Embolization of pulmonary AVMs: no consistent effect on pulmonary artery pressure

1 2 Claire L Shovlin PhD FRCP, 2 Hannah C Tighe BSc, 2 Rachel J Davies BA MRCP, 1 J Simon R Gibbs MD FRCP, 3 James E Jackson FRCR, FRCP.

1 NHLI Cardiovascular Sciences, Imperial College London, and 2 Respiratory Medicine and 3 Department of Imaging, Hammersmith Hospital, London W12 ONN, UK.

Running Title: Pulmonary AVMs and PAP

Address for correspondence and reprint requests:
Dr Claire Shovlin PhD FRCP
NHLI Cardiovascular Sciences Unit
Imperial College London
Hammersmith Hospital
Du Cane Road
London
W12 0NN, UK.

PHONE 011-44-208-383-1000
FAX 011-44-208-383-1640
EMAIL: c.shovlin@imperial.ac.uk

Abstract 199 Word count 2938 (abstract, text and Tables)
ABSTRACT

Question: Increasing evidence supports the use of embolization to treat pulmonary arteriovenous malformations (AVMs). Most pulmonary AVM patients have hereditary haemorrhagic telangiectasia (HHT), a condition that may be associated with pulmonary hypertension. We tested whether PAVM embolization increases pulmonary artery pressure (PAP) in patients without baseline severe pulmonary hypertension.

Methods: PAP were measured at the time of PAVM embolization in 143 individuals, 131 (92%) of whom had underlying HHT. Angiography/embolization was not performed in four individuals with severe pulmonary hypertension, whose systemic arterial oxygen saturation exceeded levels usually associated with dyspnoea in PAVM patients.

Results: In 143 patients undergoing PAVM embolization, PAP was significantly correlated with age, with the most significant increase occurring in the upper quartile (age >58yr). In 43 patients with repeated measurements, there was no significant increase in PAP as a result of embolization. In half, embolization led to a fall in PAP. The maximum rise in PAP mean was 8mmHg: Test balloon occlusion was performed in one of these individuals, and did not predict the subsequent rise in PAP following definitive embolization of the pulmonary AVMs.

Conclusions: In this series which excluded patients with severe pulmonary hypertension, PAP was not increased significantly by PAVM embolization.

Key words: brain abscess, hypoxaemia, nose bleeds, right to left shunt, oxygen saturation, stroke,
INTRODUCTION

Does embolization of pulmonary arteriovenous malformations (AVMs) precipitate pulmonary hypertension (PH)?

The reason this question is important is that for individuals with pulmonary AVMs, embolization is an effective means of reducing lifetime risks of paradoxical embolic stroke and brain abscess [1, 2], improving oxygenation [3-17], and treating pulmonary AVM-related haemoptysis [16, 18, 19]. Conversely, embolization may be expected to elevate pulmonary artery pressure (PAP), since pulmonary AVMs are abnormal dilated vessels between pulmonary arteries and veins that provide low resistance pathways for pulmonary blood flow [20].

The question of whether pulmonary AVM embolization increases PAP is particularly pertinent since most individuals with pulmonary AVMs have underlying hereditary haemorrhagic telangiectasia (HHT). Typically recognised by nose bleeds, mucocutaneous telangiectasia and visceral AVMs [21], HHT may be associated with pulmonary hypertension (PH) [9, 22-30]. The secondary causes of PH in HHT are diverse, as in the normal population [31], but PH particularly occurs either as a true pulmonary arterial hypertension (PAH) phenotype [9, 22, 28-30], or in the context of high output cardiac failure secondary to hepatic AVMs, when PH may be reversible after hepatic AVM treatment [32]. The frequencies of PAH and hepatic AVMs differ with HHT genotype: HHT is caused by mutations in at least five genes including endoglin (HHT type 1) and ALK-1 (HHT type 2), with pulmonary AVMs most common in HHT type 1 [33]. PAH phenotypes are more common in HHT type 2 [22, 28, 29] than HHT type 1 [30]. Hepatic AVMs are also more frequent in HHT type 2 [33].

