31
IRUS TotalDownloads
Altmetric
Machine learning for technical skill assessment in surgery: a systematic review
File | Description | Size | Format | |
---|---|---|---|---|
2919_3_merged_1640173715.pdf | Accepted version | 2.36 MB | Adobe PDF | View/Open |
Title: | Machine learning for technical skill assessment in surgery: a systematic review |
Authors: | Lam, K Chen, J Wang, Z Iqbal, F Darzi, A Lo, B Purkayastha, S Kinross, J |
Item Type: | Journal Article |
Abstract: | Accurate and objective performance assessment is essential for both trainees and certified surgeons. However, existing methods can be time consuming, labor intensive and subject to bias. Machine learning (ML) has the potential to provide rapid, automated and reproducible feedback without the need for expert reviewers. We aimed to systematically review the literature and determine the ML techniques used for technical surgical skill assessment and identify challenges and barriers in the field. A systematic literature search, in accordance with the PRISMA statement, was performed to identify studies detailing the use of ML for technical skill assessment in surgery. Of the 1896 studies that were retrieved, 66 studies were included. The most common ML methods used were Hidden Markov Models (HMM, 14/66), Support Vector Machines (SVM, 17/66) and Artificial Neural Networks (ANN, 17/66). 40/66 studies used kinematic data, 19/66 used video or image data, and 7/66 used both. Studies assessed performance of benchtop tasks (48/66), simulator tasks (10/66), and real-life surgery (8/66). Accuracy rates of over 80% were achieved, although tasks and participants varied between studies. Barriers to progress in the field included a focus on basic tasks, lack of standardization between studies, and lack of datasets. ML has the potential to produce accurate and objective surgical skill assessment through the use of methods including HMM, SVM, and ANN. Future ML-based assessment tools should move beyond the assessment of basic tasks and towards real-life surgery and provide interpretable feedback with clinical value for the surgeon. |
Issue Date: | 3-Mar-2022 |
Date of Acceptance: | 21-Jan-2022 |
URI: | http://hdl.handle.net/10044/1/94832 |
DOI: | 10.1038/s41746-022-00566-0 |
ISSN: | 2398-6352 |
Publisher: | Nature Research |
Journal / Book Title: | npj Digital Medicine |
Volume: | 5 |
Copyright Statement: | ©The Author(s) 2022 |
Sponsor/Funder: | Multi-Scale Medical Robotics Center Limited Engineering & Physical Science Research Council (EPSRC) Engineering & Physical Science Research Council (E |
Funder's Grant Number: | MEME_P84520 EP/L014149/1 EP/W004755/1 |
Keywords: | Science & Technology Life Sciences & Biomedicine Health Care Sciences & Services Medical Informatics OBJECTIVE STRUCTURED ASSESSMENT SURGICAL SKILL ASSESSMENT-TOOL ARTHROSCOPIC SKILLS NEURAL-NETWORKS MOTION ANALYSIS RECOGNITION PATTERNS QUALITY CLASSIFICATION |
Publication Status: | Published |
Appears in Collections: | Department of Surgery and Cancer Faculty of Medicine Institute of Global Health Innovation |
This item is licensed under a Creative Commons License