
<tr>
<td>Rant5</td>
<td>A54L, T88A, V239A</td>
</tr>
<tr>
<td>Rant21</td>
<td>A54L, T88A, K122A, V239A</td>
</tr>
</tbody>
</table>
The aim of this study was to functionally characterise these mutants using a yeast whole cell growth assay in order to further understand how these mutations stabilise the receptor and affect its function and also to develop a high throughput and inexpensive tool to screen for thermostable mutants for other GPCRs. Indeed the functional assay is virtually applicable to any GPCR that can be expressed in yeast and has been used successfully with the cannabinoid CB₁ and CB₂ receptors (Dowell & Brown, 2009), GPR41 and GPR43 (Brown et al., 2003), the adenosine A₂B receptor (Beukers, 2004) and the sphingosine S₁P₁ receptor. Therefore, if the stabilizing effects of the mutant receptors can be linked to function in the yeast growth assay, it may be that this method used in combination with either alanine-scanning mutagenesis or random mutagenesis methods (Dodevski & Pluckthun, 2011) would provide a powerful screening tool for the production of thermostable mutants.

The results presented here reveal that inhibition of constitutive activity is correlated with receptor thermostabilisation. The data also strongly suggest that the agonist-induced and constitutive active conformations are distinct. In addition, the data highlight the role of individual amino acids residues in receptor function.
2 Development of the Yeast Functional Assay
2.1 Introduction

As described previously, most of the crystal structures of GPCRs obtained so far are of highly engineered proteins. Although most of these engineered receptors have been well characterized in terms of ligand binding, far less is known about their signalling profiles. Indeed, replacement of ICL3 by T4L or the presence of an antibody at the G protein-binding site has prevented characterization of signalling function (Fig 2-1).

![Figure 2-1](image.png)

Figure 2-1 Structure of the $A_{2\alpha}R$ as a fusion protein with the T4L (A) and in complex with a Fab (B). In both cases the presence of partner protein prevents the G protein from interacting with the receptor.

In addition, many of the thermostabilised mutant structures have been obtained of receptor preferentially in an antagonist conformation, with reduced affinity for agonists, making meaningful functional characterization difficult. However, one of the thermostabilised mutants of the $A_{2\alpha}R$ ($A_{2\alpha}R$-GL31), expressed in HEK293 cells (Lebon *et al*., 2011b) and preferentially in an agonist conformation, has been functionally characterized using a cAMP assay. The construct used to
determine the crystal structure of the neurotensin receptor (NTSR1-GW5), expressed in insect cells, has also been functionally characterized using a GTPγS assay (White et al., 2012). However, in both cases, the thermostable mutants were unable to activate their cognate G protein upon agonist binding (Lebon et al., 2011b; White et al., 2012). The deletion of the C-terminal tail of the receptor may partly explain the absence of agonist-induced activity in the case of the A2AR-GL31. Klinger and colleagues showed that a truncated version of the A2AR (1-311) exhibited no constitutive activity at all in a cAMP assay compared with the wild-type (Klinger et al., 2002b). However, the A2AR-GL31 construct shows similar levels of constitutive activity in the cAMP assay compared with the wild-type (Lebon et al., 2011b) despite the truncation of the C-terminal tail (1-316).

Although, the GTPγS and the cAMP assays have the advantage of assessing the receptor in a mammalian system or in insect cells, they also have their limitations. For instance, the GTPγS assay requires the handling of radioactive material, which has inherent disadvantages including cost and safety considerations. The cAMP assay requires expression of the mutants in mammalian cells, which is labour intensive and expensive. Furthermore, mammalian expression systems are complex and expression levels are often difficult to control and vary according to the type of cell used (Atwood et al., 2011). In addition, recombinant host cells may express more than one G protein, which may affect the pharmacological profile of the receptor studied. Indeed, the receptor of interest might interact with more than one G protein, which could make the data more difficult to interpret.

For these reasons a simple, inexpensive and high-throughput signalling assay is required in order to functionally characterize the thermostable A2AR mutants. The
The aim of the research in this chapter was to explore the suitability of a yeast GPCR signalling system for assessment of the function of the thermostabilised mutants.

The yeast functional assay used for this study utilizes a modified *S. cerevisiae* strain, MMY24 (Brown et al., 2003), which has been genetically engineered to allow functional characterization of heterologous GPCRs. In this strain, the gene encoding Ste2p, the only yeast GPCR capable of coupling to the yeast pheromone pathway in a haploid cell, was deleted and a chimeric Gα subunit was introduced in which the five C-terminal amino acids of the yeast Gα protein Gpa1p were replaced with the corresponding residues from mammalian Gai3 (Brown et al., 2003). Therefore, the GPCR is isolated from its native environment and can be studied in combination with a single G protein species in a completely defined system. Receptor activation induces a reporter gene (FUS1-HIS3) in which HIS3, encoding the biosynthetic enzyme imidazoleglycerol-phosphate dehydratase, is under control of the pheromone-responsive FUS1 promoter. Stimulation of the pathway by GPCR activation allows the yeast to grow in media lacking histidine. Hence, growth of the cells in the absence of histidine but the presence of receptor specific agonist provides a measure of receptor activation and signalling. Growth of the cells is measured by changes in the levels of fluorescein, the product of the reaction between Fluorescein-Di-β-D-glucopyranoside (FDGlu) and exoglucanase, an endogenous yeast enzyme secreted from dividing cells (Fig 2-2) (Dowell & Brown, 2009). The output can be manipulated easily to obtain the required sensitivity by varying components such as 3-Amino Triazole (3AT) that is used to regulate both the background and also the reporter capacity. Since 3AT is an inhibitor of imidazoleglycerol-phosphate dehydratase, an essential enzyme for the biosynthesis of
histidine, 3AT is able to reduce any histidine production due to endogenous activity of this enzyme. Therefore only cells expressing functional receptors are able to grow in a media lacking histidine.

Figure 2-2 Yeast growth functional assay. Activation of the receptor after binding of an agonist induces expression of the FUS1-HIS3 reporter gene through the yeast pheromone pathway. The product of the HIS3 gene triggers production of Histidine allowing the yeast to grow in media lacking Histidine. Dividing cells produce exoglucanase which reduces FDGlu to Fluorescein producing fluorescence.

The results presented in this chapter demonstrate that the optimum conditions to assess the pharmacological profiles of the A2aR mutants are when the genes are chromosomally integrated using the p306GPD vector, with an incubation time of 23 hours and a concentration of 3AT of 5 mM.
2.2 Materials and Methods

2.2.1 Materials

StuI, BamHI and *HindIII* restriction enzymes were purchased from New England Biolabs (Ipswich, MA, USA). The T4 DNA ligase kit and the QuickChange Lightning Site-Directed Mutagenesis kit were obtained from Agilent technology (Wokingham, UK) while Fluorescein Di-β-D-Glucopyranoside was obtained from Invitrogen (Paisley, UK). The amino acids, as well as the Yeast Nitrogen Base (YNB), the adenosine deaminase and the 3AT were purchased from Sigma (Haverhill, UK). The glucose was obtained from Merck (Nottingham, UK) and the protease inhibitor tablets from Roche (Burgess Hill, UK). The Tris-HCl and the glycerol were purchased from AnalaR NORMAPUR.

2.2.2 Construct generation

Rant5, Rant21 and Rag23 A2AR mutants were obtained from GeneArt (Regensburg, Germany). All synthetic genes encoded the full-length A2AR gene, contained a FLAG tag at the N terminus and were codon optimized for *S. cerevisiae*. The genes were cloned into the pDDGFP *S. cerevisiae* expression plasmid (Newstead *et al.*, 2007) by homologous recombination exactly as described by Drew and colleagues (Drew *et al.*, 2008) using the primers detailed in table 2-1. This places the gene encoding the A2AR upstream of the gene coding for GFP-His8. The pDDGFP plasmids were then digested using *BamHI* and *HindIII* which excised the complete gene coding for the A2AR + GFP-His8 fusion proteins (Fig 2-3). These genes were then ligated into three different expression vectors, p306GPD, p426GPD and
p426GPD-L3, using T4 DNA ligase. p426GPD is an episomal vector with 2µ replication origin and has been fully described previously (Mumberg et al., 1995). p426GPD-L3 is similar to p426GPD but contains the α-factor signalling sequence and p306GPD is an integrating vector based on the pRS306 vector (Sikorski & Hieter, 1989) with a modified promoter. The wild-type A2αR was generated from the Rant5 synthetic gene by site-directed mutagenesis using the QuickChange Lightning Site-Directed Mutagenesis kit and the primers detailed in Table 2.2.

Table 2-1 Primers used to clone the A2αR mutant genes in the pDDGFp vector by homologous recombination. The primer contains a gene specific sequence and an overhang region used for the homologous recombination into 2µ S. cerevisiae GFP-fusion vector.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2α forward</td>
<td>tcgacggttcatagacctggagatcccccatggattgatgatgatgc</td>
</tr>
<tr>
<td>A2α A316_reverse</td>
<td>Aaatgccttgaaataaatatccccggcctttggaagttgccttggtg</td>
</tr>
</tbody>
</table>

Table 2-2 Mutagenic primers used to generate the intermediate mutant A2αR constructs.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5' to 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>L54A_forward</td>
<td>cgattttctttggtgtgcgtatattgctggtgttttagc</td>
</tr>
<tr>
<td>L54A_reverse</td>
<td>gctaaacctacaccgatccactacgcagccaaagaaacgc</td>
</tr>
<tr>
<td>A88T_forward</td>
<td>ctgcttgcgtttttggtttttggactaatctttccttcc</td>
</tr>
<tr>
<td>A88T_reverse</td>
<td>ggagaagatagaagattgagcgcacaaaccaaggaagc</td>
</tr>
<tr>
<td>A239V_forward</td>
<td>ctaagtctttggttttattgttgtgttgttgttgtg</td>
</tr>
<tr>
<td>A239V_reverse</td>
<td>caacacacacgcaacaccaacactataatagccagacttag</td>
</tr>
</tbody>
</table>

2.2.3 Expression vector optimization

In order to determine the best expression vector for the yeast functional assay, the Rag23, Rant5 and Rant21 mutants, containing the GFP-His8 tag, were cloned into the three different expression vectors: p426GPD, p426GPD-L3,
containing the α factor signalling sequence and p306GPD (Dowell & Brown, 2009). All three vectors contain the strong GPD constitutive promoter. While the p306GPD is an integrating vector, both p426GPD are episomal vectors.

Figure 2-3 Schematic representation of the adenosine A$_2\alpha$R constructs used for the functional assay: The FLAG tag precedes the A$_2\alpha$R gene, which is then followed by a Tobacco etch virus (TEV) cleavage site present to remove the GFP and the 8 His TAG after purification.

The three different A$_2\alpha$R vector constructs were transformed using the lithium-acetate procedure (Gietz and Schiestl, 2007) (see appendix 6.3). Prior to transformation, the p306GPD plasmids containing the genes of interest were digested for one hour at 37°C with StuI and subsequently chromosomally integrated at the ura3 locus in the MMY24 (MATa fus1::FUS1-HIS3 LEU2::FUS1-lacZ far1 sst2 ste2 gpa1::ADE2 his3 ura3 trp1 Gpa1p/Gai3) yeast strain (Dowell and Brown, 2009).
2.2.4 In-gel fluorescence

The presence of the GFP tag was used to monitor the expression and quality of the protein produced. The -URA agar transformation plates were first screened after three days incubation at 30°C, using a mercury lamp coupled to a microscope to detect green colonies. Then for each mutant, three green colonies were inoculated in 10 ml of –URA media (6.7g YNB, 2% D-glucose, 1.92g/L amino acid supplement (23.53 mg of L-arginine (HCl), 117.6 mg of L-aspartic acid, 117.6 mg of glutamic acid (monosodium), 35.29 mg of L-lysine, 23.53 mg of L-methionine, 58.82 mg of L-phenylalanine, 441.2 mg of L-serine, 235.3 mg of L-threonine, 35.29 mg of L-tyrosine and 176.5 mg of L-valine) supplemented with 2% glucose and histidine to a final concentration of 20 mg/L, in 50 ml aerated capped tubes. Cultures were incubated at 30°C overnight with shaking at 300 rpm. Cells were harvested by centrifugation at 4 000 g for 10 mins. The supernatants were removed and the cell pellets resuspended in 500 µl of ice cold Yeast Suspension Buffer (YSB) (50 mM Tris–HCl (pH7.6), 5 mM EDTA, 10% glycerol, 1 complete protease inhibitor cocktail tablet (Roche) per 20ml buffer) and transferred into 1.5 ml Eppendorf tubes. 200 mls of acid washed glass beads were added and the tubes were shaken at a frequency of 20 sec⁻¹ for 10 mins, using a Tissue Lyser to break the cells. The tubes were then centrifuged at 2 000 g for 15 sec and the supernatants harvested in clean Eppendorf tubes and 500 µl of ice cold YSB added to the cell debris. The operation was repeated, the supernatants collected again and combined with the previous supernatants. The combined supernatants were then centrifuged at 13 000 g for 1 hr. The supernatants were removed and discarded and the membrane pellets resuspended in 100 µl of ice-cold YSB. A 10 µl aliquot of membrane suspension was mixed with
an equal volume of 2X Novex® Tris-Gly SDS-PAGE sample buffer (Invitrogen) for each preparation and the proteins separated on a Novex® 12% Tris-Gly gel (Invitrogen). The Benchmark Fluorescent protein markers (Invitrogen) were used as protein standards. The fluorescent protein bands were detected using a LAS-1000-3000 charged-coupled device (CCD) imaging system (Fujifilm) with an excitation wavelength of 460 nm.

