2.5-D poroelastic wave modelling in double porosity media

Xu Liu,1,2 Stewart Greenhalgh2,3 and Yanhua Wang1

1Centre for Reservoir Geophysics, Imperial College London, UK. E-mail: xu.liu@imperial.ac.uk
2Department of Physics, University of Adelaide, Australia
3Institute of Geophysics, ETH Zürich, Switzerland

SUMMARY

To approximate seismic wave propagation in double porosity media, the 2.5-D governing equations of poroelastic waves are developed and numerically solved. The equations are obtained by taking a Fourier transform in the strike or medium-invariant direction over all of the field quantities in the 3-D governing equations. The new memory variables from the Zener model are suggested as a way to represent the sum of the convolution integrals for both the solid particle velocity and the macroscopic fluid flux in the governing equations. By application of the memory equations, the field quantities at every time step need not be stored. However, this approximation allows just two Zener relaxation times to represent the very complex double porosity and dual permeability attenuation mechanism, and thus reduce the difficulty. The 2.5-D governing equations are numerically solved by a time-splitting method for the non-stiff parts and an explicit fourth-order Runge-Kutta method for the time integration and a Fourier pseudospectral staggered-grid for handling the spatial derivative terms. The 2.5-D solution has the advantage of producing a 3-D wavefield (point source) for a 2-D model but is much more computationally efficient than the full 3-D solution. As an illustrative example, we firstly show the computed 2.5-D wavefields in a homogeneous single porosity model for which we reformulated an analytic solution. Results for a two-layer, water-saturated double porosity model and a laterally heterogeneous double porosity structure are also presented.

Key words: Numerical solutions; elasticity and anelasticity; seismic attenuation; wave propagation.

1 INTRODUCTION

By applying a volume averaging theory to the local Biot poroelastic law, Pride & Berryman (2003a,b) developed the double-porosity, dual permeability (DPDP) model. It provides a theoretical framework to model acoustic (not elastic) wave propagation through heterogeneous porous structures. All of the field quantities, such as confining pressure and solid phase particle velocity, are actually the averaged values over a representative volume of mesoscopic size including the two fluid-filled porous constituents, phase 1 and phase 2. These two phases could be, for example, a cracked porous rock, or a porous rock with different inclusions. Although the patchy saturation equations can be written with a very similar formalism, we do not here solve such problems. In simple terms, an internal fluid transfer mechanism (inner flow) is introduced to describe the flow between phase 1 and phase 2 in this theory. This provides an important energy dissipation mechanism for explaining the high attenuation at seismic frequencies, which cannot be explained by classic Biot theory applied to homogenous porous rocks. The original DPDP model can be reduced to an effective Biot model on the assumption that phase 2 is totally embedded in phase 1. It is also generally assumed that the included phase 2 is more compressible and has a higher porosity/permeability than the host phase 1. The inner flow mechanism is incorporated into the effective coefficients of the governing equations (here we refer to this DPDP model as the effective Biot theory). The phase velocity and attenuation dispersion characteristics of the $P$ wave for the effective Biot theory are claimed to provide a good match with those measured in real rocks over the seismic frequency band (Pride et al. 2004).

Double porosity theory not only provides a more general model to describe the attenuation mechanism, but also the governing equations to calculate the averaged wavefields in porous media having mesoscopic heterogeneities. Otherwise, using just the original Biot theory, it is very difficult to numerically model a macroscopic wave in a porous medium (of dimensions hundreds to thousands of metres) having mesoscopic heterogeneities (with a size of several millimetres). However, it is not possible to analytically solve the field equations in heterogeneous double porosity media. This requires a numerical approach. Although there are several methods to numerically solve the wave equations, like the finite element method and the finite difference method (see the review article by Carcione et al. 2010), wave propagation in fluid-filled porous media presents special difficulties for modelling because of the interaction between the solid frame and the pore fluid. For example, the equations are
stiff and the moduli are frequency-dependent. This implies energy dissipation and the solutions should be expressed as convolution integrals in the time domain.

Poro-viscoelastic equations have been successfully solved by Carcione (2007) in the time domain to simulate Biot’s (1962) energy dissipation model and the squirt-flow mechanism (Dvorkin et al. 1994) using a single Zener element at ultrasonic frequencies. However, Liu et al. (2009c) show that the DPDP model is very hard to fit by a single Zener element over a broad frequency range. Instead, they chose the relaxation function, which just approximates the dispersion behaviour of the double porosity model around the source centre frequency. The wave propagation can then be well described by the poro-viscoacoustic model with a single Zener element over the seismic frequency band. The primary attraction of using a Zener model is that it allows the convolution integral to be replaced by memory equations for which the field quantities need not be stored at every time step. However, this approximation allows only two Zener relaxation times to represent the very complex DPDP attenuation mechanism and thus reduce the difficulty.

