4
IRUS TotalDownloads
Altmetric
A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks
File | Description | Size | Format | |
---|---|---|---|---|
A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks.pdf | Published version | 2.62 MB | Adobe PDF | View/Open |
Title: | A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks |
Authors: | Al-Radhawi, MA Angeli, D Sontag, ED |
Item Type: | Journal Article |
Abstract: | Complex molecular biological processes such as transcription and translation, signal transduction, post-translational modification cascades, and metabolic pathways can be described in principle by biochemical reactions that explicitly take into account the sophisticated network of chemical interactions regulating cell life. The ability to deduce the possible qualitative behaviors of such networks from a set of reactions is a central objective and an ongoing challenge in the field of systems biology. Unfortunately, the construction of complete mathematical models is often hindered by a pervasive problem: despite the wealth of qualitative graphical knowledge about network interactions, the form of the governing nonlinearities and/or the values of kinetic constants are hard to uncover experimentally. The kinetics can also change with environmental variations. This work addresses the following question: given a set of reactions and without assuming a particular form for the kinetics, what can we say about the asymptotic behavior of the network? Specifically, it introduces a class of networks that are “structurally (mono) attractive” meaning that they are incapable of exhibiting multiple steady states, oscillation, or chaos by virtue of their reaction graphs. These networks are characterized by the existence of a universal energy-like function called a Robust Lyapunov function (RLF). To find such functions, a finite set of rank-one linear systems is introduced, which form the extremals of a linear convex cone. The problem is then reduced to that of finding a common Lyapunov function for this set of extremals. Based on this characterization, a computational package, Lyapunov-Enabled Analysis of Reaction Networks (LEARN), is provided that constructs such functions or rules out their existence. An extensive study of biochemical networks demonstrates that LEARN offers a new unified framework. Basic motifs, three-body binding, and genetic networks are studied first. The work then focuses on cellular signalling networks including various post-translational modification cascades, phosphotransfer and phosphorelay networks, T-cell kinetic proofreading, and ERK signalling. The Ribosome Flow Model is also studied. |
Issue Date: | 24-Feb-2020 |
Date of Acceptance: | 23-Jan-2020 |
URI: | http://hdl.handle.net/10044/1/83199 |
DOI: | 10.1371/journal.pcbi.1007681 |
ISSN: | 1553-734X |
Publisher: | Public Library of Science (PLoS) |
Start Page: | 1 |
End Page: | 37 |
Journal / Book Title: | PLoS Computational Biology |
Volume: | 16 |
Issue: | 2 |
Copyright Statement: | © 2020 Ali Al-Radhawi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
Keywords: | Science & Technology Life Sciences & Biomedicine Biochemical Research Methods Mathematical & Computational Biology Biochemistry & Molecular Biology GLOBAL CONVERGENCE RESULT CHEMICAL-REACTION NETWORKS STEADY-STATES MULTISITE PHOSPHORYLATION SIGNAL-TRANSDUCTION MESSENGER-RNA PETRI NETS STABILITY SYSTEMS 2-COMPONENT Algorithms Computational Biology Computer Simulation Extracellular Signal-Regulated MAP Kinases Gene Regulatory Networks Humans Kinetics Metabolic Networks and Pathways Models, Theoretical Protein Binding Protein Processing, Post-Translational Signal Transduction Software Systems Biology T-Lymphocytes T-Lymphocytes Humans Extracellular Signal-Regulated MAP Kinases Computational Biology Systems Biology Signal Transduction Protein Processing, Post-Translational Protein Binding Kinetics Algorithms Models, Theoretical Computer Simulation Software Gene Regulatory Networks Metabolic Networks and Pathways Science & Technology Life Sciences & Biomedicine Biochemical Research Methods Mathematical & Computational Biology Biochemistry & Molecular Biology GLOBAL CONVERGENCE RESULT CHEMICAL-REACTION NETWORKS STEADY-STATES MULTISITE PHOSPHORYLATION SIGNAL-TRANSDUCTION MESSENGER-RNA PETRI NETS STABILITY SYSTEMS 2-COMPONENT Bioinformatics 01 Mathematical Sciences 06 Biological Sciences 08 Information and Computing Sciences |
Publication Status: | Published |
Article Number: | ARTN e1007681 |
Online Publication Date: | 2020-02-24 |
Appears in Collections: | Electrical and Electronic Engineering |
This item is licensed under a Creative Commons License