In-gel fluorescence analysis of Rant21 was performed in both the presence and absence of protease inhibitors (PI). One complete protease inhibitor cocktail tablet (Roche) was dissolved in 50 ml of YSB. Cell pellets were then resuspended either in YSB or in YSB+PI.

2.2.5 Confocal microscopy

For each mutant, the same three colonies used for the in-gel fluorescence were inoculated in 10 ml of -URA media supplemented with 2% glucose and histidine to a final concentration of 20 mg/L, in three different 50 ml aerated capped tubes. Cultures were incubated at 30°C overnight with shaking at 300 rpm. Cells were harvested by centrifugation at 4 000 g for 10 mins and the supernatant removed and discarded. A 6 µl of each cell pellet was mixed individually with 24 µl of PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 1.8 mM KH₂PO₄) and 100 µl of parafix. Each sample mixture was dispensed into individual well of a black 96 well plate (Costar). After 30 mins to allow cells to settle, the supernatants were carefully removed and 50 µl of PBS added to each well. Localization of the properly folded mutants containing the GFP tag was detected using a TCS SP5 II confocal microscope from Leica.
2.2.6 Yeast cell growth assay

The mutants expressed in MMY24 were inoculated in –URA media supplemented with histidine to a final concentration of 20 mg/L, overnight at 30°C. The cultures obtained were diluted into –URA media supplemented with 26.1 mM Na₂HPO₄.7H₂O, 21.1 mM NaH₂PO₄ pH 7.0 to an OD₆₀₀ of 0.02. The assay mix was supplemented with 3-aminotriazole (3AT), to a range of final concentrations (see below for details). Fluorescein Di-β-D-Glucopyranoside (FDGlu) was also added to the media to a final concentration of 20 µM. 100 µl of this mix was dispensed across 20 wells of a 96-well plate. 20 different concentrations of NECA, ranging from 0.20 mM to 0.17 pM, were then dispensed across the 20 wells and the plate incubated at 30°C. Yeast growth was assessed by fluorescence measurement using a micro-plate reader (TECAN Ultra Evolution) 23 hours or 44 hours following incubation at 30°C. Log₁₀ [NECA] against fluorescence curves were plotted and fitted to non-linear regression, providing EC₅₀ values. Data were analyzed using GraphPad Prism 5.0 (GraphPad Software, San Diego, CA, USA).
2.2.7 Optimisation of assay conditions

Different aspects of the assay can be modified to optimize the signal window and to increase the signal to noise ratio. The first parameter examined was the incubation time at 30°C. The fluorescence readings were therefore performed after 23 hours and after 44 hours, in order to monitor the importance of incubation time for the assay. While optimizing the incubation time, a concentration of 2 mM 3AT was used.

As mentioned earlier, the 3AT plays a crucial role in knocking out the endogenous activity of the imidazoleglycerol-phosphate dehydratase. However, it is important to optimize the concentration of 3AT in the assay, to make sure that it does not interfere with the response triggered by the activation of the receptor and to get a good signal window which is defined as the ratio of maximum response : lower response being greater than two. Seven different concentrations were used to determine the most suitable one for this assay. Different volumes of a 1 M stock solution were added to the assay mixture to obtain the final following concentrations: 0 mM, 0.5 mM, 1 mM, 2 mM, 5mM, 10 mM and 20 mM.

Finally, the influence of endogenous adenosine on the assay results was investigated by addition of adenosine deaminase (ADA) to the assay mixture to a final concentration of 100 µM and results were compared with the assay run in the absence of adenosine deaminase both for Rag23 and the wild-type A2AR. For this analysis, 5 mM of 3AT were used.
2.3 Results

2.3.1 p306GPD vector is the most suitable vector for the yeast functional assay

The three mutants, namely Rag23, Rant5 and Rant21, were expressed using three different expression vectors: p426GPD, p426GPD-L3 (containing a signalling sequence allowing proper trafficking of the receptor) and p306GPD. In each case protein expression is under control of the GPD constitutive promoter. p426GPD and p426GPD-L3 are episomal vectors while p306GPD vector is an integrating vector.

![Image showing SDS-PAGE in-gel fluorescence analysis of Rant5 and Rag23 cloned in p306GPD, p426GPD and p426GPD-L3 expressed in the MMY24 yeast strain]

The in-gel fluorescence shows a faint band of approximately 65 kDa for all the lanes. This band is commonly seen when running in-gel fluorescence on membranes obtained from *S. cerevisiae* and corresponds to a nonspecific autofluorescent protein (Newstead *et al.*, 2007). For Rag23 and Rant5 in p306GPD, three strong bands can be
seen on the gel, one of which corresponds to the A2AR fused to the GFP (Fig 2-4). The other two bands are likely to be degradation products. No other band than the faint band at 65 kDa is observed when the constructs are cloned in the p426GPD or the p426GPD-L3 vectors. Addition of protease inhibitors did not improve the profiles observed. This could mean that either the protease inhibitors used are not efficient against the proteases degrading the protein or that the degradation observed is not due to protease activity but might be due to modification of the plasmid.

To further assess which one of the expression vectors was the most suitable for the assay, localization of the receptor fused to the GFP was monitored using confocal microscopy. Only the Rag23 and the Rant5 mutants were examined in this case. For Rag23, the images show a high number of cells expressing the receptor, with most of the cells showing green fluorescence and localization to the membrane when the mutant was cloned into the p306GPD vector (Fig 2-5A). However, when cloned into the p426GPD or into the p426GPD-L3 vectors, only a very small number of cells were green and the amount of receptor trafficking to the plasma membrane was much lower than observed for the p306 vector (Fig 2-5B and C).

Figure 2-5 Confocal imaging for Rag23 cloned into the p306GPD vector (picture showing only fluorescent cells obtained with the x63 lens) (A), the p426GPD vector (picture showing both fluorescent and non fluorescent cells obtained with x40 lens) (B) and the p426GPD-L3 vector (picture showing both fluorescent and non fluorescent cells, obtained with the x25 lens) (C).
Similarly, the expression of the Rant5 in p306GPD is high, as shown by the number of green cells (Fig 2-6A). Based on GFP fluorescence, the mutant seems to be trafficked properly into the cellular membrane. However, when cloned into the p426GPD or the p426GPD-L3, the number of cells expressing the receptor is low (Fig 2-6B and C) and only receptor produced by the p426GPD-L3 construct is correctly trafficked to the membrane.

![Confocal imaging for Rant5 cloned into the p306GPD vector (picture showing only fluorescent cells obtained with the x63 lens) (A), the p426GPD vector (picture showing both fluorescent and non-fluorescent cells obtained with x40 lens) (B) and the p426GPD-L3 vector (picture showing both fluorescent and non-fluorescent cells, obtained with the x63 lens) (C).](image)

Figure 2-6 Confocal imaging for Rant5 cloned into the p306GPD vector (picture showing only fluorescent cells obtained with the x63 lens) (A), the p426GPD vector (picture showing both fluorescent and non-fluorescent cells obtained with x40 lens) (B) and the p426GPD-L3 vector (picture showing both fluorescent and non-fluorescent cells, obtained with the x63 lens) (C).

2.3.2 Incubation time and 3AT concentration are critical

As the read out of this assay is a measure of the growth of the yeast, the incubation time before taking the readings is a crucial parameter of this assay. Two different incubation times were investigated using the Rag23 mutant: 23 hours and 44 hours. In both cases the three previously used expression vectors were investigated. The Rag23 mutant, cloned into the p306GPD expression vector yielded a dose-response curve with a positive signal window after 23 hours of induction at 30°C (Fig 2-8A), as demonstrated by the difference between the maximum and the minimum
responses. After 44 hours, although there was still a dose-response curve, the noise has increased significantly compared to the 23 hours incubation time (Fig 2-7B).

![Figure 2-7 Incubation time optimization using the Rag23 mutant cloned into the p306GPD, p426GPD and the p426GPD-L3 expression vectors. Cells were incubated for 23 hours (A) and 44 hours (B) prior to readings being taken. Data points are the average of one experiment performed in triplicate.]

When cloned into the p426GPD expression vector, the Rag23 gave a dose-response curve with a very small signal window after 23 hours (Fig 2-7A). After 44 hours cells expressing this construct showed very high levels of growth regardless of the concentration of agonist applied (Fig 2-7B).

After 23 hours, the Rag23 mutant cloned in p426GPD-L3 displayed no growth at all regardless of the concentration of agonist used (Fig 2-8A). However, after 44 hours of incubation, a dose-response curve can be observed (Fig 2-7B). All further work was carried out using the p306GPD vector with a 23 hours incubation time.

As mentioned earlier, another critical parameter of this yeast growth assay is the concentration of 3AT, an inhibitor of the imidazoleglycerol-phosphate dehydratase. Seven different concentrations of 3AT were investigated using the wild-type A2aR cloned into the p306GPD expression vector. Readings were taken following 23 hours incubation at 30°C. When 0 mM, 0.5 mM and 1 mM final concentration of 3AT were used there is no dose-response curve observed, due to very high background (Fig 2-8). When the 3AT concentration was increased to 2 mM, a dose-response curve can be
seen but the signal window is very small due to a very high background. When 5 mM, 10 mM and 20 mM of 3AT were used, dose-response curves were obtained with good signal windows. However, only at 5 mM 3AT was the maximum response not affected, thus this concentration was used for further experiments.

Figure 2-8 3AT concentration optimization: 7 different concentrations of 3AT were investigated using the wild-type \(A_2A \)R cloned in the p306GPD vector. Data points are the average of one experiment performed in triplicate.

The effect of any potential endogenous adenosine on the output of the assay was investigated by the addition of Adenosine deaminase. Fig 2-9 clearly shows that the addition of ADA did not affect the data meaning that endogenous adenosine is not interfering with the assay also demonstrating that it was not necessary to add ADA to further assays.
Figure 2-9 Effect of ADA on the activity profiles of the wild-type A2aR and the Rag23 with 5 mM of 3AT. Data points are the average of one experiment performed in triplicate.
2.4 Discussion

The yeast functional assay required optimization in order to be utilized for the studies of the WT and mutant A2A Rs. The first step of assay optimization involved assessment of which expression vector resulted in adequate expression levels and correct localization of the receptors within the cells. The constructs containing the GFP were cloned in three different expression vectors. The quality of the protein expressed was monitored by in-gel fluorescence while localization was monitored by confocal microscopy. Incubation time with agonists, concentration of 3AT and role of endogenous adenosine were also investigated.

The p306GPD integrating vector gave the best expression levels and membrane localization. It is unclear why the integrating vector gave better results than the episomal vectors.

Investigation of the optimal incubation time with agonist was also assessed using the functional assay. The results confirmed the earlier finding indicating that using the p306GPD vector resulted in higher receptor expression. As shown in Figure 2-7, after 23 hours a dose-response curve is observed when the mutant was cloned into the p306GPD vector. When expressed using the p426GPD vector, although a dose-response curve is observed after 23 hours, the signal window is greatly reduced. This is mainly due to a very low efficacy achieved at saturating concentrations of agonist, consistent with low expression levels. When cloned into the p426GPD-L3 vector, the Rag23 shows no dose-response curve at all after 23 hours.

However, after 44 hours incubation time, the profiles observed are quite different. Indeed, the Rag23 cloned into the p306GPD vector still exhibits a dose-
response curve but with an increase noise signal. The Rag23 cloned into the p426GPD shows very high level of growth regardless of the concentration of agonist used.

In contrast, the Rag23 cloned into the p426GPD-L3 vector now shows a dose-response curve. This data indicate that when using the p426GPD-L3 expression vector, there is a delay in expression and trafficking of the receptor. Indeed, the in-gel fluorescence and confocal data were obtained after overnight cultures and showed no detectable expression of the protein. This was confirmed by the lack of signal in the functional assay. However, after 44 hours, the yeast seems to be expressing some functional protein as demonstrated by the dose-response curve obtained in the yeast growth assay.

Obtaining a clear signal window is important in order to achieve high assay sensitivity. Especially since it is expected that a range of different functional profiles will be observed. The 5 mM 3AT concentration was chosen for future assays for two reasons. Firstly, when using 5 mM of 3AT, the maximum response obtained at saturating concentrations of agonist is the same as obtained when using no 3AT. In contrast, both 10 and 20 mM 3AT reduced the maximum response. This means that the 3AT is not limiting the maximum response when using 5 mM. Secondly, when using 5 mM of 3AT, the signal window obtained was around two.

Finally, the addition of adenosine deaminase has no effect on the functional profiles of the wild-type and Rag23 receptor constructs in the yeast growth assay. This indicates that there is no interference from endogenous adenosine in this assay. Indeed, if adenosine had any effect at all, this should be reduced by the addition of
ADA, which metabolizes any adenosine present. Therefore ADA was not added when further assays were performed.