Of more than 700 reported pulmonary AVM embolizations reported [1-18, 34-42], data on PAP measurements pre and post embolization are scarce [9, 11, 17, 32]. In three of the four reported cases [9, 17, 32], each selected from larger series, PAP increased post embolization,
while in the fourth [11] it was unchanged. There is also a report of worsening PH after surgical
resection of a pulmonary AVM [43].

We have previously reported that in our population of pulmonary AVM patients, 92% of whom
had HHT, the overall prevalence of pulmonary hypertension is low [44]. We hypothesised that
in contrast to the limited data in the literature, pulmonary AVM embolization would not
increase PAP. Here we report the results of a retrospective study in the series of pulmonary
AVM patients reported recently [2], performed to determine whether pulmonary AVM
embolization affected pulmonary artery pressure, and whether it may be safe to extend our
embolization practice to individuals with severe PH.

METHODS

Study population

All studies were ethically approved by the Hammersmith, Queen Charlotte’s, Chelsea, and
Acton Hospital Research Ethics Committee (LREC 00/5764), and performed as part of routine
clinical management of individuals with pulmonary AVMs.

SaO₂ were measured as previously described [2, 4, 45]. For SaO₂ values reported here,
recordings were made every 60 seconds for 10 minutes standing, since SaO₂ in the erect
posture correlates better with right to left shunt [45]. All patients with pulmonary AVMs of a
size amenable to embolization treatment underwent pulmonary angiography with a view to
embolization, unless there was a major medical contraindication. In view of theoretical
conscerns, angiography/embolization was not considered for four women referred to the service
with severe pulmonary hypertension and well preserved oxygen saturations. Pulmonary
angiography was performed as previously described [4] in unpremedicated, conscious patients
who had not been fluid-restricted pre-procedure. Systolic, diastolic and mean PAP were
recorded routinely prior to contrast injection via a multi-sidehole catheter (Grollman pigtail
catheter (William Cook Europe, Bjaeverskov, Denmark)). Measurements were repeated
immediately after embolization in the subgroup of individuals with higher PAP. In the majority of patients, only a single angiography/embolization session was required [2].

Statistics

Statistical analyses were performed using Prism 4 and Instat (Graph Pad Inc). For SaO₂, the last four minutes readings for erect postures were entered as replicate data for each of the pre and post embolization data. Quartile group data were incorporated from the full series of 219 pulmonary AVM patients, as reported in reference [2].

Age was expected to influence PAP, since catheterisation data at rest in two groups of healthy individuals (17 aged 16-28yr [46]; 15 aged 61-83 yr [47]) demonstrated significantly higher PAP systolic (mean 24.47 vs 19.94, p=0.003, Mann Whitney) and PAP mean (mean 16.13 vs 13.65, p=0.026) in the older group. This has also been supported by more recent echocardiography data [48]. In our series, associations of PAP measurements with age were performed using Spearman rank analyses and linear regression. The patients were also stratified into age-quartile groups, and interquartile differences analysed by one way analysis of variance (ANOVA) with post test correction for linear trend.

In order to test whether PAP was elevated following embolization of pulmonary AVMs, PAP measurements recorded pre-embolization were studied in all patients with at least two PAP measurements. 39 pairs of consecutive PAP measurements recorded at the outset of at least two embolization sessions were available from 35 patients. In addition, nine pairs of PAP measurements recorded pre and post embolization in the same session were available for eight patients with pre-existing mild to moderate pulmonary hypertension, in whom the repeat measurements during the same procedure had been justified as part of their clinical management. To test the null hypothesis that embolization of pulmonary AVMs does not increase PAP, measurements pre and post embolization, and pre and age-adjusted post
embolization measurements, were analysed by two tailed paired t-test, and significance assessed at false discovery rate (FDR)=0.05 level [49].

RESULTS

Patient populations

Patient ages ranged from 8 to 78yr at the time of embolization (Figure 1a). In patients undergoing embolization, baseline SaO$_2$ erect ranged from 73 to 98%, with a median value of 93% as in the full population reported in reference [2] (Figure 1b). For the four individuals who did not undergo embolization due to severe pre-existing PH, SaO$_2$ (erect) was in the upper two quartiles of the full pulmonary AVM population, at levels for which the majority of individuals with did not experience dyspnoea [2] (Figure 1b).

