A mid-gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae.

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Environmental Microbiology and Environmental Microbiology Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>EMI-2009-0285.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>EMI - Research article</td>
</tr>
<tr>
<td>Journal:</td>
<td>Environmental Microbiology</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>26-May-2009</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Raymond, Ben; University of Oxford, Dept of Zoology</td>
</tr>
<tr>
<td></td>
<td>Johnston, Paul; University of Sussex, Biochemistry</td>
</tr>
<tr>
<td></td>
<td>Wright, Denis; Imperial College</td>
</tr>
<tr>
<td></td>
<td>Ellis, Richard</td>
</tr>
<tr>
<td></td>
<td>Crickmore, Neil; University of Sussex, Biochemistry</td>
</tr>
<tr>
<td></td>
<td>Bonsall, Michael; University of Oxford, Department of Zoology</td>
</tr>
<tr>
<td>Keywords:</td>
<td>population biology/clonal structure, pathogen ecology, symbionts, microbial ecology, theoretical ecology</td>
</tr>
</tbody>
</table>
A mid-gut microbiota is not required for the pathogenicity of *Bacillus thuringiensis* to diamondback moth larvae.

Ben Raymond*, Paul R. Johnston, Denis J. Wright, Richard J. Ellis†, Neil Crickmore, Michael B. Bonsall.

*Mathematical Ecology Research Group, Dept of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.

†Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK

‡Division of Biology, Faculty of Natural Science, Imperial College London, Silwood Park campus, Ascot, SL5 7PY, UK.

†NERC Centre for Population Biology, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK * Correspondence: Email: benjamin.raymond@zoo.ox.ac.uk; tel. 0044 1865 271132; fax 0044 1865 310447.

†Current address: Molecular Pathogenesis and Genetics, Veterinary Laboratories Agency, Addlestone, KT15 3NB, UK
Summary

The mode of action of the entomopathogenic bacterium *Bacillus thuringiensis* is still a matter of debate. Recent reports have claimed that aseptic lepidopteran hosts were not susceptible to *B. thuringiensis* (Bt) and that inoculation with mid-gut bacteria restores pathogenicity. These claims are controversial because larvae were rendered aseptic by consuming antibiotics, although the effect of these antibiotics on Bt was not examined. We tested the generality of the mid-gut bacteria hypothesis in the diamondback moth, *Plutella xylostella* using properly controlled experiments that investigated the effect of antibiotic consumption and absence of gut microbiota separately. We found that purified Bt toxin and spore/toxin mixtures were fully pathogenic to larvae reared aseptically. Persistence of antibiotics in larval tissues was implicated in reducing host mortality since larval consumption of the antibiotic rifampicin reduced the pathogenicity of rifampicin sensitive Bt strains but not rifampicin resistant strains. Inoculating larvae with *Enterobacter* sp. Mn2 reduced the mortality of larvae feeding on Bt HD-1 and the presence of a culturable gut microbiota also reduced the pathogenicity of the Bt toxin Cry1Ac, in agreement with other studies indicating that an intestinal microbiota can protect taxonomically diverse hosts from pathogen attack. Since ingestion of antibiotics suppresses host mortality the vegetative growth of Bt in the host must be important for its pathogenicity. Furthermore, claims that aseptic larvae are not susceptible to Bt must be supported by experiments that control for the effect of administering antibiotics.
Introduction

Bacillus thuringiensis (*Bt*) is a gram positive spore forming invertebrate pathogen that is widely exploited in pest management. Its utility derives from the large quantities of proteinaceous toxins that form crystalline parasporal inclusions, termed the Cry and Cyt proteins (Schnepf et al., 1998). *Bt* toxin genes have been widely incorporated into genetically modified insect resistant crops (ISAAA, 2007) but are also widely exploited as biopesticides with target hosts ranging from mosquitoes to lepidopteran pests of horticulture and forestry (Glare and O'Callaghan, 2000). Although the structure and mode of action of *Bt* Cry toxins has been intensively researched, the biology and ecology of the bacterium is not fully characterized (Jensen et al., 2003; Raymond et al., 2008a). Disagreement on the biology of *Bt* extends to the exact mechanism responsible for the death of the host. A purely toxin based hypothesis suggests that the action of predominantly Cry toxins paralyses the mid-gut and leads to eventual death by starvation (Knowles, 1994). Alternatively, Cry toxins cause extensive cell lysis in the mid-gut that allows bacteria access to the haemolymph, thus rapid vegetative growth of *Bt* within the host (septicaemia) is proposed as an alternative cause of death (Schnepf et al., 1998).