In summary, a yeast cell-based receptor-signalling assay was optimized to allow assessment of the functional profiles of the wild-type and thermostabilised mutant A\textsubscript{2A}R constructs. The p306GPD vector was chosen for expression since it gave the best results in terms of functional expression and localization of the receptors. In addition, the optimal incubation time used following this study was 23 hours in the presence of 5 mM of 3AT and no ADA. Using this set of conditions, this assay was optimized to provide a robust, high throughput and inexpensive tool to functionally characterize a set of thermostable A\textsubscript{2A}R mutants.
3 Functional characterizations of the Rag23, Rant5, Rant21 and some intermediate mutants

Part of the work presented here has been published in:

Loss of constitutive activity is correlated with increased thermostability of the human adenosine A2A R

Nicolas Bertheleme, Shweta Singh, Julia Hubbard, Simon Dowell, Bernadette Byrne
3.1 Introduction

Three of the most thermostable A\textsubscript{2A}R mutants generate by alanine-scanning mutagenesis (Magnani et al., 2008) were investigated using both the yeast assay and a radioligand binding assay. One of these mutants is in a preferentially agonist-binding conformation (Rag23) and contains the following five mutations: F79A, A184L, R199A, L208A and L272A. The other two are preferentially in an antagonist-binding conformation (Rant5 and Rant21) and contain respectively the following three and four mutations: A54L, T88A and V239A; A54L, T88A, K122A and V239A.

Here the effects of these mutants on A\textsubscript{2A}R function are explored using the yeast cell growth assay described in the previous chapter. To further investigate the effect of individual mutations on the pharmacological profile of the receptor, intermediate mutants, between Rant5 and WT containing one or two mutations were generated and also characterized in the yeast cell growth assay.

In addition, Rag 23.1, an intermediate mutant between Rag 23 and WT in which the L208A was mutated back to the original leucine was characterised. The Rag 23.1 mutant was investigated because of the crucial localisation of L208 in ICL3.

Using the previously optimized yeast growth assay, three pharmacological parameters of the receptor constructs were examined. Firstly, the efficacy is a measure of the maximum response obtained when saturating concentrations of agonist are used (Fig 3-2). It represents how efficiently the receptor is able to activate its cognate G protein when fully activated by an agonist. Secondly, the constitutive activity is a measure of the activity of the receptor in the absence of agonist (Fig 3-2). It can be graphically illustrated as shown in figure 3-2 by the receptor activity at very
low concentrations of agonist. Finally, the potency is defined as the concentration of agonist necessary to obtain fifty percent of the maximum agonist-induced response (Fig 3-1). The potency is represented either by the \(EC_{50} \) or the \(pEC_{50} \). Therefore, this assay allows us to make the distinction between agonist-induced activity and constitutive activity.

Figure 3-1 Dose-response curve illustrating the concepts of efficacy, potency and constitutive activity. The efficacy is graphically illustrated by the plateau reached at saturating concentrations of agonist. The constitutive activity is graphically illustrated by the plateau reached at very low concentrations of agonist. The potency is illustrated by the red lines.

The data presented in this chapter indicate that there is a correlation between loss of constitutive activity and thermostability. Furthermore, the data suggest that the agonist-induced and constitutively active conformations are distinct.
3.2 Material and Methods

3.2.1 Material

Yeast nitrogen base and yeast extract were purchased from Difco. Peptone, L-histidine, EDTA, EGTA, bovine serum albumin, Folin-Ciocalteau reagent, amino acids, 3AT, trichloro acetic acid, adenosine and theophylline were obtained from Sigma-Aldrich and dimethyl sulfoxide (DMSO) was purchased from Acros Organics (Geel, Belgium). Scintillation cocktail (Ultima Gold MV) and [³H]NECA were obtained from PerkinElmer (Cambridge, UK). [³H]ZM241385 was obtained from American Radiolabelled Chemicals Inc. (Royston, UK), while ZM241385 and NECA were obtained from Tocris (Abingdon, UK). GF/B filters were from Whatman (Little Chalfont, UK). The Lightning Quikchange site directed mutagenesis kit was obtained from Agilent technology (Wokingham, UK). Fluorescein Di-β-D-Glucopyranoside was purchased from Invitrogen (Paisley, UK).

3.2.2 Site-directed mutagenesis

The wild-type A2AR and most of the intermediate mutants were generated from the Rant5 synthetic gene by site-directed mutagenesis using the QuickChange Lightning Site-Directed Mutagenesis kit and the primers detailed in Table 3-1.

The Rag23.1 intermediate mutant (F79A, A184L, R199A, L272A), was obtained from the Rag23 synthetic gene by site-directed mutagenesis using the QuickChange Lightning Site-Directed mutagenesis kit and the primers detailed in Table 3-1.
Table 3-1 Mutagenic primers used to generate the intermediate mutant and wild-type A2AR constructs.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5' to 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>L54A_forward</td>
<td>cgtgtttcttttgctgctgctgatattgcggttggttttagc</td>
</tr>
<tr>
<td>L54A_reverse</td>
<td>gctaaaacaccaaccgcaatatcagcagcagcgaagaacaacg</td>
</tr>
<tr>
<td>A88T_forward</td>
<td>cttgtcctgggtttggttttgactcaatctctctctctcc</td>
</tr>
<tr>
<td>A88T_reverse</td>
<td>ggagaagataagaagattgagtcacaaacacaaacacgaagcaag</td>
</tr>
<tr>
<td>A239V_forward</td>
<td>ctaagtccctggctattagttttgttcttggttttgttg</td>
</tr>
<tr>
<td>A239V_reverse</td>
<td>caacacaaagcagacacaccaactataatatgcacaggacctag</td>
</tr>
<tr>
<td>A208L_forward</td>
<td>cttttctctggctgcagagcagacactaatagctgctctttgctctgggct </td>
</tr>
<tr>
<td>A208L_reverse</td>
<td>ggttgagattccattttgtttgttttgttctggcagcagcagaaaagtag</td>
</tr>
<tr>
<td>V239I_forward</td>
<td>ctgccaagtcactggccatcatatatagggctcttttgcc</td>
</tr>
<tr>
<td>V239I_reverse</td>
<td>ggcaagagccctataatcgagcgtcagttggtgagcgcaggggcagcagcag</td>
</tr>
</tbody>
</table>

3.2.3 Expression

Since the level of constitutive activity as well as the efficacy of the different constructs will be compared, it is essential to estimate the expression levels of each mutant produced in the yeast system. Indeed, the levels of constitutive activity and efficacy are dependent on the number of functional receptors per cell. In contrast, the potency is not affected by expression levels. As described in chapter 2, all the A2AR constructs were fusions with a C-terminal GFP-8His tag in the p306GPD vector, transformed using the lithium-acetate procedure (Gietz & Schiestl, 2007) and chromosomally integrated at the ura3 locus in the MMY24 (MATa fus1::FUS1-HIS3 LEU2::FUS1-lacZ far1 sst2 ste2 gpa1::ADE2 his3 ura3 TRP1::GPA1-Gai3) yeast strain (Dowell & Brown, 2009). The wild-type and Rag23.1 constructs were also transformed into the MMY11 (MATa fus1::FUS1-HIS3 LEU2::FUS1-lacZ far1 sst2
ste2 gpa1::ADE2 his3 ura3 TRP1) yeast strain which has the same genotype as MMY24 but lacks the Gα protein. Estimation of the expression levels for all the constructs was obtained from the B_{max} values obtained from the saturation binding assays. In addition, the fluorescence of the GFP was also used as previously described (Drew et al., 2008). Briefly, 10 ml of yeast culture expressing the desired protein were centrifuged at 4000 g for 10 minutes and resuspended in 200 μl of PBS. 200 μl were transferred into a black 96-well plate and the relative fluorescence units (RFU) were measured using a SpectraMax M2e from Molecular Devices. The process was also performed with 10 ml of yeast culture not expressing the protein. The GFP concentration was obtained using the RFU of a known concentration of GFP in a final volume of 200 μl with the following formula:

\[\text{Conc GFP} = \left(\text{RFU}_{\text{protein}} - \text{RFU}_{\text{no protein}} \right) \times \left(\text{known Conc of GFP} \right) / \text{RFU}_{\text{GFP}} \]

This concentration was then divided by 40 and multiplied by 0.6 to determine the concentration in the 200 μl of buffer and to account for the recovery, which is typically 60%. This was then multiplied by the mass of the desired protein and divided by the mass of GFP to obtain the membrane protein overexpression in mg/L of culture.
3.2.4 Membrane preparation

Cells were resuspended in cold breaking buffer (50 mM Tris.HCl (pH7.6), 1 mM EDTA, 0.6 M sorbitol, 1 tablet of protease inhibitor for 100 ml). Glass beads were added to the suspension and cells were broken using a tissue lyser (Qiagen) set to 20 Mhz for 10 min. The suspension was then centrifuged at 4000 g for 1 min and the supernatant transferred to a new eppendorf tube. Cell debris and glass beads were resuspended and the same operation was repeated. Combined supernatants were then centrifuged at 13 000 g for 1 hour to collect the membranes. The supernatant was discarded and the membrane pellets resuspended in membrane buffer (20 mM Tris.HCl (pH7.5), 150 mM NaCl, 20% glycerol, 1 tablet of protease inhibitor for 100 ml), flash frozen in liquid nitrogen and stored at -80°C.

3.2.5 Protein concentration

All protein concentrations were determined as previously described (Lowry et al., 1951; Singh et al., 2010). A stock solution of BSA at 1 mg/ml was used to generate a standard curve. 0, 5 10, 20, 40, 60, 80, 100 µL of the stock solution were dispensed in eppendorfs in triplicate in addition to 5 and 10 µL of the test protein. 1 ml of 10% trichloro acetic acid (TCA) was added to all tubes, which were vortexed immediately. The tubes were centrifuged at 4000 g for 15 min. The supernatant was discarded and the precipitate dried for 10 min. 650 µl of a solution containing Lowry solution A (2% anhydrous Na₂CO₃, 0.1 M NaOH), Lowry solution B (4% CuSO₄.5H₂O) and Lowry solution C (2% NAK tartrate) at a 100/1/1 ratio were added. The tubes were vortexed immediately and incubated at room temperature for 10 min.
The Folin-Ciocalteau reagent was diluted with an equal volume of water and 100 µl of this solution was added to each tube. The tubes were vortexed immediately and incubated at room temperature for 10 min. 650 µL of ddH$_2$O was added to each condition and the tubes were vortexed immediately. The OD$_{760}$ absorbance values were plotted versus the BSA concentration. The amount of protein in the test sample was calculated from the standard curve using GraphPad Prism 5.0 (GraphPad Software, San Diego, CA, USA).

3.2.6 Saturation binding assay

For saturation assays membranes expressing the WT or mutant A$_2$AR forms were incubated with $[^3]$H]ZM241385 (0.036 – 20 nM) in binding buffer (20 mM HEPES pH 7.4, 1 mM EDTA, 1 mM EGTA, 0.1% BSA). Non-specific binding was defined in the presence of 10 mM theophylline at each concentration. The WT and Rag23.1 membranes, prepared in the absence of NaCl, were also incubated with $[^3]$H]NECA (0.3-300 nM) in an alternative binding buffer (20 mM HEPES pH 7.4, 1 mM EDTA, 1 mM EGTA, 0.1% BSA, 10 mM MgCl$_2$). Non-specific binding was defined in the presence of 10 mM theophylline at each concentration. Assays were performed at least in duplicate in a final volume of 1 ml containing 20 µg of membrane protein in each tube. The reactions were incubated for 3 h at room temperature. Following incubation, receptor bound radioligand was collected by filtration through Whatman glass micro-fibre GF/C filters which were then placed in individual scintillation vials containing 2 ml of Ultima GoldTM XR scintillation fluid. The filters were allowed to soak for at least six hours before the radioactivity was determined using an LS 6500 Beckman Coulter scintillation counter.
The data were obtained as Disintegration Per Minute (DPM), which were then converted in radioligand concentrations (pmol) using the specific activity of the ligand. Finally, the data were plotted as pmol of radioligand bound by mg of protein against the free concentration of radioligand added. The curves were fitted to a non-linear regression using a one-site binding model. This provided two parameters: the dissociation constant K_d and the B_{max}. The K_d is defined as the concentration of ligand needed to occupy half of the receptor binding sites and therefore is a measure of the affinity of the ligand for the protein. The B_{max} represents the maximum number of receptor binding sites occupied at saturating concentrations of ligand. Therefore, it is a measure of the number of functional binding sites.

