209
IRUS TotalDownloads
Altmetric
Chlorophyll f synthesis by a super-rogue photosystem II complex
Title: | Chlorophyll f synthesis by a super-rogue photosystem II complex |
Authors: | Trinugroho, J Bečková, M Shao, S Yu, J Zhao, Z Murray, JW Sobotka, R Komenda, J Nixon, PJ |
Item Type: | Journal Article |
Abstract: | Certain cyanobacteria synthesize chlorophyll molecules (Chl d and Chl f) that absorb in the far-red region of the solar spectrum, thereby extending the spectral range of photosynthetically active radiation1,2. The synthesis and introduction of these far-red chlorophylls into the photosynthetic apparatus of plants might improve the efficiency of oxygenic photosynthesis, especially in far-red enriched environments, such as in the lower regions of the canopy3. Production of Chl f requires the ChlF subunit, also known as PsbA4 (ref. 4) or super-rogue D1 (ref. 5), a paralogue of the D1 subunit of photosystem II (PSII) which, together with D2, bind cofactors involved in the light-driven oxidation of water. Current ideas suggest that ChlF oxidizes Chl a to Chl f in a homodimeric ChlF reaction centre (RC) complex and represents a missing link in the evolution of the heterodimeric D1/D2 RC of PSII (refs. 4,6). However, unambiguous biochemical support for this proposal is lacking. Here, we show that ChlF can substitute for D1 to form modified PSII complexes capable of producing Chl f. Remarkably, mutation of just two residues in D1 converts oxygen-evolving PSII into a Chl f synthase. Overall, we have identified a new class of PSII complex, which we term ‘super-rogue’ PSII, with an unexpected role in pigment biosynthesis rather than water oxidation. |
Issue Date: | 9-Mar-2020 |
Date of Acceptance: | 6-Feb-2020 |
URI: | http://hdl.handle.net/10044/1/77675 |
DOI: | 10.1038/s41477-020-0616-4 |
ISSN: | 2055-026X |
Publisher: | Nature Research |
Start Page: | 238 |
End Page: | 244 |
Journal / Book Title: | Nature Plants |
Volume: | 6 |
Copyright Statement: | © The Author(s), under exclusive licence to Springer Nature Limited 2020 |
Sponsor/Funder: | Biotechnology and Biological Sciences Research Council (BBSRC) |
Funder's Grant Number: | BB/P00931X/1 |
Publication Status: | Published |
Appears in Collections: | Grantham Institute for Climate Change Faculty of Natural Sciences |