Recently, a novel pathogenic mechanism was suggested by the claim that *Bt* and its toxins are incapable of killing aseptically reared gypsy moth, *Lymantria dispar*, larvae but that pathogenicity can be restored by inoculating hosts with a gut-associated strain of *Enterobacter* (Broderick et al., 2006). More recent work has extended this claim to a wide range of insect hosts (Broderick et al., 2009). An obligate association with the gut microbiota challenges previous models of the pathogenicity of *Bt* toxins, and has considerable implications for the ecology of *Bt* and the evolution of novel resistance mechanisms in invertebrate pests. The gut
microbiota hypothesis remains highly controversial, given previous evidence of the lethality of Bt in aseptically-reared insects (Takatsuka and Kunimi, 2000) and the synergistic action of the Bt spore on the toxicity of crystal toxins in some hosts (Heimpel and Angus, 1959; Li et al., 1987; Liu et al., 1998).

Moreover, the experimental findings of Broderick et al. (2006, 2009) suffer from two issues that may confound their results. First, the authors administered high doses of four broad-spectrum antibiotics to hosts in order to eliminate their gut microbiota, but they did not directly control for the effects of antibiotics on Bt itself. Second, the work exclusively used a strain of Bt (B. thuringiensis subsp. kurstaki HD-1) that was isolated from a commercial biopesticide (DiPel DF). This strain grows poorly in some hosts (Raymond et al., 2008a) and while the precise evolutionary background of this strain is unknown, biopesticide strains are typically selected for increased toxin production in artificial media and may have undergone little recent selection in live hosts.

Here we aimed to test the applicability of the claim that a culturable gut microbiota is required for the pathogenicity of Bt and its Cry toxins in an alternative host, the diamondback moth, Plutella xylostella, and by using protocols which produced aseptic larvae without directly administering antibiotics. More specifically, we tested two hypotheses: (1) that strain attenuation in biopesticides leads to a dependence on culturable gut microbiota for pathogenicity and (2) that the carry-over of ingested antibiotics in host larvae can reduce the pathogenicity of Bt.

Results

Toxicity of purified Bt Cry1Ac protoxin in aseptic and conventionally reared larvae
Cry1Ac toxicity bioassays showed that a culturable midgut microbiota was not required to induce host mortality. Moreover, purified protoxin was approximately twice as lethal in aseptically reared larvae in comparison to larvae with a well-developed gut microbiota (Table 2; effect of rearing treatment $\chi^2 = 52.0$, $df = 1$, $P << 0.0001$; log-transformed assay dose $\chi^2 = 467.0$, $df = 1$, $P << 0.0001$). We found that 16S rRNA genes could not be amplified from aseptically reared DBM larvae (15/15 larvae) whereas amplicons were consistently produced from non-sterile larvae reared in the absence of antibiotics (15/15 larvae). Similarly, culturable bacteria were only found within the non-sterile larvae. Note that these non-sterile larvae were derived from non-sterile parents in contrast to the bacterial bioassays below. Sequencing of a subset of gut bacteria from this population showed that this population is typically colonized by Enterococcus spp. and that Enterobacter sp. isolates were relatively rare.

Testing the pathogenicity of biopesticidal, wild-type and host passaged Bt strains in aseptically-reared and Enterobacter inoculated larvae

We investigated whether attenuation in strains derived from biopesticides would affect their ability to kill aseptic hosts. To this end we compared the pathogenicity of three biopesticidal strains; three wild type isolates of Bt and three passaged strains (R1-K, R2-K and R3-K) in aseptically-reared rifampicin fed P. xylostella larva. All passaged strains were originally isolated from a spontaneous rifR mutant of the biopesticide DiPel WP (B. thuringiensis kurstaki HD-1) and subsequently infected and re-isolated three times in P. xylostella larvae.

If strain attenuation had affected the pathogenicity of Bt biopesticides in aseptic hosts then WT and host passaged strains should incur higher mortality rates than the biopesticide strains in the absence of any gut microbiota. In addition, if the...
gut microbiota hypothesis is general none of the nine isolates in this experiment should be pathogenic to these hosts. We found neither of these patterns. The passaged rifampicin resistant (rifR) strains were highly pathogenic to aseptic, rifampicin treated P. xylostella and there were clear differences in the mortality imposed by the three groups of stains (binomial glm F_{2,23} = 77.1, P < 0.0001; Figure 1). Comparisons (using post hoc treatment contrasts) between these groups of strains showed that the rifR strains were more pathogenic than either the WT (t = 8.68, P < 0.0001) or the biopesticide strains (t = 5.26, P < 0.0001) (Figure 1). Overall, strains isolated from similar sources had similar pathogenicity, i.e. there was no significant effect of pooling strains into their three groups (biopesticides, wild-type, and passaged strains) (F_{9,21} = 1.08, P = 0.47). Bioassay dose had a strong effect on larval mortality (F_{1,25} = 9.72, P < 0.0001) and increasing bioassay doses had less effect on the pathogenicity of WT and biopesticide strains (dose X strain interaction F_{2,21} = 7.20, P = 0.004).