3.2.7 Competition binding assay

Agonist competition binding profiles for the WT and mutant receptor forms were determined by competition binding assays. 20 µg of membrane protein containing WT and mutant $A_2\text{A}R$ were incubated with a fixed concentration of $[^3\text{H}]\text{ZM241385}$ (2 nM for Rant5, Rant21 and T88A and 9 nM for Rag23) and varying concentrations of competing NECA (100 µM to 1 nM for WT and Rag23 and 10 mM to 10 nM for Rant5, Rant21 and T88A) or Adenosine, in a final volume of 1 ml binding buffer. Non-specific binding was defined in the presence of 10 mM theophylline. Initiation, incubation and termination procedures were as described for the saturation binding assay.
3.2.8 Yeast cell growth assay

The yeast cell growth assay was performed as described in Chapter 2; Section 6. The RFU measured were normalised to the WT in each experiment. 100% represents the maximum response of the WT and 0% represents the response obtained in the absence of receptor.
3.3 Results

3.3.1 Expression levels

As mentioned previously, monitoring expression levels of each mutant form of the receptor is important in order to be able to accurately compare the constitutive activities and efficacies of the different constructs. This was done by measuring the fluorescence of GFP. The B_{max} values obtained from the saturation binding assays are also a measure of the expression levels. However, in the case of the B_{max}, the values are generated after membrane preparation. During this process, some of the protein may be degraded and the amount that is lost is likely to be construct-dependent. This may explain the discrepancies seen in the expression levels assessed by eGFP measurement and radioligand binding analysis. Results are summarized in table 3-2.

<table>
<thead>
<tr>
<th>Constructs</th>
<th>Expression (mg/ml)</th>
<th>B_{max}±SEM (pmol/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>0.8</td>
<td>1.1±0.2</td>
</tr>
<tr>
<td>Rag23</td>
<td>1.0</td>
<td>5.1±0.4</td>
</tr>
<tr>
<td>Rag23.1</td>
<td>1.1</td>
<td>1.8±0.7</td>
</tr>
<tr>
<td>Rant5</td>
<td>1.2</td>
<td>6.5±0.5</td>
</tr>
<tr>
<td>Rant21</td>
<td>1.6</td>
<td>5.8±0.7</td>
</tr>
<tr>
<td>A54L</td>
<td>1.1</td>
<td>ND</td>
</tr>
<tr>
<td>T88A</td>
<td>1.1</td>
<td>2.5±0.1</td>
</tr>
<tr>
<td>V239A</td>
<td>1.0</td>
<td>ND</td>
</tr>
<tr>
<td>A54L+T88A</td>
<td>0.7</td>
<td>ND</td>
</tr>
<tr>
<td>A54L+V239A</td>
<td>0.9</td>
<td>ND</td>
</tr>
<tr>
<td>T88A+V239A</td>
<td>1.2</td>
<td>ND</td>
</tr>
</tbody>
</table>

The expression levels of all constructs were calculated from the relative fluorescence units as described in Drew et al. (2008). The B_{max} values of the WT, Rant and Rag constructs were assessed by radioligand binding analysis of membrane bound receptor. ND: not determined.
In general, the expression levels expressed as mg/ml are similar for the different constructs. The major discrepancy concerns the wild-type and the Rant21. However, this does not influence our conclusions since the wild-type exhibits higher constitutive activity and efficacy than the Rant21 despite a lower expression level (see Fig 3-2).
3.3.2 Pharmacological profiles of the WT and mutants A2A R

3.3.2.1 Wild-type, Rag23, Rant5 and Rant21

3.3.2.1.1 The Yeast cell growth assay

A summary of the pharmacological data for the constructs is given in Table 3-3. In the yeast cell assay, increases in fluorescence due to the production of fluorescein, report increases in cell growth driven by receptor activation. The wild-type receptor exhibits high levels of constitutive activity, observed as cell growth in the absence of any receptor agonist (Fig 3-2A, Table 3-3). The constitutive activity represents more than 50% of the total activity of the wild-type receptor. This is consistent with the high level of A2A R constitutive activity observed in a mammalian cell system as assessed by cAMP accumulation (Klinger et al., 2002a). Addition of the A2A R agonist, NECA, further activates the receptor in a concentration dependent manner (pEC50 = 7.5 ± 0.1; Fig 3-2A; Table 3-3). The constitutive activity of the wild-type was partially inhibited by inverse agonists (Fig 3-3).

Figure 3-2 Functional data for the thermostabilised A2A mutants Rag23, Rant5 and Rant21 compared to WT expressed in the MMY24 S. cerevisiae strain as constructs in the p306GPD vector. Data points are the average of three different experiments performed in triplicate. (A) WT, Rag23, Rag23.1 (B) WT, Rant5, Rant21.
Table 3-3 Pharmacological characteristics of the wild-type and mutants A2A forms.

<table>
<thead>
<tr>
<th>Receptor form</th>
<th>NECA pEC₅₀ ± SEM</th>
<th>Constitutive activity ± SEM (% of max activity of WT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT (n=3)</td>
<td>7.5 ± 0.1</td>
<td>54.8 ± 1.5</td>
</tr>
<tr>
<td>Rag23 (n=3)</td>
<td>7.9*</td>
<td>6.1 ± 0.9</td>
</tr>
<tr>
<td>Rant5 (n=3)</td>
<td>ND</td>
<td>5.3 ± 0.4</td>
</tr>
<tr>
<td>Rant21 (n=3)</td>
<td>ND</td>
<td>3.5 ± 0.2</td>
</tr>
<tr>
<td>Rag23.1 (n=2)</td>
<td>7.5*</td>
<td>3.6 ± 0.2</td>
</tr>
</tbody>
</table>

*SEM=0

Data are presented as mean ± standard error means of at least two independent experiments performed in triplicate.

Figure 3-3 Pharmacological profiles of four different ligands using wild-type A₂AR. The agonist NECA activates the receptor in a dose-dependent manner. The inverse agonists GW866133X and GSK124631A partially inhibit the constitutive activity. HU210, a selective CB2 agonist, was used as a negative control and displays no effect on the receptor.

The Rag23, which is in a preferentially agonist-conformation exhibits a slight increase in potency compared with the wild-type and a decreased maximum efficacy (pEC₅₀ = 7.9; Fig 3-2A; Table 3-3). The Rag23.1 intermediate mutant exhibits no constitutive activity and shows a similar potency to Rag23 with an
increased efficacy. Indeed, the efficacy of the Rag23.1 is similar to that of the wild-type (Fig 3-2A). The Rant5 and Rant21 mutants, which are in a preferentially antagonist-conformation show no agonist-induced receptor activity (Fig 3-2B). Interestingly, in contrast to the wild-type, the thermostabilised mutants also show no constitutive activity (Fig 3-2, Table 3-3).

3.3.2.1.2 Saturation and competition binding analysis in the MMY24 yeast strain

Saturation binding analysis of the wild-type, Rag23, Rant5 and Rant21 mutants reveals that all the receptor forms exhibit high affinity binding for the antagonist ZM241385 although the affinity of the Rag23, the thermostabilised agonist binding form is reduced by an order of magnitude compared to the other three receptor forms (Fig 3-4, Table 3-4). This is in agreement with the results reported for the expression of these receptor forms in E. coli (Magnani et al., 2008).

![Figure 3-4 Saturation binding of [3H]ZM241385 to S. cerevisae MMY24 membranes expressing the wild-type (A), Rag23 (B), Rant5 (C) and Rant21 (D) AαR constructs. Data are representative of two independent experiments performed in triplicate. B_{max} and K_{d} values were derived by non-linear regression analysis. Mean data ± SEM are presented in Table 3-4.](image_url)
However the precise K_d values obtained in the yeast expression described here are significantly lower than those reported for the same constructs expressed in *E. coli*. For example a K_d of 0.85 nM was obtained here (Fig 3-4A, Table 3-4) for the wild-type receptor compared to 12 nM for the receptor in *E. coli*. The value reported here is consistent with the A$_{2A}$R heterologously expressed in *Pichia pastoris* (Fraser, 2006; Singh *et al.*, 2010), *S. cerevisiae* (O'Malley *et al.*, 2007) CHO cells (Dionisotti *et al.*, 1997; Klotz *et al.*, 1998) and A$_{2A}$R present in rat brain tissue (Alexander & Millns, 2001). Competition binding analysis, using NECA as an agonist, reveals that while Rag23 binds the agonist NECA with reduced K_i compared to the wild-type (Fig 3-5A and B, Table 3-4), the Rant5, Rant21 and T88A have dramatically increased K_i values (Fig 3-5C and D, Table 3-4). These results are consistent overall with those obtained for the same receptor constructs expressed in *E. coli* (Magnani *et al.*, 2008).

Figure 3-5 Binding of the low affinity agonist NECA to *S. cerevisiae* MMY24 membranes expressing the wild-type (A), Rag23 (B), Rant5 (C) and Rant21 (D) A$_{2A}$R constructs was assessed in competition with $[^3H]$ZM241385. Data were fitted best to a one binding site model and are representative of two independent experiments performed in triplicates. K_i values were derived from experimentally determined IC$_{50}$ values. Mean data ± SEM are presented in Table 3-4.
It is possible that the lack of constitutive activity of the Rag23 and Rag23.1 is the result of altered G-protein coupling for these mutants. The high efficacy of the Rag23.1 mutant following stimulation with ligand is strongly suggestive that the lack of constitutive activity seen in this mutant is not the result of reduced G-protein coupling. However, in order to investigate this further, binding of wild-type and Rag23.1 to $[^3H]$NECA in the presence and absence of G-protein was determined. This was achieved by also expressing the receptor variants in an alternative yeast strain, MMY11 (Olesnicky et al., 1999), genetically identical to MMY24 but lacking the G protein alpha subunit. It is known that absence of G-protein reduces the affinity of a receptor for agonist (Ross et al., 1977; Yao et al., 2009). Thus if G-protein coupling has not been altered in the Rag23.1 mutant, the same level of reduction in affinity for $[^3H]$NECA in the absence of G-protein for both the mutant and wild-type receptor forms should be seen. Saturation binding assay using $[^3H]$NECA revealed that the binding affinity for the agonist of both the wild-type and Rag23.1 in the absence of G-protein was reduced by an order of magnitude compared with the binding affinities in the presence of G-protein (Fig 3-6, Table 3-4), demonstrating that the mutant does not have altered G-protein coupling.
Saturation binding of $[^3\text{H}]$NECA to *S. cerevisae* membranes expressing the wild-type in MMY24 (A), wild-type in MMY11 (B), Rag23.1 in MMY24 (C) and Rag23.1 in MMY11 (D) A$_{2A}$R constructs. Data are representative of two independent experiments performed in duplicate. K_d values were derived by non-linear regression analysis. Mean data ± SEM are presented in Table 3-3.

Table 3-4 K_d and K_i values for the different A$_{2A}$R forms obtained from saturation and competition binding assay using $[^3\text{H}]$ ZM235481 and $[^3\text{H}]$NECA as hot ligand and NECA and Adenosine as cold ligand.

<table>
<thead>
<tr>
<th>Receptor form</th>
<th>$[^3\text{H}]$ ZM241385 K_d ± SEM (nM)</th>
<th>$[^3\text{H}]$NECA K_d ± SEM (nM)†</th>
<th>NECA K_i ± SEM (μM)</th>
<th>Adenosine K_i ± SEM (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>0.85 ± 0.08</td>
<td>8.6 ± 3.7</td>
<td>123.9 ± 7.1</td>
<td>1.01 ± 0.23</td>
</tr>
<tr>
<td>Rag23</td>
<td>6.32 ± 0.34</td>
<td>-</td>
<td>0.18 ± 0.02</td>
<td>-</td>
</tr>
<tr>
<td>Rag23.1</td>
<td>-</td>
<td>1.6 ± 0.2</td>
<td>14.4 ± 1.3</td>
<td>-</td>
</tr>
<tr>
<td>Rant5</td>
<td>0.74 ± 0.05</td>
<td>-</td>
<td>531 ± 300</td>
<td>-</td>
</tr>
<tr>
<td>Rant21</td>
<td>0.63 ± 0.09</td>
<td>-</td>
<td>247 ± 18</td>
<td>-</td>
</tr>
</tbody>
</table>
3.3.2.2 Intermediate mutants

The functional profiles of the mutants intermediate between Rant5 and wild-type show that the A54L mutant has reduced constitutive activity compared to wild-type (Table 3-4). In addition while this mutant exhibits agonist-dependent receptor activity, its potency is greatly reduced compared with the wild-type receptor or Rag23 ($\text{pEC}_{50} = 7.0$; Figure 3-7A; Table 3-5).

![Figure 3-7](image)

Figure 3-7 Functional data for the thermostabilised A2A intermediate mutants expressed in the MMY24 *S. cerevisae* strain as constructs in the p306GPD vector. Data points are the average of three different experiments performed in triplicate. (A) Single mutants; (B) Double mutants.

In contrast, the T88A mutant displays high levels of constitutive activity but has no detectable agonist-induced activity, whereas the V239A mutant has no detectable constitutive activity and shows lower sensitivity to NECA than A54L ($\text{pEC}_{50} = 5.5 \pm 0.1$; Figure 3-7A; Table 3-5).
Table 3-5 Pharmacological characteristics of the intermediate mutants. Data are presented as mean ± standard error means of at least two independent experiments performed in triplicate.

<table>
<thead>
<tr>
<th>Receptor form</th>
<th>NECA pEC(_{50}) ± SEM</th>
<th>Constitutive activity ± SEM (% of max activity of WT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A54L</td>
<td>7.0*</td>
<td>25.0 ± 1.1</td>
</tr>
<tr>
<td>T88A</td>
<td>ND</td>
<td>39.8 ± 2.3</td>
</tr>
<tr>
<td>V239</td>
<td>5.5 ± 0.1</td>
<td>2.5 ± 0.1</td>
</tr>
<tr>
<td>A54L+T88A</td>
<td>ND</td>
<td>46.4 ± 4.5</td>
</tr>
<tr>
<td>A54L+V239</td>
<td>5.3 ± 0.1</td>
<td>2.6 ± 0.1</td>
</tr>
<tr>
<td>T88A+V239</td>
<td>ND</td>
<td>3.4 ± 0.3</td>
</tr>
</tbody>
</table>

SEM=0. ND: not determined.

