96
IRUS Total
Downloads
  Altmetric

Soft tissue characterisation using a novel robotic medical percussion device with acoustic analysis and neural networks

File Description SizeFormat 
22-0276_02_MS.pdfAccepted version9.86 MBAdobe PDFView/Open
Title: Soft tissue characterisation using a novel robotic medical percussion device with acoustic analysis and neural networks
Authors: Zhang Qiu, P
Yongxuan, T
Thompson, O
Cobley, B
Nanayakkara, T
Item Type: Journal Article
Abstract: Medical percussion is a common manual examination procedure used by physicians to determine the state of underlying tissues from their acoustic responses. Although it has been used for centuries, there is a limited quantitative understanding of its dynamics, leading to subjectivity and a lack of detailed standardisation. This letter presents a novel compliant two-degree-of-freedom robotic device inspired by the human percussion action, and validates its performance in two tissue characterisation experiments. In Experiment 1, spectro-temporal analysis using 1-D Continuous Wavelet Transform (CWT) proved the potential of the device to identify hard nodules, mimicking lipomas, embedded in silicone phantoms representing a patient's abdominal region. In Experiment 2, Gaussian Mixture Modelling (GMM) and Neural Network (NN) predictive models were implemented to classify composite phantom tissues of varying density and thickness. The proposed device and methods showed up to 97.5% accuracy in the classification of phantoms, proving the potential of robotic solutions to standardise and improve the accuracy of percussion diagnostic procedures.
Issue Date: 1-Oct-2022
Date of Acceptance: 14-Jun-2022
URI: http://hdl.handle.net/10044/1/97514
ISSN: 2377-3766
Publisher: Institute of Electrical and Electronics Engineers
Start Page: 11314
End Page: 11321
Journal / Book Title: IEEE Robotics and Automation Letters
Volume: 7
Issue: 4
Copyright Statement: © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Sponsor/Funder: Engineering & Physical Science Research Council (E
Engineering & Physical Science Research Council (EPSRC)
Engineering & Physical Science Research Council (EPSRC)
Engineering & Physical Science Research Council (EPSRC)
Funder's Grant Number: EP/R511547/1
EP/N03211X/2
EP/R512655/1
EP/T00603X/1
Keywords: Science & Technology
Technology
Robotics
Medical robots and systems
AI-based methods
mechanism design
CHEST
TRANSMISSION
0913 Mechanical Engineering
Publication Status: Published
Online Publication Date: 2022-07-15
Appears in Collections:Dyson School of Design Engineering
Faculty of Engineering



This item is licensed under a Creative Commons License Creative Commons