Dose effects have not been plotted for graphical simplicity (Figure 1).

Distinguishing between the effect of antibiotic treatment and absence of gut microbiota on the pathogenicity of Bt

There were two possible explanations for the results of the previous experiment, either rifampicin in larval diet was persisting in larval hosts and inhibiting Bt pathogenicity or culturable mid-gut microbiota are required for the pathogenicity of both WT and biopesticide strains but not the recently passaged rifR strains. We conducted two full factorial experiments with different isolates of Bt to tease apart these explanations and to test whether the absence of gut microbiota or treatment with antibiotics was responsible for inhibiting the pathogenicity of a proportion of Bt strains. These experiments used both antibiotic sensitive and rifR strains of Bt HD-73.
and Bt HD-1 strains. In these experiments the majority of larvae died by the end of
the five-day observation period and survival data was analysed using a Cox
proportional hazard model. As above, all treatments were replicated at three doses of
Bt with approximately 30 larvae per dose. The experiments with HD1 and HD73
used the same generation of insects, however, the HD1 experiment was initiated a
week earlier with second instar larvae; the HD73 experiment used third instar larvae.

In both experiments antibiotic sensitive strains of Bt were pathogenic to larvae reared
aseptically without antibiotics (Fig. 2, Fig. 3), and there was no evidence that absence
of a culturable gut microbiota was inhibiting the pathogenicity of this bacterium. In
contrast, we did find evidence that carry-over of antibiotics in hosts could affect the
pathogenicity of Bt: larval consumption of rifampicin substantially reduced the
pathogenicity of all antibiotic sensitive strains, but did not reduce the mortality of the
rifR strains (HD-1 experiment: strain*diet interaction df = 1, residual df = 824, $\chi^2 =
250, P << 0.001; HD-73 experiment: strain*diet interaction df = 1, residual df = 761,
$\chi^2 = 37, P << 0.001$).

The effect of inoculation with Enterobacter sp. Mn2 was different in the two
experiments. In the HD-1 experiment the presence of Enterobacter sp. Mn 2 had a
small but significant effect on reducing the pathogenicity of both the rifampicin
susceptible and the rifR strain ($df = 1$, residual $df = 824$, $\chi^2 = 6.0, P = 0.014$; Fig 2).
Note that the survivorship analysis can only differentiate between treatments when
mortality is below 100%. However, inoculation with Enterobacter sp. Mn2 did not
alter the pathogenicity of Bt HD-73 ($df = 1$, residual $df = 763$, $\chi^2 = 0.1, P = 0.8$, Fig.
3). Bioassay dose affected mortality rates in the HD-1 experiment and interacted with
pathogen strain ($df = 1$, residual $df = 824$, $\chi^2 = 156.2, P < 0.0001$) but not
Enterobacter sp. Mn2 inoculation ($df = 1$, residual $df = 823$, $\chi^2 = 1.9$, $P = 0.2$), or the application of rifampicin ($df = 1$, residual $df = 822$, $\chi^2 = 1.54$, $P = 0.12$). In the HD-73 experiment dose also significantly affected mortality ($\chi^2 = 8.5$, $P <0.0001$) but did not interact with bacterial strain ($df = 1$, residual $df = 759$, $\chi^2 = 1.7$, $P = 0.2$) or Enterobacter sp. Mn2 inoculation ($df = 1$, residual $df = 760$, $\chi^2 = 1.1$, $P = 0.3$) but did interact with rifampicin consumption ($df = 1$, residual $df = 761$, $\chi^2 = 7.2$, $P = 0.007$).

We examined control insects from the first two bacterial bioassays for the presence of culturable strains (using high-nutrient LB agar) and unculturable bacteria (using PCR amplification of 16S rRNA genes). Larvae were removed at the end of the experiment for DNA extraction, in order to maximize the probability of recovering contaminants. Homogenized whole larvae from both the antibiotic-free and rifampicin-diet rearing treatments failed to produce any bacterial colonies when plated on LB media ($n=10$ per treatment). In contrast, 60% of whole insect homogenates from larvae inoculated with Enterobacter sp. Mn2 contained detectable culturable levels of this bacterium ranging $0 - 3 \times 10^3$ CFU per insect on antibiotic free diet and $0 - 4 \times 10^1$ CFU per insect on rifampicin diet, although there was no significant difference between diet treatments ($df = 13$, $t = 1.46$, $P = 0.17$). PCR conditions that were sufficiently sensitive to amplify a product from 40 pg of Enterobacter sp. template DNA, roughly equivalent to 10^4 cells of Escherichia coli (Kubitschek and Friedman, 1971), failed to amplify a product from larvae reared-aseptically on antibiotic-free diet. We could, however, recover visible PCR products from 5/8 aseptically-reared larvae that were experimentally inoculated with Enterobacter sp. Mn2.
Discussion