The A54L + T88A and A54L + V239A mutants show almost identical activity profiles to that of the single T88A and V239A mutants respectively, while the T88A + V239A mutant shows a complete loss of both constitutive and agonist-dependent activity (Figure 3-7B; Table 3-5).

3.3.2.2.1 The effect of the T88A mutation

In order to further explore the complete lack of agonist-induced activity observed for the T88A mutant, the functional profile of that mutant was investigated using a different agonist, adenosine. While NECA is no longer able to activate the T88A mutant, adenosine is still able to stimulate the mutant but with reduced potency compared to the wild-type receptor. Furthermore, the efficacy of adenosine is maintained in the T88A mutant (Fig 3-8, Table 3-6). Competition binding analysis, using adenosine as an agonist, reveals that the T88A has increased \(K_i\) compared to the wild-type (~6 fold increase), consistent with the decrease in pEC\(_{50}\) observed in the yeast growth assay (Table 3-6).
Figure 3-8 Activity of the T88A mutant compared to wild-type A2AR. The different receptor forms were expressed in the MMY24 S. cerevisae strain as constructs in the p306GPD vector. The cells were treated with increasing concentrations of either NECA (A) or adenosine (B). Data points are the average of three different experiments performed in triplicate.

Table 3-6 Comparison of the NECA and adenosine binding and activation profile of T88A

<table>
<thead>
<tr>
<th>Receptor form</th>
<th>NECA (\text{pEC}_{50} \pm \text{SEM})</th>
<th>Adenosine (\text{pEC}_{50} \pm \text{SEM})</th>
<th>NECA (\text{K}_i \pm \text{SEM}) ((\mu \text{M}))</th>
<th>Adenosine (\text{K}_i \pm \text{SEM}) ((\mu \text{M}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>7.5 ± 0.1</td>
<td>6.4*</td>
<td>1.01 ± 0.23</td>
<td>0.36 ± 0.01</td>
</tr>
<tr>
<td>T88A</td>
<td>ND</td>
<td>4.5*</td>
<td>187 ± 54</td>
<td>2.75 ± 0.05</td>
</tr>
</tbody>
</table>

ND: no detectable activity, * SEM=0

As shown in Fig 3-8, the dose-response curve obtained for the T88A with adenosine as an agonist exhibits a biphasic nature. A possible explanation for this biphasic nature could be toxicity of the ligand at high concentrations. This was investigated by performing the assay with cells not expressing the receptor of interest but still containing the expression vector. Histidine was added to the assay media to a final concentration of 6 \(\mu \text{g/ml} \) in order to observe cell growth and potentially cell death at high concentration of adenosine. The results of this experiment showed no toxic effect on cell growth (Fig 3-9). The shape of the curve is therefore likely due to other pharmacological effects such as dimerisation of the receptor or allosteric binding of the adenosine. Further investigation would be needed to fully understand this phenomenon.
3.3.2.2 The effect of the V239A mutation

Another interesting effect is the strong influence that the V239A mutation has on constitutive activity. Indeed, every mutant containing this particular substitution exhibits a complete loss of constitutive activity. Since the mutation involves changing one uncharged residues for another, it is likely that the effect observed is due to the reduction in size of the side chain. To further investigate the effect of the size of this residue, another mutant substituting V239 for a larger Ile residue (A54L+V239I) was generated and characterized (Fig 3-10).
The A54L+V239A exhibited no constitutive activity and reduced potency compared to wild-type. In contrast, the A54L+V239I mutant exhibits higher constitutive activity than wild-type and shows a complete loss of NECA-induced activity.
3.4 Discussion

3.4.1 Thermostabilisation and functional profiles

The use of thermostable mutants of A2AR has been an important tool in facilitating the determination of high-resolution crystal structures (Lebon et al., 2011b), but the effects of these mutations on receptor signalling function have not been described. The yeast cell growth assay allows simple and rapid assessment of the activation profile of different receptor forms. Here, the wild-type A2AR in addition to the previously reported Rag23, Rant5 and Rant21 mutants (Magnani et al., 2008) were profiled in order to obtain a greater understanding of the molecular basis of their thermostabilization. The results of the analysis clearly demonstrate that while Rag23 retains high levels of agonist-induced receptor activity, the Rant mutants exhibit no discernable receptor activation. This is in agreement with the previous study using radioligand binding which showed that the Rant mutants have a significantly reduced affinity for the agonist NECA and a much stronger preference for the antagonist binding conformation than the wild-type receptor (Magnani et al., 2008). One key observation was the total loss of constitutive activity for all three mutant forms. Constitutive activity accounts for approximately 50% of the overall activity of the wild-type A2AR in this assay. On the basis of these data, it seems likely that the loss of constitutive activity observed for all three mutant receptors is a major contributory factor in their increased thermostability.

Analysis of the Rant5 and intermediates revealed a clear trend in the characteristics of these mutants with differing degrees of reduced potency and reduced/no constitutive activity. One of the intermediate mutants T88A + V239A has
no constitutive activity and no signalling as observed for the Rant5 and Rant21 mutants. Another intermediate mutant A54L + V239A exhibits no constitutive activity and much lower potency compared with the wild-type receptor. The T_m for this receptor form in the presence of antagonist was measured as 42°C compared to 46°C for Rant5 and 49°C for Rant21 (Magnani et al., 2008). There is no reported T_m for the T88A + V239A mutant receptor but given the lack of both constitutive and agonist induced signalling from this construct it is likely to be similar to the Rant5 and Rant21 mutants.

It is clear from the data that the effects of some of the intermediate mutations are additive. For example the T88A mutant has no agonist-induced activity but retains high levels of constitutive activity while the V239A mutant has reduced potency and no constitutive activity. The T88A + V239A double mutant has no agonist-induced activity and no constitutive activity as observed for Rant5. It should be noted that the Rant5 does bind NECA but with much reduced affinity. The conformation change induced by the mutations is sufficient to prevent receptor activation but still allows low affinity binding of NECA. Other mutant combinations do not appear to be additive eg. A54L + V239A, which has the same receptor activity profile as the V239A only mutant. It may be that there is a benefit conferred by the A54L that is not detectable by this assay.
3.4.2 Constitutive versus agonist-induced activity

The classical model of GPCR activity describes GPCRs as existing in an equilibrium between an active R* state and an inactive R state (Samama et al., 1993). This model takes into account the constitutive activity of receptors by assuming the transition between the inactive R to active state R* carries a sufficiently low energetic cost that it is possible for some receptors to be in the R* state even in the absence of ligand. According to this model, the increase of agonist affinity should be accompanied by an increase of constitutive activity. However, the data presented here for Rag23 and Rag23.1 shows that it is possible to have very high levels of agonist-induced activity and ligand affinity even when constitutive activity has been abolished. By contrast, analysis of the T88A mutant revealed that significant constitutive activity was retained while the ability to be activated by NECA was lost. It is possible that the lack of constitutive activity observed for Rag23 and Rag23.1 is due to a decrease of G protein affinity for the mutated receptor. If that were the case the G protein would no longer be able to bind the active state of the receptor in the absence of ligand leading to the loss of constitutive activity. However, the presence of the agonist is known to increase the affinity of the G protein for the receptor and therefore enabling the G protein to bind the active state of the receptor to produce agonist-induced activity even if the overall affinity of the G protein for the receptor has been altered. The other possible explanation is that the agonist-induced conformation and the constitutive active conformation are distinct and somehow the mutations present in Rag23 and Rag23.1 prevent the formation of the constitutively active conformation without altering the agonist-induced conformation.

In order to investigate these possibilities further, the affinity of the G protein
for both wild-type and Rag23.1 was investigated indirectly. The fact that the Rag23.1 mutant exhibits maximal NECA-induced activity similar to wild-type receptor suggests that the loss of constitutive activity observed is not due to a reduction in G-protein coupling. This is supported by radioligand binding analysis performed with \(^{3}H\)NECA, which shows that the affinities of both the wild-type and Rag23.1 are reduced by the same amount in the absence of G-protein suggesting that the G protein binds both the wild-type and the Rag23.1 with a similar affinity.

Together, these results suggest that the constitutively active and agonist-induced active conformations of the A\(_{2A}\)R are distinct. This is in accordance with previous studies that suggested a similar conclusion with the AT1 angiotensin receptor (Noda et al., 1996) and the β\(_2\)-adrenergic receptor (Hannawacker et al., 2002). This conclusion together with results presented by Kashai and coworkers showing that a GPCR is able to adopt different active conformations according to the agonist bound (Kahsai et al., 2011) can be summarized in an extended cubic ternary complex model (Fig 3-11).

\[\begin{array}{c}
- - - - - BR"G \leftrightarrow R'G \leftrightarrow AR^*G \leftrightarrow - - - - \\
- - - - BR" \leftrightarrow R' \leftrightarrow AR^* \leftrightarrow - - - - \\
- - BRG \leftrightarrow RG \leftrightarrow ARG \leftrightarrow - - - - \\
- - - - BR \leftrightarrow R \leftrightarrow AR \leftrightarrow - - - - \\
\end{array} \]

Figure 3-11 An extended cubic ternary complex model: the receptor is able to isomerize spontaneously to a constitutively active R" state which leads to constitutive activity when bound to the G protein. Once bound to an agonist (A or B), the receptor adopts a ligand specific active conformation (R* or R") leading to agonist-induced activity when bound to the G protein.
In addition, previous research on the 5-Hydroxytryptamine-4 receptor (5-HT₄R) indicates roles for a threonine residue in helix III (Thr104) and a tryptophan residue in helix VI (Trp272) in the formation of a so-called double toggle switch in stabilizing the constitutively active conformation but not the agonist-induced conformation of the receptor (Pellissier et al., 2009). Mutation of the Thr104 to an Ala leads to a dramatic decrease in constitutive activity. A comparison of the primary sequences indicates that Thr88 of A₂₅R is equivalent to Thr104 of 5-HT₄R. However, in the case of the A₂₅R, mutation of Thr88 to an Ala has little effect on the constitutive activity but a dramatic effect on agonist-induced activity both for NECA and adenosine. In addition, the T88A mutation is not present in either the Rag23 or Rag23.1 mutants, which do not exhibit constitutive activity. Therefore, the loss of constitutive activity observed in the A₂₅R mutants must have a different mechanism than the one proposed for 5-HT₄R.

3.4.3 The role of T88 in agonist binding and receptor activation

Previous research has shown that mutating T88A dramatically reduces both agonist binding and agonist-induced activity but does not significantly affect antagonist binding (Jiang et al., 1996). The results presented here support these earlier findings and show that the degree to which agonist activity is reduced is dependent on the agonist. NECA fails to induce any receptor activity in the T88A mutant while adenosine induces low but detectable activity. Binding of the two ligands shows the same trend. The T88A mutant shows a ~8-fold decrease in affinity for adenosine and a ~200 fold decrease in affinity for NECA compared with the WT receptor. Clues to the precise molecular basis of the difference in the responsiveness of the mutant to the
two agonists can be obtained from the recent A2AR structures (Lebon et al., 2011b). In the NECA bound structure the T88 forms a critical H-bond with the amide group of the ribose ring of the ligand (Fig 3-12A). In contrast the structure of the adenosine bound receptor reveals that the T88 is no longer able to form a H-bond with the ligand (Fig 3-12B). Rather this residue, together with a number of others, appears to play a role in stabilizing the protein via van der Waals interactions.

![Figure 3-12](image)

Figure 3-12 Interaction between the Thr88 of the A2AR and NECA which is forming an hydrogen bond with the hydroxyl group of the Threonine (pdb: 2YDV) (A) and Adenosine which is no longer able to form a hydrogen bond with the hydroxyl group (pdb: 2YDO) (B)

3.4.4 The role of V239 in the loss of constitutive activity

The data indicate that the V239A mutation has a strong effect on constitutive activity. V239 is located on helix VI, pointing towards helices III and V. It is possible that the reduction in size of this residue by introduction of the Ala mutation allows helices III and VI to come into closer proximity and thus form closer interactions. These interactions may then prevent the movements of helices III and VI required for constitutive activation. Superposition of inactive A2AR structures (Fig 3-13) reveals that there is a 1.1 Å movement of helix III towards helix VI in an inactive thermostabilised mutant (containing the V239A mutation) structure (PDB: 3PWH)
compared with the inactive A_{2A}R bound to an antibody (PDB: 3VG9). This shift of helix III towards helix VI could explain the formation of the so-called ionic lock between the E/DRY motif and Glu228, which is not observed in the antibody-bound structure. The thermostabilised mutant contains other mutations but the only other one susceptible to play a role in this shift is the L235A, which is likely to have a similar effect to the V239A. However, a potential caveat to this hypothesis is that the presence of the antibody may induce the differences observed between the two structures.