Although Liu et al. (2010) suggested that a Kelvin-Voigt replacement element could be a better approximation than a Zener element at low frequency, their investigation showed that this is true only at frequencies of less than 50 Hz. Furthermore, the advantage is not very significant, and the Zener element can provide a much better approximation for frequencies in the range 50 Hz to several hundred Hertz. Liu et al. (2009c) numerically simulated elastic waves in heterogeneous DPDP media using a 2-D algorithm, which carries the implicit assumption of a line source. In this paper the modelling will now be extended to 2.5-D (point source).

Under the assumption that the medium is invariant in one direction (taken here as the y-axis direction) the 3-D wavefield for a point source can be efficiently obtained from the 2.5-D solution, which involves solving multiple 2-D equations (one for each wavenumber). Therefore, the 2.5-D solution has the advantage of a 3-D wavefield but is much more computationally efficient than the classical 3-D solution. For example, in frequency-domain modelling in elastic media, Zhou et al. (2011) report for a rather modest example computer memory requirements of 4 GB and 30 GB for 2.5-D versus 3-D modelling. The corresponding run times on an SGI Altix 30000 supercomputer were 7 hr and 40 hr, respectively.

Although several approaches for 2.5-D modelling have been applied for seismic wave simulation in single-phase media, the literature on 2.5-D modelling in porous media is, to the best of our knowledge, almost non-existent. The one exception is the paper by Lu et al. (2008) which used the boundary element method and considered a standard Biot porous medium. However, here we address the question of double porosity and attenuation and apply the time splitting method for the non-stiff parts, an explicit fourth-order Runge-Kutta method for the time integration and a Fourier pseudospectral staggered-grid method for handling the spatial derivative terms (Carcione 2007; Liu et al. 2009c).

\section*{2 Theory and Method}

Based on the DPDP model (Pride & Berryma 2003a,b), the governing equations for the poro-viscoelastic model can be written as (Liu et al. 2009c)

\begin{equation}
\dot{\sigma} + \dot{p}_f = \psi_s(t) \ast \left[ \nabla v + (\nabla v)^T - \frac{2}{3} \nabla \cdot v \right]
\end{equation}

\begin{equation}
- \begin{bmatrix}
\dot{p}_s(t) \\
\dot{p}_f(t)
\end{bmatrix} = 
\begin{bmatrix}
\psi_{s1}(t) \\
\psi_{s2}(t)
\end{bmatrix} \ast 
\begin{bmatrix}
\nabla \cdot v(t) \\
\nabla \cdot q(t)
\end{bmatrix}
\end{equation}

\begin{equation}
- \nabla p_f = \rho_f v + \frac{m}{\eta}(\nu/k_0^2)q
\end{equation}

\begin{equation}
\nabla \cdot \sigma = \rho \dot{v} + \rho f \dot{q}
\end{equation}

Here \(\sigma\) is the average stress tensor acting over the volume; \(v\) is the average particle velocity of the solid grains; \(\psi_s(t)\) and \(\psi_{sf}(t)\) are the relaxation functions of the \(\tilde{S}\) wave and the \(P\) wave, respectively, whose Fourier transforms are complex frequency-dependent moduli (see Liu et al. 2009c). It is worth noting that \(\psi_{s2}(t)\) is equal to \(\psi_{s1}(t)\) just for the case where the governing equations are derived under host field assumption (see Liu 2009a for details). The quantity \(p_s\) is the total confining pressure; \(p_f\) is the average fluid pressure; \(q\) is the macroscopic fluid flux, \(\rho\) and \(\rho_f\) are the bulk density and fluid density, respectively; \(k_0^2\) is the effective static permeability of the double porosity composite; \(m = T \rho_f / \phi\), where \(\phi\) is the overall porosity, and \(T\) denotes the tortuosity. In this paper, we are considering the low frequency range of Biot theory, and hence the relaxation function \(\psi\) (referring to \(\psi_s(t)\) or \(\psi_{sf}(t)\)) can be represented by the single Zener model as

\begin{equation}
\psi = \psi H(t),
\end{equation}

where \(H(t)\) is the Heaviside (unit step) function, and

\begin{equation}
\dot{\psi} = \psi(t = \infty) \left[ 1 - \left(1 - \frac{t}{T}\right) \exp \left(-\frac{t}{\tau}\right) \right].
\end{equation}

Here \(\psi(t = \infty)\) refers to the value of the relaxation function at infinite time and corresponds to the static or zero frequency modulus of DPDP media (Carcione 2007; Morency & Tromp 2008; Pride & Berryma 2003a,b).