We have shown that both *Bt* toxins and spore/toxin mixtures are pathogenic in the absence of midgut bacteria when carry-over effects of antibiotic are excluded by using aseptically reared hosts. In addition we have shown that antibiotic sensitive *Bt* strains are much less pathogenic to hosts that have ingested a single antibiotic (rifampicin) but antibiotic resistant strains of *Bt* are not affected in this way. Therefore in *P. xylostella* larvae, pathogenicity of *Bt* or one of its toxins does not depend upon the culturable gut microbiota. For one strain of *Bt* (HD-1), and for pure toxin preparations, the presence of culturable gut microbiota led to a small but significant reduction in host mortality, implying that the gut microbiota confers some protection against pathogen attack, as found in other vertebrates and invertebrate hosts (Jarosz, 1979; Dillon and Charnley, 1995; Filho-Lima et al., 2000; Servin, 2004). A similar protective role of gut microbiota against the toxicity of pure Cry1Ac was found in a subsequent paper by Broderick et al (2009) in which antibiotic treatment increased the susceptibility of *Pectinophora gossypiella* towards this toxin. These results also imply that inhibiting the growth of *Bt* within the host with antibiotics reduces pathogenicity, indicating that septicaemic proliferation of *Bt* contributes to the pathogenicity of this bacterium. Our demonstration of the pathogenicity of purified Cry toxins in aseptic hosts does not contradict our interpretation of the role of septicaemia since living bacterial spores have long been known to substantially increase toxin-induced mortality in *P. xylostella* and other hosts (Li et al., 1987; Dubois and Dean, 1995; Liu et al., 1998).
Broderick et al. (2006, 2009) reported the importance of culturable gut microbiota for the pathogenicity of \textit{Bt} and/or its Cry toxins in a wide range of Lepidopteran hosts, but our findings do not support this interpretation in diamondback moth. Although Broderick et al (2006, 2009) found that treating larvae with antibiotics inhibited the pathogenicity of \textit{Bt} in 5 different Lepidopteran species and that inoculation with \textit{Enterobacter} sp. NAB3 restored the pathogenicity of \textit{Bt} in 4 of these. Their interpretation was that the midgut microbiota commonly contribute to the pathogenicity of \textit{Bt}. Our results suggest that there may be an alternative explanation for their data. Just one of the antibiotics they used to produce aseptic larvae (rifampicin) was sufficient to drastically reduce the pathogenicity of \textit{Bt} in this study. Given our results and the fact that orally fed antibiotics can persist in the tissues and haemolymph of lepidopteran larvae (Sikorowski and Thompson, 1985); it is plausible that the direct effects of antibiotics, and not the absence of the gut microbiota, account for the low pathogenicity of \textit{Bt} in antibiotic-fed Lepidopteran larvae (Broderick et al., 2006; Broderick et al., 2009). Broderick et al (2009) found that administration of antibiotics to \textit{Heliothis virescens} larvae greatly reduced subsequent pathogenicity of \textit{Bt}. This result is noteworthy as the authors did not detect gut microbiota in \textit{H. virescens} larvae prior to antibiotic administration. Thus, in agreement with the results presented here, the observed attenuation of \textit{Bt} pathogenicity in antibiotic-treated \textit{H. virescens} larvae is likely to result from past antibiotic exposure and not from the removal of gut microbiota. Broderick et al (2009) inferred that antibiotics were unlikely to affect \textit{Bt} because (1) they found similar levels of colony forming units of \textit{Bt} in the guts of antibiotic free and antibiotic fed larvae and (2) because \textit{E. coli} (engineered to express \textit{Bt} toxins) and \textit{Enterobacter} sp. NAB3 could both proliferate in antibiotic treated larvae. However, colony counts from gut material may be derived...
from spores and do not imply that the intestine is a suitable site for growth (Raymond et al., 2008a). Moreover, gram negative *E. coli* and *Enterobacter* spp. are poor controls for the effects of antibiotics on a gram positive *Bacillus*; both *E. coli* and *Enterobacter/Klebsiella* are approximately 400 times less susceptible to rifampicin than gram positive *Staphylococci*, for example (McCabe and Lorian, 1968).