![Figure 3-13](image.png)

Figure 3-13 Superposition of helices III and VI of the inactive thermostabilized A_{2A}R mutant (containing the V239A mutation) structure (pink, Pdb accession code 3PWH) and the inactive A_{2A}R bound to an antibody (blue Pdb, accession code 3VG9). The V239 or V239A and E228 residues located on helix VI and the R102 residue located on helix III are shown as stick models. The distance between the charged interacting groups of E228 and R102 of the ionic lock in each case are indicated by the dotted lines.

In order to investigate this theory, a new mutant (A54L+V239I) was characterized in the yeast cell growth assay. Since the size of the residue seems to be a key factor, the V239 was replaced by a slightly bigger residue, an isoleucine. In
theory, this increase in size should keep helices III and VI further apart; facilitating the opening of the receptor needed for G protein binding and consequently increasing the constitutive activity. This is indeed what was observed (Fig 3-10) with the A54L+V239I mutant exhibiting a higher constitutive activity than the wild-type receptor. The lack of agonist-induced activity observed for this mutant remains unexplained.

In summary, the application of the yeast cell growth assay has allowed a detailed analysis of the pharmacological effects of receptor mutations since it discriminates between constitutive and agonist induced receptor-signalling events. The data presented here provide strong evidence that the agonist-induced and constitutively active conformations of the A2AR are distinct. This information is complementary to, and yet distinct from, that obtained from the recent high-resolution structures. In order to fully understand the mechanism of action of GPCRs it will be necessary to functionally and structurally characterize all the different active conformations. This data coupled with the high-resolution structure information may form the basis of rational design of receptor specific drugs that can antagonise basal activity with no effect on agonist-induced activity. In addition, this work suggests that increased receptor thermostability is correlated with the loss of constitutive activity. It may be that the yeast cell growth assay used in combination with either alanine-scanning mutagenesis or random mutagenesis methods would provide a powerful screening tool for the production of thermostable mutants of other GPCRs.
4 Functional characterization of the intermediate mutants between the Rag23 and the wild-type A2AR

The work presented here has been submitted for publication in PlosOne and is under review at the time of writing.
4.1 Introduction

In the previous chapter, characterization of intermediate mutants between Rant5 and wild-type provided insights into the roles of individual amino acid residues in the function and stabilisation of the receptor. However, all the mutants explored were in a preferentially antagonist conformation. Functional analysis of the Rag23 and Rag23.1 constructs suggested that the constitutively active and agonist-induced active conformations are distinct. Interestingly, although they comprise a completely different set of mutations both the Rants and the Rags exhibited no constitutive activity. This suggests that there are at least two different mechanisms involved in constitutive activity.

Therefore in order to further investigate the differences between the agonist-induced and the constitutive active conformations, the intermediate mutants between Rag23 and the wild-type were explored. In addition, the characterization of these intermediate mutants should provide useful data concerning the role of individual amino acid residues on receptor function and stabilisation as well as insight into the different mechanisms involved in constitutive activity.

In this chapter, the mutants intermediate between the wild-type A23R and Rag23, containing mutations (F79A, A184L, R199A, L208A and L272A) were explored. All possible combinations of the mutations were generated, leading to a total of 30 constructs, which were characterised in the yeast cell growth assay. The data showed that R199 and L208 have important roles in receptor function; substituting either of these residues for Ala abolishes constitutive activity. In addition the R199A mutation markedly reduces receptor potency while L208A reduces receptor efficacy. Furthermore, the A184L and L272A also reduce the constitutive
activity and the potency although to a lesser extent. In contrast, the F79A mutation increases constitutive activity, potency and efficacy of the receptor. These findings shed new light on the role individual residues have on stability of the receptor and also provide some clues as to the regions of the protein responsible for constitutive activity. Furthermore, the available adenosine A2A receptor structures have allowed us to put these findings into a structural context.
4.2 Materials and methods

4.2.1 Materials

Materials have already been described in chapters 2 and 3; sections 2.2.1 and 3.2.1, respectively.

4.2.2 Site-directed mutagenesis

The 30 Rag intermediate mutants were obtained from the Rag23 synthetic gene by site-directed mutagenesis using the QuickChange Lightning Site-Directed mutagenesis kit and the primers detailed in Table 4-1.

Table 4-1 Mutagenic primers used to generate the Rag intermediate mutant A2AR constructs.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5' to 3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>A79F_forward</td>
<td>gatgtgggtggtttacttgcgtatattttcttgctgctgcaaga</td>
</tr>
<tr>
<td>A79F_reverse</td>
<td>tctggcagccaaagaaatagcgaagaatcaaccaacatc</td>
</tr>
<tr>
<td>L184A_forward</td>
<td>caggtctacttcaattttcgcgtgctttgccctttgctcttgg</td>
</tr>
<tr>
<td>L184A_reverse</td>
<td>caacaaaggggaccaaaaaacgcagaagaataatagacacactag</td>
</tr>
<tr>
<td>A199R_forward</td>
<td>ctaagtccctggtactattatgtgggtggctcttggttgttgg</td>
</tr>
<tr>
<td>A199R_reverse</td>
<td>cacacaaagcagcagcaacaacctataatagccacggacttag</td>
</tr>
<tr>
<td>A208L_forward</td>
<td>cttttctgggctgcaagaacacaaacctataatagccacggacttag</td>
</tr>
<tr>
<td>A208L_reverse</td>
<td>gttgagattccatttgctttgtttgctcttggtgcaagcagaaatag</td>
</tr>
<tr>
<td>A272L_forward</td>
<td>tcatgtctccatgtgggtgttagtttagtttagtttagtttggcaga</td>
</tr>
<tr>
<td>A272L_reverse</td>
<td>tgtgtggcacaaccatagctgatacatacacaaccacctaggtgcatga</td>
</tr>
</tbody>
</table>
4.2.3 Expression

As described in chapter 2; section 2.2.2, all the A2AR constructs including the Rag intermediate mutants, were expressed as fusions with a C-terminal GFP-8His tag from the p306GPD vector. Estimation of the expression levels for all constructs was obtained from fluorescence of eGFP as previously described in chapter 3; section 3.2.3 (Drew et al., 2008).

4.2.4 Yeast cell growth assay

The yeast cell growth assay was performed as described in Chapter 2; Section 2.2.6.
4.3 Results

4.3.1 Expression levels

Estimation of the expression levels for all the constructs using GFP gave values between 0.4-1.4 mg/ml (Table 4-2). The large variation observed in expression levels does not seem to affect the results of the assay. Indeed, Rag23.25 has the lowest level of expression while displaying the highest efficacy and the second highest level of constitutive activity. In contrast, Rag23.7 has the highest level of expression but exhibits no constitutive activity at all and an efficacy of only 53%. This suggests that the expression level is not responsible for the differences in efficacies and constitutive activities observed.

Table 4-2 Expression levels of the thirty mutants and the wild-type calculated using the eGFP fluorescence as described by Drew et al.
4.3.2 F79A enhances constitutive activity and potency

The activity of each of the receptor constructs is summarised in Table 4-3. The graphical data for all constructs is shown in Appendix 6-1.

The effects of the F79A mutation are illustrated by the single mutant Rag23.30. This has increased constitutive activity and potency compared to the wild-type while retaining similar efficacy (Figure 4-1A). These effects are also observed in constructs where F79A is combined with A184L and/or L272A (Rag23.13, Rag23.22 and Rag23.25; Figure 4-1B). All these constructs exhibit wild-type or higher levels of potency and constitutive activity. In contrast, constructs combining F79A with R199A or L208A (Rag23.23 and Rag23.24; Figure 4-1B), exhibit markedly lower constitutive activity than the wild-type. However, the presence of the F79A mutation still increases the constitutive activity of the receptor compared with the equivalent constructs containing R199A or L208A alone (Rag23.27 and Rag23.28; Figure 4-1A). The same trend is also observed for receptor potency demonstrating that the effects of F79A on potency and constitutive activity are antagonized by the presence of the R199A and L208A. One exception to that is Rag23.14, the combination of F79A, A184L and L208A produces an overall profile similar to wild-type. It is not clear from either the data presented here or the receptor structures why this wild-type-like behaviour is seen for this construct.
Figure 4.1 Functional profiles of constructs illustrating the major effects of the F79A mutation. The F79A mutation increases constitutive activity, efficacy and potency, both alone (Rag23.30) and in combination with other mutations (Rag23.13, Rag23.14, Rag23.22, Rag23.23, Rag23.24, Rag23.25, Rag23.27, Rag23.28 and Rag23.30). The curves (A and B) are the average of two experiments performed in triplicate. The table (C) shows the pharmacological characteristics of each mutant characterized. The colours of the curves correspond to those in the table. The data for the wild-type and Rag23 constructs (pink) are also shown for comparison. SEM=0
Interestingly, the F79A mutation is not thermostabilising but was included in the Rag23 because it was preferentially in an agonist-binding conformation (Magnani et al., 2008). The increased constitutive activity and lack of thermostabilisation of the F79A mutation is consistent with the previous findings demonstrating a correlation between loss of constitutive activity and thermostabilisation.
Table 4-3: Constitutive activities, potencies and efficacies of the Rag intermediate mutants.

<table>
<thead>
<tr>
<th></th>
<th>F79A</th>
<th>A184L</th>
<th>R199A</th>
<th>L208A</th>
<th>L272A</th>
<th>Constitutive Activity (% of maximal activity of WT)</th>
<th>Potency (pEC₅₀)</th>
<th>Efficacy (% of maximal activity of WT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>44 ± 1%</td>
<td>7.1 ± 0.3</td>
<td>94 ± 1%</td>
</tr>
<tr>
<td>Rag23</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>9 %*</td>
<td>7.9 ± 0.2</td>
<td>66 ± 2%</td>
</tr>
<tr>
<td>Rag 23.1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>4 ± 2%</td>
<td>7.1 ± 0.2</td>
<td>88 ± 7%</td>
</tr>
<tr>
<td>Rag 23.2</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>1 ± 1%</td>
<td>6.6 ± 0.1</td>
<td>30 ± 3%</td>
</tr>
<tr>
<td>Rag 23.3</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0 %*</td>
<td>6.1 ± 0.1</td>
<td>43 ± 1%</td>
</tr>
<tr>
<td>Rag 23.4</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>3 ± 1%</td>
<td>6.9 ± 0.1</td>
<td>33 ± 2%</td>
</tr>
<tr>
<td>Rag 23.5</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>3 %*</td>
<td>6.8 ± 0.1</td>
<td>46 ± 3%</td>
</tr>
<tr>
<td>Rag 23.6</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>0 %*</td>
<td>6.6 ± 0.1</td>
<td>45 ± 1%</td>
</tr>
<tr>
<td>Rag 23.7</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>1 %*</td>
<td>6.7 ± 0.1</td>
<td>53 ± 1%</td>
</tr>
<tr>
<td>Rag 23.8</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>2 ± 2%</td>
<td>6.7 ± 0.3</td>
<td>53 ± 5%</td>
</tr>
<tr>
<td>Rag 23.9</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>0 %*</td>
<td>6.4 ± 0.2</td>
<td>59 ± 7%</td>
</tr>
<tr>
<td>Rag 23.10</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>3 ± 2%</td>
<td>6.9*</td>
<td>26 ± 3%</td>
</tr>
<tr>
<td>Rag 23.11</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>2 ± 1%</td>
<td>7.0 ± 0.2</td>
<td>79 ± 4%</td>
</tr>
<tr>
<td>Rag 23.12</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>3 %*</td>
<td>6.8 ± 0.2</td>
<td>55 ± 12%</td>
</tr>
<tr>
<td>Rag 23.13</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>71 %*</td>
<td>9.8 ± 1.6</td>
<td>86 ± 4%</td>
</tr>
<tr>
<td>Rag 23.14</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>36 ± 6%</td>
<td>7.2 ± 0.2</td>
<td>69 ± 7%</td>
</tr>
<tr>
<td>Rag 23.15</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>1 %*</td>
<td>6.5 ± 0.1</td>
<td>67 ± 3%</td>
</tr>
<tr>
<td>Rag 23.16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>1 %*</td>
<td>6.3 ± 0.3</td>
<td>58 ± 7%</td>
</tr>
<tr>
<td>Rag 23.17</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>1 %*</td>
<td>5.9 ± 0.1</td>
<td>98 ± 3%</td>
</tr>
<tr>
<td>Rag 23.18</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>0 %*</td>
<td>6.1 ± 0.2</td>
<td>60 ± 10%</td>
</tr>
<tr>
<td>Rag 23.19</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>2 ± 1%</td>
<td>6.7 ± 0.1</td>
<td>88 ± 5%</td>
</tr>
<tr>
<td>Rag 23.20</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>4 ± 3%</td>
<td>7.2 ± 0.2</td>
<td>47 ± 4%</td>
</tr>
<tr>
<td>Rag 23.21</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>1 ± 1%</td>
<td>6.6 ± 0.1</td>
<td>85 ± 6%</td>
</tr>
<tr>
<td>Rag 23.22</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>34 ± 2%</td>
<td>7.2 ± 0.1</td>
<td>91 ± 1%</td>
</tr>
<tr>
<td>Rag 23.23</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>8 ± 1%</td>
<td>7.4 ± 0.2</td>
<td>82 ± 3%</td>
</tr>
<tr>
<td>Rag 23.24</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>14 ± 2%</td>
<td>7.4 ± 0.1</td>
<td>85 ± 1%</td>
</tr>
<tr>
<td>Rag 23.25</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>72 ± 10%</td>
<td>8.0 ± 0.4</td>
<td>123 ± 1%</td>
</tr>
<tr>
<td>Rag 23.26</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>15± 1%</td>
<td>6.4 ± 0.1</td>
<td>95 ± 5%</td>
</tr>
<tr>
<td>Rag 23.27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>1 ± 1%</td>
<td>6.4 ± 0.1</td>
<td>58 ± 4%</td>
</tr>
<tr>
<td>Rag 23.28</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>0 %*</td>
<td>6.4 ± 0.1</td>
<td>93 ± 5%</td>
</tr>
<tr>
<td>Rag 23.29</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0 %*</td>
<td>6.3 ± 0.1</td>
<td>63 ± 4%</td>
</tr>
<tr>
<td>Rag 23.30</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>76 ± 4%</td>
<td>7.9 ± 0.4</td>
<td>95 ± 1%</td>
</tr>
</tbody>
</table>