The new memory variables \(e_{sij}, e_{p}\) and \(e_{pf}\) are defined as

\begin{equation}
e_{sij} = \delta_i \dot{\psi}_{s i}(t) H(t) \ast [u_{ij} + v_{ij} - \delta_i 2v_{ij}/3]
\end{equation}

\begin{equation}
e_{p} = \delta_i \dot{\psi}_{s1}(t) H(t) \ast \nabla \cdot v + \delta_i \dot{\psi}_{s2}(t) H(t) \ast \nabla \cdot q
\end{equation}

\begin{equation}
e_{pf} = \delta_i \dot{\psi}_{s2}(t) H(t) \ast \nabla \cdot v + \delta_i \dot{\psi}_{s3}(t) H(t) \ast \nabla \cdot q
\end{equation}

Here the memory variables \(e_{sij}, e_p\) and \(e_{pf}\) correspond to the shear stress in eq (1), the total confining pressure \(p_s\) and the average fluid pressure \(p_f\) in eq (2). Then the convolution integrals in eqs (1) and (2) can be replaced by the memory equations (given later as eqs 14–16).

The 2.5-D governing equations for poro-viscoelastic wave propagation are obtained by taking a Fourier transform in the strike or medium-invariant (\(y\)) direction over all of the field quantities in the 3-D governing equations. Although this operation is fairly standard in elastic media (Furumura & Takenaka 1996), the results are novel for porous media. They are given in the following equations, where the indices \(i\) and \(j\) take on the values \(x, y, z\). However, when the partial derivative is with respect to \(y\), it should be replaced by \(i k_i\).

For example, \(\dot{p}_{f,i}\) is replaced by \(i k_i \dot{p}_{f,i}\).

\begin{equation}
\dot{v}_i = -\frac{m}{\rho_f^2 - \rho_p^2} \delta_{ij,j} - \frac{\rho_f}{\rho_f^2 - \rho_m^2} \dot{p}_{f,i} - \frac{\rho_f \eta}{k_0^2 (\rho_f^2 - \rho_m^2)} \dot{q}_i
\end{equation}

\begin{equation}
\dot{q}_i = \frac{\rho_f}{\rho_f^2 - \rho_m^2} \delta_{ij,j} + \frac{\rho}{\rho_f^2 - \rho_m^2} \dot{p}_{f,i} + \frac{\rho \eta}{k_0^2 (\rho_f^2 - \rho_m^2)} \dot{q}_i
\end{equation}

\begin{equation}
-\nabla p_f = \rho_f \dot{v} + \frac{m}{\eta} \frac{\eta}{k_0^2} q
\end{equation}

\begin{equation}
\nabla \cdot \sigma = \rho \dot{v} + \rho_f \dot{q}
\end{equation}
Here in this paper, we set the condition that the context is the same for both the double porosity medium and the single porosity medium, and that this corresponds to the highest limit for $Q_s(f)$. Liu et al. (2009b) developed a solution for S-wave scattering by spherical poroelastic obstacles in a dissimilar poroelastic host rock and found that the internal fluid flow between the two phases does not cause much attenuation (unlike the compressional wave case). Here in this paper, we set $Q_s(f)$ equal to $Q_{p}(f)$ for the sake of simplicity. Adding a source vector $S$, the 2.5-D governing eq. (10) through (16) can be rewritten in matrix form as

$$\dot{\mathbf{F}} = \mathbf{M}(k_e) \mathbf{F} + \mathbf{S},$$

where the quantity $\mathbf{M}(k_e)$ is the propagation matrix; $\mathbf{F}$ is the field vector to be solved for, given by

$$\mathbf{F} = \begin{bmatrix} \dot{v}_x, \dot{e}_y, \dot{e}_z, \dot{q}_x, \dot{q}_y, \dot{q}_z, \dot{\sigma}_{zz}, \dot{\sigma}_{xy}, \dot{\sigma}_{xz} \end{bmatrix},$$

and the quantity $\mathbf{S}$ is the source vector which is located at $(x_0, 0, z_0)$ and written as