Broderick et al. (2006) also found that *Bt* was incapable of growing in filtered gypsy moth haemolymph. This, however, is not a typical result. Many studies have used intra-haemocoelic inoculation to demonstrate that *Bt* is capable of rapid growth within the haemocoel of lepidopterans including *Callosamia promethean* (Edlund et al., 1976), *Cecropia hyalophora* (Heierson et al., 1986), *Trichoplusia ni* (Zhang et al., 1993), *Bombyx mori* (Fedhila et al., 2004) and *Galleria mellonella* (Salamitou et al., 2000). Where investigated, it was found that lethal infections were characterised by rapid growth of *Bt* within the haemocoel (Heierson et al., 1986). In *P. xylostella*, toxin-free spores of *B. thuringiensis kurstaki* HD1 were found to synergise the toxicity of purified crystals from the same strain (Miyasono et al., 1994). Moreover, synergism was characterised by spore germination and invasion of the larval haemocoel where *B. thuringiensis* densities increased to over 10^6 cells per µl haemolymph after 72 hours (Miyasono et al., 1994).

We do not contest the possibility that different insect hosts may harbour facultative pathogens within the mid-gut that could potentially synergize the toxicity of Cry toxins. Nevertheless, there are a number of studies suggesting that antagonistic interactions between the gut microbiota and *Bt* are probably the norm.

For example, intestinal microbiota invading the cadaver directly compete with *Bt* for the limited resources offered by the insect host (Takatsuka and Kunimi, 2000). It would therefore make poor adaptive logic for a pathogen to rely upon its competitors
for full pathogenicity and the action of its highly costly Cry toxins. Diverse bacterial antagonists are produced by *Bt* (Pendleton, 1968; Dong et al., 2002; Nair et al., 2004), and some of these, for example the quorum quenching N-acyl homoserine lactonases are clearly targeted at gram negative competitors (Dong et al., 2002). Finally, mixed infections with antibiotic producing relatives can increase the pathogenicity of *Bt* infections in *P. xylostella* and the gyspy moth (Broderick et al., 2000; Raymond et al., 2008b). In one of these studies antibiotic production was associated with the suppression of natural gut microbiota and domination of the gut community by *Bacillus cereus* (Raymond et al., 2008b). Gut microbiota suppression via in vivo antibiotic production was therefore implicated in the increased pathogenicity of *Bt*. This pattern ties in neatly with the results presented here on the protective role of the culturable gut microbiota. In other words suppression of the intestinal microbiota would seem to be a sound evolutionary strategy for *Bt*: it may increase the mortality rates of hosts and also reduce the number of competitors within any resulting cadaver.

Experimental procedures

Bacterial strains.

Bacillus thuringiensis subsp. *kurstaki* HD 1 was isolated from a commercial DiPel stock (DiPel WP, Valent Biosciences Corporation) using *Bacillus cereus* selective agar (BcSA) (Oxoid, UK). Wild-type *Bt* isolates were collected from a native, perennial crucifer, *Brassica oleracea* in semi-natural habitats on the Dorset coast in the UK and from the Silwood Park campus, Imperial College, UK, using previously described methods (Collier et al., 2005). Both habitats adjoin parkland or arable and pasture crops that are not typically sprayed with *Bt* biopesticides. Three strains of *Bt* (Dt 6.2.y, Dt 7.1.o and C3o20) were shown to be genotypically identical to other *Btk*
strains by multilocus-sequence typing of isolates at seven chromosomal genes (ST8, primers and sequence data available at http://pubmlst.org/bcereus). All strains were polymyxin resistant, expressed parasporal inclusions, are pathogenic to P. xylostella, and carry the genes for Cry1 and Cry2 toxins (B. Raymond unpubl. dat.). They can be differentiated from Dipel derived strains by phenotypic antibiotic assays (Nair et al., 2004) which reveal the improved ability of WT isolates in suppressing the growth of Pantoea agglomerans (B. Raymond unpubl. dat.) One of these strains (Dt 6.2.y) also has improved reproduction in hosts relative to DiPel WP. A spontaneous rifampicin resistant mutant derived from DiPel WP, Btk rifR, was described previously (Raymond et al., 2007). A spontaneous rifampicin resistant strain of Bt HD-73 was isolated by plating 10⁸-10⁹ cells of overnight culture onto LB agar containing 100 µg ml⁻¹ rifampicin, and sub-culturing strongly growing colonies. A description of all strains used is given in Table 1. For all bioassays fresh spores and crystals of Bt were prepared by growth on BcSA for 5 days, purification and assessment of spore density followed established techniques (Raymond et al., 2007). Bacterial stocks were pasteurized (30 min at 65°C) and stored at 10°C for no more than 5 days.

