7
IRUS Total
Downloads
  Altmetric

A sharp lieb-thirring inequality for functional difference operators

File Description SizeFormat 
MirrorLTsharp.pdfAccepted version369.47 kBAdobe PDFView/Open
Title: A sharp lieb-thirring inequality for functional difference operators
Authors: Laptev, A
Schimmer, L
Item Type: Journal Article
Abstract: We prove sharp Lieb-Thirring type inequalities for the eigenvalues of a class of one-dimensional functional difference operators associated to mirror curves. We furthermore prove that the bottom of the essential spectrum of these operators is a resonance state.
Issue Date: 6-Dec-2021
Date of Acceptance: 1-Dec-2021
URI: http://hdl.handle.net/10044/1/93565
DOI: 10.3842/SIGMA.2021.105
ISSN: 1815-0659
Publisher: National Academy of Science of Ukraine
Start Page: 1
End Page: 10
Journal / Book Title: Symmetry, Integrability and Geometry: Methods and Applications
Volume: 17
Copyright Statement: © 2021 The Author(s).
Keywords: Science & Technology
Physical Sciences
Physics, Mathematical
Physics
Lieb-Thirring inequality
functional difference operator
semigroup property
TOPOLOGICAL STRINGS
BOUNDS
Science & Technology
Physical Sciences
Physics, Mathematical
Physics
Lieb-Thirring inequality
functional difference operator
semigroup property
TOPOLOGICAL STRINGS
BOUNDS
0101 Pure Mathematics
0102 Applied Mathematics
0105 Mathematical Physics
Publication Status: Published
Article Number: ARTN 105
Online Publication Date: 2021-12-06
Appears in Collections:Pure Mathematics
Mathematics