![Figure 1: Baseline characteristics of study population](image)

Comparison of a) age, b) baseline SaO$_2$ (erect), and c) PAP mean for the 143 patients undergoing embolization (plain symbols), and the four patients not offered embolization (ringed symbols). For b), † symptomatic dyspnoea, and quartile groups are as reported for the 219 pulmonary AVM patients in reference [2]. d) Age-dependent increase in PAF mean in 143 patients with pulmonary AVMs.
Baseline PAP measurements (PAP systolic, diastolic and mean) varied widely as illustrated in Table 1a and Figure 1c. The distribution of the embolized patients was skewed (Figure 1c), but nevertheless, the four patients who were not offered embolization represented significant outliers. Further details of their haemodynamic variables are presented in Table 1b.

Table 1: Pulmonary haemodynamic variables in pulmonary AVM patients

a: 143 patients undergoing embolization of pulmonary AVMs

<table>
<thead>
<tr>
<th>PAP (mmHg)</th>
<th>Median (Q1, Q3)</th>
<th>Mean (range)</th>
<th>Normal range [50]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAP systolic</td>
<td>23 (19-27)</td>
<td>23.6 (13-60)</td>
<td>13-26</td>
</tr>
<tr>
<td>PAP diastolic</td>
<td>7 (5-9)</td>
<td>7.2 (0-30)</td>
<td>6-16</td>
</tr>
<tr>
<td>PAP mean</td>
<td>13 (11-16)</td>
<td>13.5 (6-45)</td>
<td>7-19</td>
</tr>
</tbody>
</table>

b: Four PH patients not undergoing pulmonary AVM embolization

<table>
<thead>
<tr>
<th>PH Case</th>
<th>Age</th>
<th>SaO₂ erect (%)</th>
<th>RAP</th>
<th>RVEDP</th>
<th>PAP sys</th>
<th>PAP ds</th>
<th>PAP mean</th>
<th>PC Wedge</th>
<th>CO (litres/min)</th>
<th>CI (litres/min/m²)</th>
<th>PVR (dyn sec/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#144</td>
<td>64</td>
<td>100</td>
<td>12</td>
<td>10</td>
<td>74</td>
<td>21</td>
<td>41</td>
<td>17</td>
<td>7.0</td>
<td>4.0</td>
<td>272</td>
</tr>
<tr>
<td>#145</td>
<td>30</td>
<td>95</td>
<td>0</td>
<td>8</td>
<td>80</td>
<td>30</td>
<td>50</td>
<td>2</td>
<td>3.3</td>
<td>2.3</td>
<td>1160</td>
</tr>
<tr>
<td>#146</td>
<td>59</td>
<td>97.5</td>
<td>23</td>
<td>9</td>
<td>70</td>
<td>40</td>
<td>52</td>
<td>25</td>
<td>3.1</td>
<td>1.7</td>
<td>396</td>
</tr>
<tr>
<td>#147</td>
<td>53</td>
<td>92</td>
<td>12</td>
<td>9</td>
<td>55</td>
<td>38</td>
<td>40</td>
<td>18</td>
<td>7.8</td>
<td>4.6</td>
<td>274</td>
</tr>
</tbody>
</table>

Legend: Q1, Q3: interquartile range. RAP, right atrial pressure; RVEDP, right ventricular end diastolic pressure; sys, systolic; ds, diastolic; CO, cardiac output; CI, cardiac index; PVR, pulmonary vascular resistance. Normal ranges [50]: † 5-13mmHg, ‡ 11-99 dyn s/cm². Note the variety of PH phenotypes in this population: Case #144
has post capillary PH; case 145 has a PAH profile, and the other two cases display a mixed profile. High output cardiac failure secondary to hepatic AVMs was present in cases 144 and 146.

Univariate analysis of first recorded PAP measurements in the 143 embolized patients indicated that all three PAP measurements were influenced by age. For age and PAP mean, the Spearman r correlation was 0.33 (95% confidence intervals 0.17, 0.47; p<0.0001), and PAP mean could be described by the equation PAP mean = 9.88 + 0.107 *[age], r² =12.33%, p<0.0001. One way analysis of variance (ANOVA) indicated significant differences in PAP between age-quartile groups (Figure 1d). Post-test analysis confirmed a linear trend (p<0.0001), with significant increases occurring between the third (45-58yr) and upper (>58 yr) age quartiles (Figure 1d).