Enterobacter sp. Mn2 was isolated from the dissected mid-gut of fourth instar DBM larvae, reared on Chinese cabbage, Brassica pekinensis, in insect culture rooms at the Department of Zoology, University of Oxford and identified by sequencing of 16S rRNA genes using the universal primers 63f (5'- CAG GCC TAA CAC ATG CAA GTC-3') and 518r (5'- GTA TTA CCG CGG CTG CTG-3') (Genbank accession number FJ668636).

Rearing and bioassay of insect larvae
The Geneva *P. xylostella* strain was used in all artificial diet experiments (purchased from CEH Oxford UK). The parents of all aseptically reared larvae were reared on a wheat-germ based diet (Hunter et al., 1984) containing aureomycin (2.25 g l\(^{-1}\)) and streptomycin (0.25 g l\(^{-1}\)). Thereafter, aseptic larvae were prepared by surface-sterilizing eggs (2% sodium hypochlorite with 100 µl l\(^{-1}\) Triton X100 and three washes of sterile MilliQ water) and rearing on autoclaved diet in 50mm Petri dishes.

P. xylostella larvae were either reared on rifampicin diet (containing 500 µg ml\(^{-1}\) rifampicin) or antibiotic-free diet. Experimental inoculation of insects (second or third instar larvae) with *Bt* always took place on ≈ 330 mm\(^{2}\) antibiotic-free diet, in fresh Petri dishes. Diet was inoculated with 75µl of pasteurized *Bt* spore/crystal suspension and three *Bt* concentrations (200, 400 and 800 spores µl\(^{-1}\)) were applied with 30 larvae tested per dose. In the *Enterobacter* sp. Mn2 inoculation treatments *Bt* spore/crystal suspensions were prepared in a 1000-fold dilution of an overnight culture of *Enterobacter* sp. Mn2 (LB broth 30°C) isolated as described above. Diet was allowed to dry before larvae were added. For determination of the toxicity of purified protoxin, parents of the aseptically-reared larval progeny to be used were reared on sterile artificial diet containing the antibiotics rifampicin and streptomycin (100 µg g\(^{-1}\) diet for each). Eggs derived from these parents were surface sterilized as described above and larvae were reared on sterile artificial diet containing rifampicin and streptomycin (100 µg g\(^{-1}\) diet for each). Parents of non-sterile larvae, and these larvae prior to exposure to protoxins, were reared on artificial diet without antibiotics and with no attempt to disrupt vertical transmission of microbes.

Passage of DiPel derived strains in diamondback moth.
We selected for improved reproduction within hosts by passaging Btk rifR in P. xylostella larvae in four independent evolutionary lineages. For each lineage we inoculated ten Brassica pekinensis leaf discs by dipping in suspensions of 2000 spores µl⁻¹. Leaf discs were air-dried and placed in 50mm Petri dishes with moistened filter paper and five third instar larvae that had previously been reared on diet containing 500 µg ml⁻¹ rifampicin. After seven days cadavers were homogenized in 500 µl saline and plated onto BcSA containing 100 µg ml⁻¹ rifampicin. Selection was imposed by pooling cadavers from each Petri dish at homogenization, so that cadavers with improved reproduction were better represented in the subsequent strain isolation. We also selected between Petri dishes within a lineage, by propagating bacteria for the next passage with approximately equal proportions of bacteria from the five plates within highest Bt counts. Glycerol stocks were stored at -80°C after each passage.

Crystal toxin bioassays
Cry1Ac protoxins were expressed as crystals in E. coli, the crystals were purified away from disrupted cells and stored at -80°C as described previously (Sayyed et al., 2005). Bioassays were conducted with five concentrations and third-instar P. xylostella larvae using discs of sterile artificial diet containing rifampicin and streptomycin (100 µg g⁻¹ diet for each). Streaking out of purified crystals revealed no contamination with culturable bacteria. Each diet disc (r =24 mm, h=10 mm) was immersed in a Cry1Ac protoxin suspension for 30 s and allowed to dry at room temperature for 30 min. Suspensions were prepared using sterile distilled water with Triton X-100 (50 µg ml⁻¹). Control diet discs were immersed in sterile distilled water with Triton X-100. Each diet disc was added to a sterile 50 ml sample bottle. Five larvae were sealed in each bottle, and each treatment was repeated six times (i.e. N =
30 larvae per dose). Mortality was determined after 120 h at 25°C. Larvae were considered dead if unable to move when prodded with a blunt, sterile probe. Bioassays were repeated twice.