For each of the constructs shown an “x” indicates the presence of a specific mutation while a “-” indicates the presence of the WT amino acid. The quadruple, triple, double and single mutants are indicated in the blue, yellow, green and purple sections of the table respectively. The Rag23 and WT receptor forms are indicated in the pink sections. The constitutive activity, potency and efficacy values for each receptor are shown. Each parameter is an average of two independent experiments performed in triplicate. *No errors are given in these examples as the data obtained from different experiments was so consistent as to preclude their calculation.
4.3.3 R199A reduces constitutive activity and potency

All constructs containing the R199A mutation exhibited an almost complete lack of constitutive activity and reduced potency compared to the wild-type (Figure 4-2). For clarity, Figure 4-2 only shows these effects for some examples of the intermediate single, double and triple mutants. However the same characteristics are clearly seen in all constructs with the R199A mutation (Table 4-3). The data strongly indicate that R199 has a key role in the constitutive activity of the A2AR. This is further illustrated by Rag23.24, which contains both F79A and R199A mutations. The profile of this mutant shows that the increase of constitutive activity due to the F79A mutation is almost completely overcome by the R199A mutation (Figure 4-2) and as mentioned above the R199A further reduces the overall constitutive activity of this construct compared to wild-type. The R199A also reduces receptor potency compared to wild-type, however the effects are less dominant than those observed for the constitutive activity. F79A alone increases potency but in combination with R199A produces a construct with wild-type potency. These findings indicate that the R199A cancels out the increase in potency caused by F79A but has no further effect on potency in this construct compared to wild-type.
Figure 4-2 Functional profiles of constructs illustrating the major effects of the R199A mutation. The R199A mutation reduces constitutive activity and potency, both alone (Rag23.28) and in combination with other mutations (Rag23.6, Rag23.17, Rag23.21, Rag23.24 and Rag23.28). The curves (A) are the average of two experiments performed in triplicate. The table (B) shows the precise details of each mutant characterized. The colours of the curves correspond to those in the table. The data for the wild-type (pink) are also shown for comparison. *SEM=0
4.3.4 L208A mutation reduces constitutive activity and efficacy

Almost all the constructs containing the L208A mutations exhibited very low or undetectable constitutive activity and markedly reduced efficacy compared with wild-type (Figure 4-3). As for the R199A mutation, the effect of the L208A mutation almost completely overcomes the enhancing effect of the F79A on constitutive activity, except in the presence of A184L, Rag23.14 (Figure 4-3B).

The effects of L208A on efficacy are illustrated by the quadruple mutant, Rag23.1. Rag23.1 lacks the L208A substitution and has markedly increased efficacy compared to all the constructs containing L208A. This indicates that the low levels of efficacy observed in the Rag23.2, 3, 4 and 5 as well as Rag23 are due to the presence of the L208A mutation (Figure 4-3A). The L208A influences the potency in a similar way to the R199A.
Figure 4-3 Functional profiles of constructs illustrating the major effects of the L208A mutation. The L208A mutation reduces constitutive activity and efficacy, both alone (Rag23.27) and in combination with other mutations (Rag23.1, Rag23.2, Rag23.3, Rag23.4, Rag23.5, Rag23.10, Rag23.14, Rag23.20 and Rag23.27). The curves are the average of two experiments performed in triplicate. The table (C) shows the pharmacological characteristics of each mutant characterized. The colours of the curves correspond to those in the table. The data for the wild-type (pink) are also shown for comparison.

*SEM=0
4.3.5 The effects of A184L and L272A are overcome by the other mutations

As can be seen from the data for the A184L single mutant construct, Rag23.29, this substitution has effects on the three key functional parameters assessed here (Figure 4-4). It reduces the constitutive activity, potency and efficacy of the receptor (0 %, 6.3, and 63 %, respectively; Figure 4-4B). An almost identical functional profile is seen for the Rag23.19 (Figure 4-4), which combines the A184L and L272A mutations. However, these effects are not observed in those constructs, which combine the A184L with L208A, R199A and/or F79A. For example, when A184L (Rag23.29) is combined with the strong positive effects of F79A on constitutive activity, potency and efficacy (Rag23.30), this leads to an increase in all three parameters of the resulting mutant (Rag23.25; Figure 4-4) relative to wild-type. In contrast, addition of A184L with R199A (Rag 23.21; Figure 4-4) or L208A (Rag23.20; Figure 4-4) results in reduced potency (with R199A) and efficacy (with L208A).
Figure 4-4 Functional profiles of constructs illustrating the major effects of the A184L mutation. The A184L mutation alone abolishes constitutive activity (Rag23.29) but this is overcome by the dominant effect of F79A (Rag23.25). The curves (A) are the average of two experiments performed in triplicate. The table (B) shows the precise details of each mutant characterized. The colours of the curves correspond to those in the table. The data for the wild-type (pink) are also shown for comparison. SEM=0

L272A alone has a moderate negative effect on the constitutive activity and potency of the A2A R (Rag23.26, Figure 4-5). Much like A184L, these effects are markedly influenced by the presence of other more dominant mutations. For example, when L272A is combined with F79A in Rag23.22 (Figure 4-5), this mutant still has increased constitutive activity and potency compared to wild-type, as a result of the strong influence of F79A. In contrast, when L272A is combined with R199A in...
Rag23.17, this mutant has very low levels of constitutive activity and reduced potency compared to wild-type due to the influence of R199A.

Figure 4-5 Functional profiles of constructs illustrating the major effects of the L272A mutation. The L272A mutation alone decreases constitutive activity on its own (Rag23.26) but this effect is overcome by the dominant effect of the F79A (Rag23.22). In the case of the combination with the R199A (Rag23.17) mutation there is an almost complete loss of constitutive activity. The curves (A) are the average of two experiments performed in triplicate. The table (B) shows the precise details of each mutant characterized. The colours of the curves correspond to those in the table. The data for the wild-type (pink) are also shown for comparison. *SEM=0
4.4 Discussion

4.4.1 Structural basis of the effects of the F79A mutation

There are a number of high resolution A\textsubscript{2A}R structures which have been obtained using a variety of techniques and in the presence of different ligands (Dore \textit{et al.}, 2011; Hino \textit{et al.}, 2012; Jaakola \textit{et al.}, 2008; Lebon \textit{et al.}, 2011b; Xu \textit{et al.}, 2011). Given that here the roles of mutations in a thermostabilised receptor in the preferentially agonist-bound conformation (Magnani \textit{et al.}, 2008) are explored, the structure of a thermostabilised A\textsubscript{2A}R containing 5 point mutations in complex with the agonist NECA (Lebon \textit{et al.}, 2011b) was used to provide further context to the results of this study (pdb access code: 2YVD).

In this structure, F79 is located in helix III (Figure 4-6A and 4-6B), a region of the protein with key roles in GPCR function. “A consensus network of 24 inter-helices contacts mediated by 36 topologically equivalent amino acids” has been identified by Venkatakrishnan and colleagues when comparing the known structures of GPCRs (Venkatakrishnan \textit{et al.}, 2013). They noted that helix III plays a major role in this network of contacts by interacting with all the other helices except helices I and VII. Therefore, helix III seems to be central for maintaining the scaffold of GPCRs. Furthermore, topologically equivalent residues in helix III have been shown to interact with the ligand in nearly all the receptors for which a high-resolution structure is available (Venkatakrishnan \textit{et al.}, 2013). Moreover, once the receptor is activated, helix III forms a critical interaction with the G-protein as exemplified by the Arg3.50 of the \(\beta\textsubscript{2}AR\) interacting with a backbone carbonyl of the C terminus of the \(G\textsubscript{s}\) protein (Rasmussen \textit{et al.}, 2011a). It is therefore not a surprise that GPCR activity
is very sensitive to mutations in helix III, since these often lead to a complete loss of function or markedly increased constitutive activity (Jiang et al., 1997; Jiang et al., 1996; Venkatakrishnan et al., 2013).

In addition, when comparing the structure of the A$_{2A}$R bound to NECA (pdb accession code: 2YDV) with the structure of the A$_{2A}$R-T4L bound to ZM241385 (pdb accession code: 3EML), Lebon and colleagues observed a 2 Å upward movement of helix III in the active-like conformation of the receptor (Lebon et al., 2011b). In the inactive conformation (pdb access code: 3PWH), F79 forms van der Waals interactions with a number of surrounding residues including F62 and L137. These interactions are lost when F79 is mutated to an Ala possibly resulting in a less stable inactive conformation. The receptor is then more likely to adopt an active conformation, with the associated 2 Å upward movement of helix III, explaining the increase in constitutive activity observed in our study.
Figure 4-6 Position of the F79 (red), R199A and L208 (magenta), A184 and L272 (blue) residues in the high-resolution crystal structure of the A2aR GL31 thermostable mutant (2YVD) (A). F79 is located on helix III (B) while R199 and L208 are both located at the cytoplasmic end of helix V (C) and A184 and L272 are located at the extracellular end of helix V and helix VII respectively (D) The agonist NECA is shown in B and D.
4.4.2 Structural basis of the effects of the R199A and L208A mutations

Both the R199A and L208A mutations affect constitutive activity dramatically. However, only the L208A mutation affects efficacy. The structures of the A$_{2A}$R and the β$_2$AR in complex with G$_s$ provide clues to explain this difference. In the structure of the A$_{2A}$R, R199 and L208 are both located in the cytoplasmic portion of transmembrane helix V (H V; Figure 6A and 6C). This region of helix V is involved in the interaction between the β$_2$AR and the G$_{α_s}$ (Rasmussen et al., 2011a) and is thus likely to be involved in the interaction of the A$_{2A}$R with the G$_{α_i}$-related chimera protein used in the yeast cell growth assay.

The R199 and the L208 residues are conserved in the β$_2$ adrenergic receptor, corresponding to R221 and L230 respectively. Due to the lack of a structure of the A$_{2A}$R in an active conformation, the structure of the β$_2$ adrenergic receptor in complex with the G$_s$ protein was used to aid interpretation of our data. In this structure, R221 of the β$_2$AR forms a hydrogen bond with a threonine (equivalent to an arginine in the A$_{2A}$R) on helix III when the receptor is in complex with the G$_s$ protein. This hydrogen bond no longer exists when R221 is mutated to an alanine. Here it was demonstrated that the R199A mutation completely abolishes constitutive activity of the A$_{2A}$R without affecting efficacy suggesting that the interaction between helix III and helix V is crucial for constitutive activity but not for agonist-induced activity.

The L230 residue of β$_2$AR forms a direct interaction with the leucine at the extreme C-terminal end of the G protein. Mutating the equivalent residue of A$_{2A}$R, L208, seems to prevent activation of the G protein in the absence of ligand but only reduces receptor activation in the presence of agonist. This suggests that this
interaction is crucial for formation of a constitutively active complex but it is of less importance in the formation of the agonist-induced active complex.

The fact that L208 is in direct contact with the G protein whilst R199 is involved in making intra-receptor contacts, could explain why the L208A mutation has an effect on both constitutive activity and efficacy while the R199A mutation affects only the constitutive activity.

The data presented in chapter 3 suggested that the agonist induced and constitutively active conformations of the A2AR are distinct, thus inhibiting constitutive activity of the receptor does not necessarily have any negative effects on agonist-induced activity.

