Cocarascu, OOCocarascuToni, FFToniBaroni, PGordon, TFScheffler, TStede, M2017-02-062016-09-162017-02-062016-09-16Computational Models of Argument, 2016, 287, pp.469-470978-1-61499-686-60922-6389http://hdl.handle.net/10044/1/44017The unstoppable rise of social networks and the web is facing a serious challenge: identifying the truthfulness of online opinions and reviews. We propose a system to identify two new argumentative features that a trained classifier can use to help determine whether a review is deceptive.© 2016 The Authors. This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).Science & TechnologyTechnologyComputer Science, Artificial IntelligenceLogicComputer ScienceScience & Technology - Other TopicsDeceptionArgument miningAbstract argumentationA System for Supporting the Detection of Deceptive Reviews Using Argument MiningConference Paperhttps://www.dx.doi.org/10.3233/978-1-61499-686-6-469