$$\mathbf{S} = \begin{bmatrix} 0, 0, 0, 0, 0, s_{xx}, s_{yy}, s_{zz}, s_{xy}, s_{xz}, s_{yz}, s_{f} \end{bmatrix}.$$
to zero to simulate a single porosity medium (a special case of the
for which we later set the volume fraction of the included phase 2
Composite relationships: porosity
\[ \nu_{L1} (m) = 0.0086 \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Parameter</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>( K_g ) (N m(^{-2}))</td>
<td>3.9 \times 10^{10}</td>
<td></td>
<td>( K_f ) (N m(^{-2}))</td>
<td>2.25 \times 10^{9}</td>
</tr>
<tr>
<td>( G_j ) (N m(^{-2}))</td>
<td>4.41 \times 10^{10}</td>
<td>( \rho_f ) (kg m(^{-3}))</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>( \rho_f ) (kg m(^{-3}))</td>
<td>2650.0</td>
<td>( \eta_f ) (kg m(^{-1}) s(^{-1}))</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

Material B (corresponding to 10 m deep double porosity sandstone)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Parameter</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>( K_d ) (N m(^{-2}))</td>
<td>2.23 \times 10^{10}</td>
<td>2.04 \times 10^{8}</td>
<td>( K_d ) (N m(^{-2}))</td>
<td>7.85 \times 10^{9}</td>
</tr>
<tr>
<td>( G_d ) (N m(^{-2}))</td>
<td>2.20 \times 10^{10}</td>
<td>1.22 \times 10^{8}</td>
<td>( G_d ) (N m(^{-2}))</td>
<td>5.98 \times 10^{9}</td>
</tr>
<tr>
<td>( L1 ) (m)</td>
<td>0.0086</td>
<td>0.0086</td>
<td>( v_2 )</td>
<td>0.03</td>
</tr>
<tr>
<td>( \beta_j )</td>
<td>0.20</td>
<td>0.36</td>
<td>( c_p,50(\text{ms}^{-1}) )</td>
<td>2475</td>
</tr>
<tr>
<td>( k_o,0(\text{m}^2) )</td>
<td>1.0 \times 10^{-14}</td>
<td>1.0 \times 10^{-9}</td>
<td>( c_p,50(\text{ms}^{-1}) )</td>
<td>1608</td>
</tr>
<tr>
<td>( \Delta(\text{m}) )</td>
<td>0.005</td>
<td></td>
<td>( Q_p,50(\text{)} )</td>
<td>30.4</td>
</tr>
</tbody>
</table>

Composite relationships: porosity \( \beta = (1 - v_2)\beta_1 + v_2\beta_2 \)
Permeability \( k_0/0 = (1 - v_2)/k_{01} + v_2/k_{02} \)
Tortuosity \( T = \beta^{-2/3} \)

Notes: The physical meaning of the various parameters (Pride et al. 2004) is as follows: Subscript f denotes Phase 1 or 2; \( K_{g,d,f} \) is bulk modulus of grain(s), drained porous frame (d) or fluid (f), respectively; \( G_{j,d} \) shear modulus of grain and porous frame; \( \rho_{f,g} \) density of grain or fluid; \( \eta_f \) viscosity; \( L1 \) is the characteristic length of the fluid pressure gradient; \( v_2 \) volume fraction of phase 2; \( \beta \) porosity; \( k_0 \) hydraulic permeability; \( \Delta \) volume-to-surface ratio; \( T \) is tortuosity; \( c_p,50(\text{)} \) and \( Q_p,50(\text{)} \) are the phase velocity and quality factor for the fast P wave and the S wave at a frequency of 50 Hz, respectively.
on the analytic solution for the Green’s function provided by Pride & Haartsen (1996). This same analytic solution was also applied by Karpfinger et al. (2009) to investigate the radiation patterns in poroelastic solids. The material properties are set to be the same as those of the host phase of the DPDP model (see Table 2). Since the point force is along the z direction, and the Greens function (Pride & Haartsen 1996) is formulated in spherical coordinates, we had to effect a coordinate transformation to use the analytical solution formulas. The details are given in the Appendix.

Seismograms were computed for five receivers at increasing radial distance from the source, in the range 173–866 m (see Fig. 1 for source–receiver geometry, but the model here is a full space of material forming the upper layer). Fig. 2 shows the normalized waveforms of the solid frame particle velocities of the z component, \( v_z \). The analytical solution of Biot’s model is plotted on the left hand side of the figure, whereas the numerical result for the homogenous DPDP model (with volume fraction of the included phase \( v_z = 0.03 \)) is plotted on the right hand side. Both images clearly show the P wave and the S wave. The S waves have much larger amplitudes than the P waves for the point source. Here, Biot’s model and the DPDP model have almost the same group velocities for the P- and S-waves, but the amplitudes are different between the two cases, indicating different attenuation with distance from the source. To provide a closer look at such amplitude and waveform differences, we show in Fig. 3 a comparison of seismograms at a radius of 692.8 m. Both Figs 2 and 3 clearly show that the numerical solution for the double porosity medium gives lower amplitudes compared to the single porosity case (Biot analytic solution) because of higher attenuation associated with the double porosity inner flow mechanism.

