46
IRUS TotalDownloads
Altmetric
Descriptors for electron and hole charge carriers in metal oxides
File | Description | Size | Format | |
---|---|---|---|---|
2019_oxide_polaron.pdf | Accepted version | 1.03 MB | Adobe PDF | View/Open |
Title: | Descriptors for electron and hole charge carriers in metal oxides |
Authors: | Davies, DW Savory, CN Frost, JM Scanlon, DO Morgan, BJ Walsh, A |
Item Type: | Journal Article |
Abstract: | Metal oxides can act as insulators, semiconductors, or metals depending on their chemical composition and crystal structure. Metal oxide semiconductors, which support equilibrium populations of electron and hole charge carriers, have widespread applications including batteries, solar cells, and display technologies. It is often difficult to predict in advance whether these materials will exhibit localized or delocalized charge carriers upon oxidation or reduction. We combine data from first-principles calculations of the electronic structure and dielectric response of 214 metal oxides to predict the energetic driving force for carrier localization and transport. We assess descriptors based on the carrier effective mass, static polaron binding energy, and Fröhlich electron–phonon coupling. Numerical analysis allows us to assign p- and n-type transport of a metal oxide to three classes: (i) band transport with high mobility; (ii) small polaron transport with low mobility; and (iii) intermediate behavior. The results of this classification agree with observations regarding carrier dynamics and lifetimes and are used to predict 10 candidate p-type oxides. |
Issue Date: | 16-Jan-2020 |
Date of Acceptance: | 25-Dec-2019 |
URI: | http://hdl.handle.net/10044/1/84190 |
DOI: | 10.1021/acs.jpclett.9b03398 |
ISSN: | 1948-7185 |
Publisher: | American Chemical Society |
Start Page: | 438 |
End Page: | 444 |
Journal / Book Title: | Journal of Physical Chemistry Letters |
Volume: | 11 |
Issue: | 2 |
Copyright Statement: | © 2019 American Chemical Society. |
Keywords: | Science & Technology Physical Sciences Technology Chemistry, Physical Nanoscience & Nanotechnology Materials Science, Multidisciplinary Physics, Atomic, Molecular & Chemical Chemistry Science & Technology - Other Topics Materials Science Physics INITIO MOLECULAR-DYNAMICS TOTAL-ENERGY CALCULATIONS THERMOELECTRIC PROPERTIES SEMICONDUCTORS TRANSPARENT DESIGN Science & Technology Physical Sciences Technology Chemistry, Physical Nanoscience & Nanotechnology Materials Science, Multidisciplinary Physics, Atomic, Molecular & Chemical Chemistry Science & Technology - Other Topics Materials Science Physics INITIO MOLECULAR-DYNAMICS TOTAL-ENERGY CALCULATIONS THERMOELECTRIC PROPERTIES SEMICONDUCTORS TRANSPARENT DESIGN 02 Physical Sciences 03 Chemical Sciences |
Publication Status: | Published |
Online Publication Date: | 2019-12-25 |
Appears in Collections: | Materials Physics Experimental Solid State Faculty of Natural Sciences |