IRUS Total

V0 production ratios at LHCb and the alignment of its RICH detectors

File Description SizeFormat 
Blanks-CG-2012-PhD-Thesis.pdf8.09 MBAdobe PDFView/Open
Title: V0 production ratios at LHCb and the alignment of its RICH detectors
Authors: Blanks, Christopher George
Item Type: Thesis or dissertation
Abstract: The strangeness production ratios [bar wedge]/∧ and [bar wedge]/K0S are measured by the LHCb detector from 0.3 nb-1 of proton-proton collisions delivered by the Large Hadron Collider (LHC) at CERN with centre-of-mass energy √s = 0.9TeV and 1.8 nb-1 at √s = 7TeV. Both ratios are presented as a function of transverse momentum, pT, and rapidity, y, in the ranges 0.15 < pT < 2.50 GeV/c and 2.0 < y < 4.5. The ratios measured at the two energies are in good agreement in an overlapping region of rapidity loss, Δ y = ybeam - y, and are consistent with previous measurements. A review of the Standard Model is presented with emphasis on the diffculties in its application for predictions of physics at the LHC. Phenomenological models are introduced as the current state of the art for such predictions. Accurate models are required as an essential benchmark for future discoveries of physics beyond the Standard Model. LHCb's results represent a powerful test for these models in the soft QCD regime for processes including hadronisation. The ratio [bar wedge]/∧, measuring the transport of baryon number from the collision into the detector, is smaller in data than predicted, particularly at high rapidity. The ratio [bar wedge]/K0 S, measuring the baryon-to-meson suppression in strange quark hadronisation, is significantly larger than expected. The LHCb experiment is introduced, with particular focus on its Ring Imaging Cherenkov (RICH) detectors. The development and successful implementation of a method to align those RICH detectors is presented, using proton-proton collision data from the early running period of the Large Hadron Collider, which began in November 2009. The performance of the RICH detectors is investigated with preliminary analysis of the Cherenkov photon yield. The RICH mirror positions are monitored using an automated software control system, which has been running successfully since October 2008.
Issue Date: Dec-2011
Date Awarded: Jan-2012
URI: http://hdl.handle.net/10044/1/9209
DOI: https://doi.org/10.25560/9209
Supervisor: Egede, Ulrik
Sponsor/Funder: Science and Technology Facilities Council, Imperial College London and the European Organization for Nuclear Research
Author: Blanks, Christopher George
Department: Physics
Publisher: Imperial College London
Qualification Level: Doctoral
Qualification Name: Doctor of Philosophy (PhD)
Appears in Collections:Physics PhD theses

Unless otherwise indicated, items in Spiral are protected by copyright and are licensed under a Creative Commons Attribution NonCommercial NoDerivatives License.

Creative Commons