DNA extraction and PCR amplification of DNA from larvae and their gut microbiota

DNA was extracted from whole insects or from over-night cultures of *Enterobacter* sp. Mn2 using the CTAB method (Ausubel et al., 1999) and DNA re-suspended in 50µl of 10mM Tris pH 8.0 and stored at -20°C. PCR amplification with the universal bacterial 16S rRNA gene primers, 63f and 1492r (Marchesi et al., 1998), was used to test for the presence of bacteria in larvae. Amplifications were carried out in 25 µl reactions containing 0.25 µl *Taq* polymerase (Qiagen), 1µl dNTPs (10mM stock), 5 pico-moles of each primer, and 2µl of DNA extraction in a Techne Flexigene thermal cycler. The reaction conditions were 94°C for 4min followed by 30 cycles of 94°C for 45s, 57°C for 45s and 72°C for 1m 20s. In order to establish the sensitivity of the amplifications to bacterial DNA we ran positive controls with a 10-fold dilution series of *Enterobacter* sp. Mn2 DNA. Control larvae that had been reared on antibiotic-free diet, and fed on with *Enterobacter* sp. Mn2 -inoculated diet, were also used as positive controls to test whether insect DNA or material was an inhibitor of the PCRs. We did not attempt to amplify 16S rRNA genes from toxin-killed larvae as chromosomal DNA fragments from Cry toxin-producing bacteria are known to associate with toxin crystals (Sun et al., 2007) and these fragments could lead to false-positive identification of unculturable mid-gut bacteria.

Statistical Analysis
Statistical analysis was carried out in R (http://www.r-project.org) using analysis of variance, generalized linear modelling, and survival analysis. Cumulative insect mortality was analysed with survival analysis using Cox proportional hazard models, where possible. These models are more powerful than simple analyses of proportional mortality but rely upon an assumption of a constant probability of death (Tableman and Sung Kim, 2004). When this assumption was violated or when mortality data were available from a single time point proportional mortality was analysed with generalized linear modelling, a logit-link function and binomial errors (Crawley, 2005). The function “quasibinomial” was used to compensate for over-dispersion where appropriate, and estimates of LC$_{50}$ values with 95% confidence limits (95% CL) were calculated according to (Collett, 1991). Model assumptions (normality, homoscedasticity, error distribution) were confirmed with graphical analyses.

Acknowledgements

This project was funded by the BBSRC, NERC, COST862 and the Royal Society.

We would also like to thank Dexter Davis and Mani Narayanan for help with passaging _Bt_ and three anonymous referees for helping to improve this manuscript.

References

Edlund, T., Siden, I., and Boman, H.G. (1976) Evidence for two immune inhibitors from *Bacillus thuringiensis* interfering with the humoral defense system of saturniid pupae. *Infect Immun* **14**: 934 - 941.

Li, R.S., Jarrett, P., and Burges, H.D. (1987) Importance of spores, crystals, and delta-endotoxins in the pathogenicity of different varieties of *Bacillus thuringiensis* in *Galleria mellonella* and *Pieris brassicae*. *J. Invertebr. Pathol.* **50**: 277-284.

Pendleton, I.R. (1968) Ecological significance of antibiotics of some varieties of

Raymond, B., Davis, D., and Bonsall, M.B. (2007) Competition and reproduction in
mixed infections of pathogenic and non-pathogenic Bacillus spp. J. Invertebr.
Pathol. 96: 151-155.

Raymond, B., Elliot, S.L., and Ellis, R.J. (2008a) Quantifying the reproduction of
Bacillus thuringiensis HD-1 in cadavers and live larvae of Plutella xylostella. J.

Raymond, B., Lijek, R.S., Griffiths, R.I., and Bonsall, M.B. (2008b) Ecological
consequences of ingestion of Bacillus cereus on Bacillus thuringiensis infections

Salamitou, S., Ramisse, F., Brehelin, M., Bourguet, D., Gilois, N., Gominet, M. et
al. (2000) The plcR regulon is involved in the opportunistic properties of Bacillus
thuringiensis and Bacillus cereus in mice and insects. Microbiology 146: 2825-
2832.

Sayyed, A.H., Gatsi, R., Ibiza-Palacios, M.S., Escriche, B., Wright, D.J., and
Crickmore, N. (2005) Common, but complex, mode of resistance of Plutella
xylostella to Bacillus thuringiensis Cry1Ab and Cry1Ac. Appl. Env. Microbiol.
71: 6863-6869.

Schneepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J. et al.
(1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol.

