10
IRUS TotalDownloads
Altmetric
Colloidal nano-MOFs nucleate and stabilize ultra-small quantum dots of lead bromide perovskites
File | Description | Size | Format | |
---|---|---|---|---|
d1sc00282a.pdf | Published version | 2.37 MB | Adobe PDF | View/Open |
Title: | Colloidal nano-MOFs nucleate and stabilize ultra-small quantum dots of lead bromide perovskites |
Authors: | Protesescu, L Calbo, J Williams, K Tisdale, W Walsh, A Dinca, M |
Item Type: | Journal Article |
Abstract: | The development of synthetic routes to access stable, ultra-small (i.e. <5 nm) lead halide perovskite (LHP) quantum dots (QDs) is of fundamental and technological interest. The considerable challenges include the high solubility of the ionic LHPs in polar solvents and aggregation to form larger particles. Here, we demonstrate a simple and effective host–guest strategy for preparing ultra-small lead bromide perovskite QDs through the use of nano-sized MOFs that function as nucleating and host sites. Cr3O(OH)(H2O)2(terephthalate)3 (Cr-MIL-101), made of large mesopore-sized pseudo-spherical cages, allows fast and efficient diffusion of perovskite precursors within its pores, and promotes the formation of stable, ∼3 nm-wide lead bromide perovskite QDs. CsPbBr3, MAPbBr3 (MA+ = methylammonium), and (FA)PbBr3 (FA+ = formamidinium) QDs exhibit significantly blue-shifted emission maxima at 440 nm, 446 nm, and 450 nm, respectively, as expected for strongly confined perovskite QDs. Optical characterization and composite modelling confirm that the APbBr3 (A = Cs, MA, FA) QDs owe their stability within the MIL-101 nanocrystals to both short- and long-range interfacial interactions with the MOF pore walls. |
Issue Date: | 7-May-2021 |
Date of Acceptance: | 19-Mar-2021 |
URI: | http://hdl.handle.net/10044/1/87898 |
DOI: | 10.1039/d1sc00282a |
ISSN: | 2041-6520 |
Publisher: | Royal Society of Chemistry |
Start Page: | 6129 |
End Page: | 6135 |
Journal / Book Title: | Chemical Science |
Volume: | 12 |
Issue: | 17 |
Copyright Statement: | © 2021 The Author(s). Published by the Royal Society of Chemistry. his article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. |
Sponsor/Funder: | The Royal Society |
Funder's Grant Number: | UF150657 |
Keywords: | Science & Technology Physical Sciences Chemistry, Multidisciplinary Chemistry Science & Technology Physical Sciences Chemistry, Multidisciplinary Chemistry 03 Chemical Sciences |
Publication Status: | Published |
Open Access location: | https://doi.org/10.1039/D1SC00282A |
Online Publication Date: | 2021-03-19 |
Appears in Collections: | Materials Faculty of Engineering |
This item is licensed under a Creative Commons License