Effect of embolization

In order to test whether PAP was elevated following embolization of pulmonary AVMs, PAP measurements recorded pre-embolization were studied in all 43 patients for whom post embolization measurements were also available, either from consecutive sessions (35 patients), or from the same embolization session (8 patients).

For the 35 patients in whom measurements were made prior to consecutive embolization sessions, SaO₂ increased in all except one of the patients following embolization (p<0.0001, Figure 2a). In contrast, there was no significant change in PAP as a result of embolization (Figure 2b). There was a trend towards higher PAP post embolization, but this was in part accounted for by increased patient age, as measurements were recorded at a mean interval of 19.9 (range 2-121) months.
Recognising that the pooled groups may have masked individual changes, individual PAP responses were examined in a subgroup of 15 patients with PAP mean in the upper quartile. In this small group, embolization resulted in a highly significant improvement in SaO_2 ($p<0.0001$, Figure 3a). In contrast, PAP measurements recorded at a mean interval of 26 (range 13-80) months demonstrated no consistent trend, and no significant difference between pre and post embolization measurements ($p=0.76$, Figure 3b). Comparable findings were observed with PAP systolic and PAP diastolic (data not shown).
These measurements addressed whether embolization led to a sustained change in PAP. In order to explore whether there were any acute changes in PAP, nine pairs of PAP measurements recorded pre and post embolization in the same session were examined. Embolization resulted in a consistent and highly significant improvement in SaO₂ (p=0.0039, Figure 3c). Again PAP responses to pulmonary AVM embolization varied between individuals. In half of all patients, post embolization PAP mean was lower than prior to embolization, and overall there was no significant difference as a result of embolization (p=0.93, (Figure 3d). Comparable findings were observed with PAP systolic and PAP diastolic (data not shown).

Figure 3: Individual patient details

a) SaO₂ (erect) and b) PAP mean recorded at consecutive embolisation sessions in subgroup of 15 patients with pre-existing elevated PAP mean (≥16mmHg). c) SaO₂ (erect) and d) PAP mean recorded pre and post embolisation at same session in 8 patients with pre-existing elevated PAP mean (≥16mmHg). The two measurements for the patient with test balloon occlusion reported in Table 2 are illustrated by dotted lines.
While overall, there were no significant increase in PAP as a result of embolization, within both groups there were occasional individuals in whom PAP did increase, by up to 8mmHg between consecutive sessions, and up to 4mmHg during the same session. It may be helpful to be able to identify these rare individuals prior to embolization. Others have suggested test occlusion of the pulmonary AVM before definite embolization [32]. This technique was tried for one patient early in the series. Balloon occlusion increased SaO\textsubscript{2} to a similar degree as eventual complete embolization (Table 2). This test occlusion did not significantly increase PAP whereas PAP were significantly higher following maximal embolization.

Table 2: Comparison of balloon test occlusion and pulmonary AVM embolization

<table>
<thead>
<tr>
<th>Date</th>
<th>Day 0 pre</th>
<th>Day 0 (post balloon)</th>
<th>Day 8 pre Session 1</th>
<th>Day 8 post PAVM emb.</th>
<th>Day 169 pre Session 2</th>
<th>Day 169 post PAVM emb.</th>
<th>Change post balloon</th>
<th>Change post complete emb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SaO\textsubscript{2} (%)</td>
<td>67</td>
<td>85</td>
<td>69</td>
<td>80</td>
<td>81</td>
<td>89</td>
<td>+18</td>
<td>+22</td>
</tr>
<tr>
<td>PAP sys (mmHg)</td>
<td>47</td>
<td>50</td>
<td>54</td>
<td>60</td>
<td>57</td>
<td>63</td>
<td>+3</td>
<td>+16</td>
</tr>
<tr>
<td>PAP d/s (mmHg)</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>32</td>
<td>27</td>
<td>35</td>
<td>0</td>
<td>+35</td>
</tr>
<tr>
<td>PAP mean (mmHg)</td>
<td>22</td>
<td>25</td>
<td>34</td>
<td>41</td>
<td>36</td>
<td>44</td>
<td>+3</td>
<td>+22</td>
</tr>
</tbody>
</table>

Legend: Emb. Embolization. Test occlusion (stable for 5 minutes), and subsequent data following two separate PAVM embolization sessions in a 65 year old man with pulmonary hypertension secondary to left ventricular disease. The embolization sessions reduced the right to left shunt from 18% to 13.3% (session 1), then to undetectable levels (session 2). In session 1, embolization was curtailed due to the rise in PAP.