In Fig. 4, we compare the analytical solution of Biot’s model (on the left hand side) with our numerical result for the DPDP model (right hand side) but with only the host phase present (\( v_z = 0 \)). We find a strong similarity between the two models. However, the amplitudes of the P waves from our numerical solution are a little smaller than those of the analytic solution. We have checked our code and formulae but could not identify the reason for the small discrepancy. It is left as topic for future investigation.

Figure 2. Waveforms of the normalized solid frame particle velocity of the z-component \( v_z \) in a homogeneous porous medium with a z-directed point force source. The receiver locations are along the polar angle of \(-45^\circ\) and radii \( r \) of 173.2 m, 346.4 m, 519.6 m, 692.8 m and 866.0 m, respectively. Analytically calculated results based on Biot’s theory (on the left hand side) are compared with the numerical simulation based on the DPDP model (with 3 per cent sand inclusions, \( v_z = 0.03 \)). Both sets of waveforms show the direct P wave and the direct S wave. The waveforms and amplitudes are different in each case comparable in each case.

3.2 Model 2

The second sample model involves two-dissimilar layers separated by a horizontal interface at a depth \( Z = 740 \) m (see Fig. 1). This sample model has a similar structure (interface and upper layer) to that used by Liu et al. (2009c). The difference is that Liu et al. (2009c) considered only 2-D modelling and used different model extents. The upper layer in model 2 is the DPDP material B, which is identical to that in model 1. The point force source is the same as that in the previous section for model 1. To obtain a strong reflection, the lower layer is chosen to be a Biot porous medium, which corresponds to phase 1 sandstone at a depth of 10 km according to Walton theory (see Pride et al. 2004 for details). The grain and fluid material properties are the same as the previous example, with the frame properties...
Figure 4. Waveforms of the normalized solid frame particle velocity of the $z$-component $v_z$ in a homogeneous porous medium with a $z$-directed point force source. The receiver locations are along the polar angle of $-45^\circ$ and radii ($r$) of 173.2 m, 346.4 m, 519.6 m, 692.8 m and 866.0 m, respectively. Analytically calculated results based on Biot’s theory (on the left hand side) are compared with the numerical simulation based on the DPDP model (but single phase with $v_2 = 0$). Both sets of waveforms show the direct $P$ wave and the direct $S$ wave. The amplitudes and waveforms are comparable in each case.

Table 3. Material properties of the lower layer rocks of Model 2 (see Fig. 1).

<table>
<thead>
<tr>
<th>$K_d$ (N m$^{-2}$)</th>
<th>$G_d$ (N m$^{-2}$)</th>
<th>$\beta$</th>
<th>$\kappa_0$ (m$^2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2.925 \times 10^{10}$</td>
<td>$3.04 \times 10^{10}$</td>
<td>0.1</td>
<td>$1.0 \times 10^{-16}$</td>
</tr>
</tbody>
</table>

As a special case of the double porosity model, the volume fraction of phase 2 is set equal to zero in this lower layer. The single phase Biot porous medium does not have the internal flow mechanism and the relaxation frequency of the Biot viscoelastic mechanism is set at $1.0 \times 10^8$ Hz. So both materials can be well approximated by the poroelastic model (Liu et al. 2009c).

Fig. 5 shows the normalized waveforms for both the solid vertical component particle velocity $v_z$ (left hand side diagram) and the pore pressure $p_f$ (right hand side diagram). The amplitudes are normalized with respect to the maxima of $v_z$ and $p_f$, respectively, recorded at a distance of 173.2 m. The $v_z$ waveforms show the direct $P$ wave, the reflected $P$-wave, the direct $S$-wave and the reflected $S$-wave, which are denoted by the symbols $P$, $rP$, $S$ and $rS$.