Figure 4-7 Structure of the β2AR (cyan) in complex with Gs protein (green) (pdb access code: 3SN6) viewed from the cytoplasmic face. The L230 residue of the receptor forms Van der Waals contact with the leucine at the extreme C-terminal end of the G protein. The R221 residue forms a hydrogen bond with the T136 residue on helix III
4.4.3 Structural Basis for the Effects of the A184L and L272A Mutations

A184L and L272A are located on the extracellular ends of helices V and VII respectively (Figure 6A and 6D). Both of these residues are a significant distance away from both the ligand-binding pocket and the G protein-binding region. Based on their location in the crystal structure (Lebon et al., 2011b) these residues are unlikely to be directly involved in G protein coupling or ligand binding (Figure 6D). The data presented here, together with the available structural data, are not sufficient to explain why A184L and L272A have the observed functional effects in the constructs with these single mutations (i.e. Rag23.29 and Rag23.26). However, this does provide clues as to why F79A, R199A and L208A have more dominant effects on the function of the receptor. Interestingly, the level of the effect the mutations have on the pharmacological profile of the receptor is in accordance with the stabilisation effects of the individual mutations observed by Magnani and colleagues when they generated these mutants. One exception is the F79A mutation, which is not thermostabilising (Magnani et al., 2008). For example, the R199A (Rag23.28) and L208A (Rag23.27) single mutants retain 101% and 108% of the wild-type binding activity after heating at 30°C for 30 minutes respectively while the A184L (Rag23.29) and L272A (Rag23.26) retained 75% and 79% respectively. In this analysis, wild-type binding activity after heating is 50%. The F79A mutant shows similar levels of activity after heating as the wild-type receptor.
In conclusion, the R199A and L208A mutations inhibit constitutive activity of the A_2A_\text{R} receptor while F79A enhances constitutive activity. In addition, the L208A mutation also affects the efficacy of the receptor. The effects of A184L and L272A are overcome by the more dominant F79A, R199A and L208A mutations. Analysis of the mutations alone and in combination using the yeast assay, together with the known A_2A_\text{R} structures provides information on the role of individual amino acids in receptor function. However as with all types of analysis of this kind, it can be difficult to fully dissect the activity of an individual amino acid from the contributions of all others. A full understanding of the roles of all the amino acid residues will only be revealed through multiple crystal structures in a range of different conformations coupled with detailed dynamics studies.
5 Discussion and future outlook
GPCRs are essential integral membrane proteins that respond to a wide range of stimuli such as hormones, peptides and neurotransmitters. As such they are the targets of many modern drugs. For many years, our understanding of GPCR mechanism of action was limited by the lack of high-resolution structural information. This was due to several reasons including the difficulties in expressing the protein of interest in quantities large enough for structural studies (Andre et al., 2006; Grisshammer, 2006; McCusker et al., 2007; Sarramegna et al., 2003), the highly dynamic nature of GPCRs (Kobilka & Deupi, 2007), which makes them difficult to isolate in a relevant conformation, and finally their low propensity to crystallize (Rosenbaum et al., 2007). However, recent progress in the field of GPCR overexpression, stabilization and crystallization has resulted in the publication of 58 high-resolution structures of 22 different GPCRs, excluding Rhodopsin, in the last few years. These are essential to furthering our understanding of GPCR function and to facilitate drug design. However, these structures are of highly engineered receptors and little is known about the effect these modifications have on receptor signalling function. One successful method for GPCR structure determination is the introduction of thermostabilising mutations through alanine scanning mutagenesis. Through this method, it is possible to isolate receptors in either a preferentially agonist-binding or antagonist-binding conformation. This reduces the conformational flexibility of the receptor, resulting in increased thermostability. Investigation of the signalling properties of several thermostable mutants of the A2AR using a functional yeast assay revealed several important findings.
5.1 Agonist-induced and constitutive active conformations are distinct

The results from our studies showed that Rag23 and Rag23.1, both of which are in agonist-binding conformations, exhibit increased potencies and affinities for NECA compared with the wild-type while displaying a complete loss of constitutive activity. These findings are not explained by the extended ternary complex model (Samama et al., 1993). Further investigation revealed that the interaction between the receptor and its G protein has not been altered by the mutations in Rag23.1. A possible explanation to these observations could be that the agonist-induced and constitutive active conformations are distinct. Pellisier and coworkers showed that different conformational rearrangements occur during the stabilization of the active states of the 5-HT4 receptor according to the agonist used. In addition, they also showed that different residues were involved in the formation of constitutive and agonist-induced active conformations, reinforcing the idea of distinct conformations (Pellissier et al., 2009).

These findings have major implications for drug design, since it may be possible to design allosteric drugs that would block unwanted constitutive activity of a specific receptor without having any effect of receptor activation through endogenous ligands. This could dramatically reduce side effects since it would allow the receptor to function normally upon release of endogenous ligand.
5.2 Role of individual residues in receptor function and stabilisation

The analysis of the mutants intermediate between Rag23 and the wild-type and between Rant5 and the wild-type revealed the role of individual residues in receptor function and stabilisation. In that regard, the yeast functional assay provides a powerful tool in combination with high-resolution structures, since it is difficult to identify the role of individual residues on receptor function and stabilisation using high-resolution structural information alone.

5.2.1 T88 plays a crucial role for agonist-induced activity

The results presented here are in accordance with previous findings showing that Thr88 plays a crucial role in ligand binding and in agonist-induced activity (Jiang et al., 1997) of the A2AR. In addition, the data show that this effect is agonist-dependant. Indeed, while NECA is no longer able to activate the T88A mutant, adenosine still activates T88A with a reduced potency. This T88 residue (3.36 in the Ballestros-Weinstein numbering) seems to be important in most GPCRs, as it is part of the “ligand-binding cradle” described earlier. However, the effect of mutating this residue is receptor specific. Indeed, replacing S3.36 in the H1 receptor by a threonine dramatically increased the constitutive activity while replacing it with an alanine completely abolishes it (Jongejan et al., 2005). In addition, replacing T3.36 in the 5-HT4R with an alanine also abolishes constitutive activity (Pellissier et al., 2009). Therefore it is obvious that the 3.36 residue plays a crucial role across GPCRs either on the ligand-binding properties or on the constitutive activity.
5.2.2 Role of individual residues on constitutive activity

The functional characterisation of the intermediate mutants revealed that there are several mechanisms to block constitutive activity, highlighting the complexity of receptor activation. Indeed, the reduction in size of the residue when mutating V239 to an alanine, seems to bring helices III and VI closer to each other, strengthening their interaction and blocking the outward movement of helix VI needed for GPCR activation.

The loss of constitutive activity observed in the R199A mutant involves a different mechanism. It is possible to speculate about the mechanism involved in the loss of constitutive activity by looking at the structures of the A2AR in an inactive conformation, in a partially active conformation and the structure of the β2AR in complex with Gs. However, it is important to bear in mind that the structures of the partially active A2AR and the active β2AR are in agonist-induced conformations, which limits interpretation of why the R199A mutation abolishes constitutive activity. In the structure of the A2AR in an inactive conformation, R199 does not seem to be interacting with any other residues within the receptor and is 4.6 Å away from R107 located on helix III (Fig 5-1A). However, the structure of this receptor bound to an agonist and in a partially active conformation reveals that R199 is now 3.9 Å away from R107 (Fig 5-1B). In the β2AR structure, T136 (equivalent to A2AR R107) forms a hydrogen bond with R221, (equivalent to A2AR R199) (Fig 5-1C). Therefore, it seems that upon activation of the receptor, the movement of helices III and V brings R107 and R199 in close proximity, stabilising the active conformation. Clearly, this interaction is not crucial for the stabilisation of the agonist-induced active
conformation but is necessary for the stabilisation of the constitutive active conformation.

Figure 5-1 Position of the R199 residue of the A2A R or its equivalent R221 of the β2AR in an inactive conformation (A), in a partially active conformation (B) and in a fully active conformation (C), looking down from the extracellular face.

Finally, the L208 residue, equivalent to L230 in the β2AR, is involved in both constitutive activity and efficacy. This is certainly due to the direct interaction of this residue with the C-terminal tail for the Gs protein in the β2AR structure in complex with Gs. However, mutating this residue to an alanine completely abolishes constitutive activity while it only partially reduces efficacy. It is possible that when an agonist is bound to the receptor extra stabilising interactions, not occurring in the constitutively active conformation, allow the formation of an active complex between the receptor and the G protein which involves residues other than L208.
5.3 The yeast functional assay as a screening tool

The data presented here demonstrates that there is a correlation between thermostability and loss of constitutive activity. In addition, this assay allows the distinction between agonist-binding and antagonist-binding conformations. This means that this yeast functional assay could be used to screen stable mutants that would preferentially be in an active or inactive conformation. Indeed, this assay is high throughput, inexpensive and has been demonstrated to work with other GPCRs such as the cannabinoid CB1 and CB2 receptors (Dowell & Brown, 2009), GPR41 and GPR43 (Brown et al., 2003) in addition to the A2aR reported here, demonstrating the broad applicability of this method. This method would also offer the advantage of knowing that the stable construct generated is in a functionally relevant conformation.

Furthermore, previous studies on other GPCRs gave no evidence that the pharmacology in yeast is ‘wrong’ compared with mammalian cell systems, based on such criteria as rank orders of potency of ligands and the translation of compound activities into more complex systems. Indeed, in many cases, yeast data have been more predictive of phenotypic or in vivo studies than data from recombinant mammalian cell assays (GSK unpublished data). This highlights the relevance of using the yeast system as a screening tool.
5.4 Future outlook

Although, the yeast functional assay provides useful data on GPCRs function and stabilisation, it has limitations. Indeed, while this assay provides information on the role of individual residues on the function of receptor, it is difficult to identify the mechanisms underlying this effect without a high-resolution structure. In order to fully understand the complexity of the activation mechanism of GPCRs, high-resolution structures of native receptors in all the different conformations and bound to β-arrestin as well as G protein would be needed.

Another limitation of this assay that it shares with crystal structures of GPCRs, is that it is impossible to investigate the dynamics of the receptor in their native environment. This can be achieved by using solid-state NMR technique since NMR can describe both overall and local protein dynamics. In addition, structures of unmodified receptors can be obtained in phospholipids bilayer, as demonstrated by the structure of the CXCR1 chemokine receptor (Park et al., 2012). Furthermore, NMR technique was used to study the dynamics of the β2AR by labelling strategically positioned methionines (Nygaard et al., 2013). Nygaard and co-workers were able to observe an alternative inactive state that slowly exchanges with the crystallographically observed inactive state in the absence of ligand or upon inverse agonist binding. They also demonstrated that upon agonist binding the receptor is structurally heterogeneous and that the most populated conformation is distinct from the inactive states. Finally, when the receptor is bound to both an agonist and the Nb80 nanobody, which mimics the G protein, the receptor adopts a more homogeneous conformation corresponding to the fully active state, different from the intermediate active states observed upon agonist binding only.
It seems that only a combination of biochemical studies, X-ray crystallography and NMR spectroscopy will allow researchers to fully understand the dynamics and detailed mechanism of action of GPCRs.
References

6 Appendix

6.1 Graphical data for all the Rag23 intermediate mutants

NECA-induced activity of the WT A_{2A}R, Rag23 and the quadruple mutants intermediate between the WT and Rag23. See Table 4-3 for the precise details of each mutant. The receptor constructs were expressed in the MMY24 $S.\textit{cerevisiae}$ strain using the p306GPD vector. The activity of cells containing empty vector is shown as a control.
NECA-induced activity of the WT A2AR and the triple mutants intermediate between the WT and Rag23. See Table 4-3 for the precise details of each mutant. The receptor constructs were expressed in the MMY24 S. cerevisiae strain using the p306GPD vector. The activity of cells containing empty vector is shown as a control.
NECA-induced activity of the WT A2AR and the double mutants intermediate between the WT and Rag23. See Table 4-3 for the precise details of each mutant. The receptor constructs were expressed in the MMY24 S. cerevisiae strain using the p306GPD vector. The activity of cells containing empty vector is shown as a control.
NECA-induced activity of the WT A$_{2a}$R and the single mutants intermediate between the WT and Rag23. See Table 4-3 for the precise details of each mutant. The receptor constructs were expressed in the MMY24 S. cerevisiae strain using the p306GPD vector. The activity of cells containing empty vector is shown as a control.
6.2 Permission to republish third party copyrighted work from chapter 3
6.3 Yeast transformation protocol

1. Pick a single yeast colony and grow in 5mls medium overnight (shaking at 30°C) which should give a saturated culture (approx. 1x10^8 cells/ml).

2. Next morning, make a 1/100 dilution into 100mls and grow for 4-8 hours (approx. 2-3 generations; final density approx. 1x10^7 cells/ml).

3. Spin at 4000 r.p.m. for 1 min. to harvest.

4. Wash in sterile water, and reharvest.

5. Resuspend cells in 1ml LiAc-TE (approx. 1x10^9 cells/ml).

6. Take 50ml cells per transformation, and add 5ml ssDNA.

7. Add 1mg DNA to be transformed.

8. Add 300ml LiAc/PEG/TE and mix.

9. Incubate either at R.T. or 30°C with occasional (or gentle) agitation for 10 min.

11. Remove, and plate 50ml directly onto selective plates.

The method is so efficient, you don’t need to plate out the whole transformation onto a small petri dish.

12. For chromosomal integrations, use ~5 ug DNA and linearize in the selectable marker gene (using eg. NsiI or StuI for URA3); you may need to plate out all the transformation mixture as the efficiency is lower than for episomal plasmids.

Solutions

Make up:

1) 1M LiAc

2) 50% PEG3350

3) 10xTE pH7.5 (0.1M Tris-Cl pH7.5, 0.01M EDTA)

LiAcTE is 5mls 1M LiAc, 5mls 10xTE, 40mls H2O

LiPEG-TE is 5mls 1M LiAc, 5mls 10xTE, 40mls 50% PEG
ssDNA Sigma D-9156 Salmon Testes DNA aliquoted into microfuge tubes, boiled for 10 min, cooled immediately in ice and frozen (for best efficiency, don’t use aliquots more than twice).