DISCUSSION

The key finding of this study was that embolization of pulmonary AVMs did not lead to a consistent increase in resting PAP in a series which excluded individuals with severe pulmonary arterial hypertension.
The strengths of the study included the relatively large patient group, correction for age which could have been an important confounding variable in assessments over consecutive embolization sessions, and strong evidence of embolization efficacy. Weaknesses include the retrospective nature of the study, and reliance on measurements performed for clinical purposes such that pulmonary vascular resistance (PVR) measurements, and same-session repeat measurements following embolization were not available for the majority of patients. In addition, the study was only powered to address consistent changes pre and post embolization.

Within the study limitations, in our series, embolization of pulmonary AVMs did not generally increase PAP, even in the setting of mild-to-moderate pre-existing pulmonary hypertension. No patient developed clinical PAH (i.e. right-heart failure) after embolization in this series.

We were surprised by the significant fall in PAP in one patient with pre-existing pulmonary hypertension attributed to left ventricular disease. We were also initially surprised to see that embolization did not lead to a consistent increase in PAP in other patients, since effective embolization occludes vessels that provide a lower resistance to flow than the rest of the pulmonary vasculature [20]. None of the patients illustrated in Figure 3 were known to have hepatic AVMs, and this may explain the differences between our results and those of others. Importantly however, noting that embolization leads to a reduction in cardiac output [11, 17], our data suggest that the fall in cardiac output can have a greater effect on PVR than occlusion of individual pulmonary AVMs.

While our data indicate that pulmonary AVM embolization does not necessarily lead to elevated PAP, PAP did rise in occasional individuals, rises which in this series, were not predicted by test balloon occlusion pre embolization. It is important to recognise that in the setting of severe PAH and HHT-associated hepatic AVMs, there are reports that embolization of pulmonary AVMs may precipitate fatal increase in PAP [32]. Furthermore, in addition to the previously reported cases, clinical PAH did develop in another patient in our series [2] in the years following pulmonary AVM resection and embolization at another institution.
Our interpretation of these considerations, and our observations from the series reported here and elsewhere [2], is that for patients with pre-existing severe pulmonary arterial hypertension, the risks of pulmonary AVM embolization outweigh potential benefits: The main indications for pulmonary AVM embolization are to reduce the risk of paradoxical embolic stroke, and, for individuals with hypoxaemia, to improve dyspnoea, and exercise tolerance. We have recently shown that the risk of paradoxical embolic stroke is substantially lower in individuals with higher PAP [2]. Furthermore, the data reported here serve as a reminder that pulmonary AVMs generally result in symptomatic dyspnoea only when resting SaO$_2$ are <80%, suggesting perhaps that symptomatic relief should not be expected for patients with pulmonary hypertension and SaO$_2$ >90% as was the case in all four excluded patients in our series. In our experience, the most difficult judgements relate to individuals with elevated pulmonary artery pressure and major haemoptysis, a consideration that was not required for the four individuals with PH in this series.

In summary, these data are a useful adjunct to case reports indicating increased PAP post embolization, and indicate that embolization may be undertaken with caution in the presence of pre-existing mild to moderate pulmonary hypertension in selected individuals.

ACKNOWLEDGEMENTS

This work was supported by donations from families and friends of HHT patients. We are also grateful for support from the NIHR Biomedical Research Centre Funding Scheme. The funding sources played no part in the decision to submit the manuscript for publication. We thank Dr Karen Sheares for provision of two sets of haemodynamic data for Table 1b.
REFERENCES

2. Shovlin CL, Jackson JE, Jenkins IH, Bamford K, Benjamin A, Ramadan H, Kulinskaya E. Primary determinants of ischaemic stroke and cerebral abscess are unrelated to severity of pulmonary arteriovenous malformations in HHT. *Thorax* 2007 Nov 2 [Epub ahead of print].