Figure 5. Waveforms of the normalized solid frame particle velocity of the $z$ component $v_z$ (on the left hand side) and the pore pressure $p_f$ in a two-layer DPDP model. The source is a $z$-directed point force. The waveforms of $v_z$ show the direct $P$ wave, the reflected $P$-wave; the direct $S$-wave and the reflected $S$-wave, denoted as $P$, $rP$, $S$ and $rS$, respectively. The waveforms of $p_f$ (on the right hand side) show clearly the direct $P$-wave and the reflected $P$-wave, denoted as $P$ and $rP$, respectively, but the shear wave events do not cause the pore pressure to change.
Figure 6. Snapshot of \( v_z \) (on the left hand side) and \( p_f \) (on the right hand side) at a time of 200 ms in a two-layer heterogeneous poro-viscoelastic medium. The distances are shown along the \( x \) and \( z \) axes, with a grid spacing of 10 m. The interface is at \( z = 730 \) m and the snapshots are in the \( x-z \) plane for \( y = 10 \) m. The source is point force and its pulse has a centre frequency of 50 Hz and is located at (640 m, 640 m).

Figure 7. Waveforms of the normalized solid frame particle velocity of the \( z \)-component \( v_z \) (on the left hand side) and the pore pressure \( p_f \) in a two-layer DPDP model. The source is an explosion source. The waveforms of \( v_z \) show the direct \( P \) wave, the reflected \( P \)-wave; the mode-converted \( S \)-wave and denoted as \( P, rP, S \) respectively. The waveforms of \( p_f \) (on the right hand side) show clearly only the direct \( P \) wave and the reflected \( P \) wave.

respectively. The \( p_f \) waveforms clearly show the direct \( P \)-wave and the reflected \( P \)-wave, which are denoted by \( P \) and \( rP \), respectively. In Fig. 6, we present wavefield snapshots in the \( x-z \) plane at a distance \( y = 10 \) m, at a time of 200 ms. The snapshot on the left is for the vertical particle velocity \( v_z \) and that on the right for fluid pressure \( p_f \). The snapshots are in a plane very close to the central XOZ plane, so they are comparable to the snapshot for 2-D modelling given by Liu et al. (2009c). For \( v_z \) (on the left of Fig. 6), along the central vertical axis from top to the bottom, four clear wavefronts can be identified, corresponding to the direct \( P \) wave, the direct \( S \) wave, the reflected \( S \) wave and the transmitted \( S \), denoted in the figure as \( P, S, rS, \) and \( tS \), respectively. The transmitted \( P \) wave (denoted as \( tP \), and almost off the edge of the plot) and the reflected \( P \) wave are not very clear due to interference. For \( p_f \) (on the right of Fig. 6), along the central vertical axis from top to the bottom, just three wavefronts are visible. They can be identified as the direct \( P \) wave, the reflected \( P \) wave and the transmitted \( P \) wave.

It should be remarked that the \( S \) waves (occurring in the \( v_z \) waveforms) do not change the pore pressure (right hand side waveforms) and therefore are not recognisable in the pressure plots of Figs 5 and 6. It is easy to understand that \( S \) waves do not cause any volumetric deformation and therefore do not significantly affect the pore pressure. However, some researchers discuss the existence of a slow \( S \) wave, which naturally arises when introducing a fluid strain-rate term in the Biot constitutive relation (see Sahay 2008 for details). But such a term is not included in our governing equation.

We next applied a volumetric (explosive) source, given by

\[
S = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] \\
\times \delta(x - x_0)\delta(z - z_0)\delta(t)
\] (24)
The wavenumber sampling strategy. The wavefield quantities theoretically become infinite at these so-called singular wavenumbers of $k_y$, which are referred to as critical values $k_c = \omega/c$, where $c$ is the phase velocity of a particular wave. However, the poro-viscoelastic wave approximation incorporates material attenuation, which essentially moves the poles off the real wavenumber axis along which the wavenumber spectra summation (inverse spatial Fourier transform) is performed.

**CONCLUSIONS**

For the double porosity Biot model, the local flow energy dissipation mechanism can be approximated by a single Zener viscoacoustic element. This replaces the convolution integrals of the governing equations with the memory equations for the memory variables which makes it unnecessary to store the field quantities at every time step. On the other hand, this approximation allows only two Zener relaxation times to represent the very complex DPDP attenuation mechanism and thus reduce the inversion difficulty. From the 3-D governing equations for poro-viscoelastic wave propagation, the 2.5-D governing equations are obtained by taking a Fourier transform in the medium-invariant (strike) $y$-direction and transforming to the wavenumber $k_y$ domain. For heterogeneous, double porosity 2-D media, we obtain numerical 2.5-D transient solutions for a point source. This is accomplished by poro-viscoelastic modelling using a time splitting method for the non-stiff parts and an explicit fourth-order Runge-Kutta method for the time integration and a Fourier pseudospectral staggered-grid for handling the spatial derivative terms. Since the 2.5-D scheme can be used to calculate the 3-D wavefields, it is clearly more realistic than 2-D (line source) modelling. By this method, the stress, particle velocity and pore pressure can be calculated simultaneously. We compare our numerical solution for the special case of a single porosity medium (setting $\nu_2 = 0$) with the analytical solution for a homogeneous Biot model and find there exists a slight discrepancy between the amplitudes of $P$ waves, which requires further investigation. We have also presented results for heterogeneous (two layer) models, one incorporating lateral variations.

