2
IRUS Total
Downloads

Unlocking the computational design of metal-organic cages

File Description SizeFormat 
d2cc00532h.pdfPublished version8.11 MBAdobe PDFView/Open
Title: Unlocking the computational design of metal-organic cages
Authors: Tarzia, A
Jelfs, K
Item Type: Journal Article
Abstract: Metal–organic cages are macrocyclic structures that can possess an intrinsic void that can hold molecules for encapsulation, adsorption, sensing, and catalysis applications. As metal–organic cages may be comprised from nearly any combination of organic and metal-containing components, cages can form with diverse shapes and sizes, allowing for tuning toward targeted properties. Therefore, their near-infinite design space is almost impossible to explore through experimentation alone and computational design can play a crucial role in exploring new systems. Although high-throughput computational design and screening workflows have long been known as powerful tools in drug and materials discovery, their application in exploring metal–organic cages is more recent. We show examples of structure prediction and host–guest/catalytic property evaluation of metal–organic cages. These examples are facilitated by advances in methods that handle metal-containing systems with improved accuracy and are the beginning of the development of automated cage design workflows. We finally outline a scope for how high-throughput computational methods can assist and drive experimental decisions as the field pushes toward functional and complex metal–organic cages. In particular, we highlight the importance of considering realistic, flexible systems.
Issue Date: 25-Feb-2022
Date of Acceptance: 22-Feb-2022
URI: http://hdl.handle.net/10044/1/95404
DOI: 10.1039/D2CC00532H
ISSN: 1359-7345
Publisher: Royal Society of Chemistry
Start Page: 3717
End Page: 3730
Journal / Book Title: Chemical Communications
Volume: 58
Issue: 23
Copyright Statement: © The Royal Society of Chemistry 2022. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
Sponsor/Funder: The Royal Society
Commission of the European Communities
The Royal Society
The Royal Society
Funder's Grant Number: UF120469
758370
URF\R\180012
RGF\EA\181066
Keywords: Science & Technology
Physical Sciences
Chemistry, Multidisciplinary
Chemistry
UNIVERSAL FORCE-FIELD
COMPUTER-AIDED-DESIGN
COORDINATION CAGES
RATIONAL DESIGN
GUEST
BINDING
COMPLEXES
RECOGNITION
STRATEGIES
DISCOVERY
Adsorption
Catalysis
Metals
Metals
Catalysis
Adsorption
03 Chemical Sciences
Organic Chemistry
Publication Status: Published
Online Publication Date: 2022-02-25
Appears in Collections:Chemistry
Faculty of Natural Sciences



This item is licensed under a Creative Commons License Creative Commons