Table 1. *Bacillus thuringiensis* strains used in this study.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>DiPel WP, DiPel DF</td>
<td>biopesticidal strains of Bt kurstaki HD-1</td>
<td>commercial spore preparations</td>
</tr>
<tr>
<td>HD-1 1971</td>
<td>biopesticidal isolate of HD-1 released by Institut Pasteur in 1971</td>
<td>Christina Nielsen-LeRoux</td>
</tr>
<tr>
<td>Btk rif<sup>R</sup></td>
<td>spontaneous rifampicin resistant mutant of DiPel WP</td>
<td>(Raymond et al. 2007)</td>
</tr>
<tr>
<td>R1-K, R2-K, R3-K</td>
<td>strains of Btk rif<sup>R</sup> independently passaged three times in P. xylostella</td>
<td>this study</td>
</tr>
<tr>
<td>HD-73</td>
<td>Bt kurstaki HD-73</td>
<td>BGSC† 4D4</td>
</tr>
<tr>
<td>HD-73 rif<sup>R</sup></td>
<td>spontaneous rifampicin resistant mutant of HD-73</td>
<td>this study</td>
</tr>
<tr>
<td>Dt 7.1.o, Dt 6.2.y</td>
<td>wild type isolates of B. thuringiensis</td>
<td>plant material, Dorset, UK</td>
</tr>
<tr>
<td>C3 o20</td>
<td>wild type isolate of B. thuringiensis</td>
<td>plant material, Ascot, UK, (Collier et al. 2005)</td>
</tr>
</tbody>
</table>

† BGSC- Bacillus Genetic Stock Centre, Ohio State University
Table 2. Effect of intestinal bacteria on the toxicity of Cry1Ac protoxin to third-instar *P. xylostella* larvae.

<table>
<thead>
<tr>
<th>Rearing</th>
<th>Culturable bacteria</th>
<th>16S rRNA</th>
<th>LC$_{50}$ (ng/ml)</th>
<th>95% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>+</td>
<td>+</td>
<td>69.3</td>
<td>56.4 - 85.0</td>
</tr>
<tr>
<td>Aseptic§</td>
<td>-</td>
<td>-</td>
<td>26.7</td>
<td>21.6 - 32.9</td>
</tr>
</tbody>
</table>

§ Larvae were rendered aseptic by treating the parental generation with antibiotics (100 µg g$^{-1}$ diet) and by surface sterilization of their eggs.
Fig. 1. Contrasting pathogenicity of different strains of *Bt* in aseptic hosts treated with rifampicin. The passaged rif*R* strains (black lines- filled diamonds) had been independently cultured three times in *P. xylostella* larvae; the HD-1 strains were all derived from biopesticidal sources (dashed lines – open squares); wild-type isolates (grey lines - asterisks) were collected from plant material in the UK. Each data point represents the mean mortality for three strains of each category; bioassays were replicated three times at different doses for each strain (*n* = 796 insects overall) bioassay dose effects have been pooled for graphical simplicity. The data are mean cumulative proportional mortality + SE.

Fig. 2. The effect of the addition of rifampicin and the gut bacterium *Enterobacter* sp. Mn2 on the mortality of aseptically reared second instar *P. xylostella* exposed to rifampicin susceptible and resistant *B. thuringiensis kurstaki* HD-1. Solid symbols indicate that hosts were reared on rifampicin-amended diet, open symbols indicate that hosts were reared in the absence of antibiotics. Circular symbols and grey lines indicate that *Bt* was coinfectected with *Enterobacter* sp. Mn2, triangular symbols and dashed lines indicate that insects were infected with *Bt* only. In this experiment HD-1 rif*R* refers to a host- passaged rifampicin resistant derivative of this strain (R1-K). Bioassays were replicated three times at different doses for each strain (*n* = 829 insects overall) but dose effects have been pooled for graphical simplicity. The data are mean cumulative proportional mortality + SE.

Fig. 3. The effect of the addition of rifampicin and the gut bacterium *Enterobacter* sp. Mn2 on the mortality of aseptically reared third instar *P. xylostella* exposed to
rifampicin susceptible and resistant *B. thuringiensis kurstaki* HD-73. Solid symbols indicate that hosts were reared on rifampicin-amended diet, open symbols indicate that hosts were reared in the absence of antibiotics. Circular symbols and grey lines indicate that *Bt* was coinfect with *Enterobacter* sp. Mn2, triangular symbols and dashed lines indicate that insects were infected with *Bt* only. In this experiment HD-73 rifR refers to a spontaneous rifampicin resistant derivative of HD-73. Bioassays were replicated three times at different doses for each strain (*n* = 767 insects overall) dose effects did not interact with *Enterobacter* or diet treatments so dose effects have been pooled for graphical simplicity. The data are mean cumulative proportional mortality + SE.
HD-1 (Dipel WP)

cumulative mortality

antibiotic free diet

rifampicin diet

days

HD-1 rif^R

cumulative mortality

days