**ACKNOWLEDGMENTS**

We are grateful to the University of Adelaide, the Australian Research Council, ETH Zurich and the sponsors of the Centre for Reservoir Geophysics, Imperial College London, for supporting this research. We also thank two anonymous reviewers for their constructive suggestions, which have improved the quality of the paper.

**REFERENCES**


© 2011 The Authors, *GJI*, 186, 1285–1294

Geophysical Journal International © 2011 RAS
The solid and the fluid relative displacement \((\mathbf{u}, \mathbf{w})\) caused by a body forces \((F_s, f_s)\) in a homogeneous and isotropic Biot porous medium are solved as (Pride & Haartsen 1996; Karpfinger et al. 2009):

\[
\begin{pmatrix}
\mathbf{u} \\
\mathbf{w}
\end{pmatrix} =
\begin{pmatrix}
G^{F,s} & G^{F,w} \\
G^{F,s} & G^{F,w}
\end{pmatrix}
\begin{pmatrix}
\mathbf{F}_s \\
f_s
\end{pmatrix}.
\]

(A1)

Here, the elements \(G\) are Green’s tensors. For simplicity, we set the source at the centre of the coordinate system and the fluid volume source \(f_s\) to be zero, and we only calculate the solid displacement \(\mathbf{u}\). Thus, only \(G^{F,s}\) needs to be given here (for the other elements of the Green’s tensor, please see Pride & Haartsen (1996) or Karpfinger et al. (2009). The calculation of \(\mathbf{w}\) for non-zero \(f_s\) case can be obtained in the similar way.

\[
G^{F,s}(r) = \frac{1}{\mu} \frac{e^{i \omega S_p r}}{4 \pi r} \left( I - \hat{r}\hat{r} \right) + \sum_{j=1}^{3} \frac{I_{s,s_j}^F}{\omega^2 S_j} \frac{e^{i \omega S_p r}}{4 \pi r} \hat{r}\hat{r} + \frac{1}{\mu} \frac{e^{i \omega S_p r}}{4 \pi r} \left( \frac{-i}{\omega S_p r} - \frac{1}{(\omega S_p r)^2} \right) \left[ \frac{1}{(\omega^2 S_j)} \left( \frac{-i}{\omega S_j r} - \frac{1}{(\omega S_j r)^2} \right) e^{i \omega S_p r} \left( I - 3 \hat{r}\hat{r} \right) \right]
\]

(A2)

and

\[
I_{s,s_j}^F = \left( \frac{M}{\mu \mathcal{C}^2} \right) \begin{pmatrix} S_j - \tilde{\rho} M \end{pmatrix} \cdot I_{s,s_j}^F.
\]

(A3)

(Noting the formalism of \(I_{s,s_j}^F\) in Karpfinger et al. 2009)

\[
\begin{align*}
2S_1^2 &= \gamma - \sqrt{\gamma^2 - 4\tilde{\rho} \rho_1 (\mu \mathcal{C}^2)} \\
2S_2^2 &= \gamma + \sqrt{\gamma^2 - 4\tilde{\rho} \rho_1 (\mu \mathcal{C}^2)} \\
S_3^2 &= \rho_1/\mu = \frac{\rho_1 M + \tilde{\rho} H - 2\rho_1 C}{\mu \mathcal{C}^2}
\end{align*}
\]

(A4)

© 2011 The Authors, GJI, 186, 1285--1294

Geophysical Journal International © 2011 RAS
Here $S_1$, $S_2$ and $S_3$ are the fast compressional, slow compressional and shear slowness, respectively.

$$C = \alpha M, \quad 1/M = (\alpha - \phi)/K_g + \phi/K_f, \quad H = K_{sat} + 4\mu/3$$ (A5)

$$K_{sat} = K + \alpha^2 M, \quad \alpha = 1 - K/K_g.$$ (A6)

$$\rho_c = \rho - \rho_f^2/\rho, \quad \nu = \omega (1 + \phi) \rho_c,$$ (A7)

$$\kappa(\omega) = \kappa_0 \left\{ \frac{1}{\sqrt{1 + i4\omega / (\omega, \rho_c)} + i \omega / \rho_c} \right\}.$$ (A8)

In the above $K_f$, $K_g$ and $K$ are the bulk moduli of the fluid, solid grain and dry skeleton, respectively; $\phi$, $\kappa_0$ and $T_\infty$ are porosity, permeability and tortuosity respectively; $\eta$ is fluid viscosity; $\rho_f$ and $\rho_c$ are the density of fluid and solid grain, respectively.

The point source at the centre of the coordinate is written as

$$\mathbf{F}_s = (0, 0, \hat{z}) F(\omega).$$ (A9)

The solid displacement, by (A1) is

$$\mathbf{u} = \mathbf{G}^{\rho, \theta}(\mathbf{r}) \cdot \mathbf{F}_s$$ (A10)

Noting that the components of the Green’s tensor (or Green dyadic) are shown in spherical coordinates, we apply the following equations to transform the vector from spherical coordinates $(A_s, A_r, A_\theta, A_\phi)$ into cartesian coordinate $(A_x, A_y, A_z)^T$

$$\begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix} = \begin{bmatrix} \sin \theta \cos \varphi & \cos \theta \cos \varphi & -\sin \varphi \\ \sin \theta \sin \varphi & \cos \theta \sin \varphi & \cos \varphi \\ \cos \theta & -\sin \theta & 0 \end{bmatrix} \begin{bmatrix} A_s \\ A_r \\ A_\theta \end{bmatrix}$$ (A11)

Inserting (A2) and (A9) into (A10) and applying (A11), we have the results from the dot product of

$$\hat{r} \cdot \mathbf{F}_s = F(\omega) \cos \hat{\theta}$$

$$= F(\omega) \left\{ \frac{1}{2} (\sin 2\theta \cos \varphi \hat{x} + \sin 2\theta \sin \varphi \hat{y} + 2 \cos^2 \theta \hat{z})^T \right\}$$ (A12)

$$(1 - \hat{r} \hat{r}) \cdot \mathbf{F}_s = (\hat{\theta} \hat{\theta} + \hat{\phi} \hat{\phi}) \cdot \mathbf{F}_s = -F(\omega) \delta(r) \sin \hat{\theta}$$

$$= -F(\omega) \left\{ \frac{1}{2} (\sin 2\theta \cos \varphi \hat{x} + \sin 2\theta \sin \varphi \hat{y} - 2 \sin^2 \theta \hat{z})^T \right\}$$ (A13)

$$(1 - 3\hat{r} \hat{r}) \cdot \mathbf{F}_s = (1 - \hat{r} \hat{r}) \cdot \mathbf{F}_s - 2 \hat{r} \hat{r} \cdot \mathbf{F}_s$$

$$= -F(\omega) \left\{ \frac{3}{2} \sin 2\theta \cos \varphi \hat{x} + \frac{3}{2} \sin 2\theta \sin \varphi \hat{y} + (3 \cos^2 \theta - 1) \hat{z} \right\}^T$$ (A14)

Then, the component of the solid displacement in the $\hat{z}$ direction is

$$u_z(\omega) = \left\{ \begin{array}{l} \frac{1}{\mu} \left( e^{i\omega \lambda_{ij}} - \frac{1}{4\pi r} \sum_{j=1}^{2} L_{ij} \frac{e^{i\omega \lambda_{ij}}}{4\pi r} \right) \\
\frac{1}{\mu} \left( \frac{i}{\omega \lambda_{ij}} - \frac{1}{(\omega \lambda_{ij})^2} \right) \frac{e^{i\omega \lambda_{ij}}}{4\pi r} \\
\frac{1}{\mu} \frac{i}{\omega \lambda_{ij}} \left( \frac{1}{(\omega \lambda_{ij})^2} - \frac{1}{4\pi r} \right) \frac{e^{i\omega \lambda_{ij}}}{4\pi r} \end{array} \right\} F(\omega).$$ (A15)

The particle velocity $v_z$ is obtained by temporal differentiation, which in the frequency domain is simply multiplication by $-i\omega$ viz.

$$v_z(\omega) = -i \omega u_z(\omega).$$ The waveform in the time domain is obtained by inverse Fourier transformation.

The other components of the solid displacement (or velocity) vector can be easily derived in a similar way.