33
IRUS Total
Downloads
  Altmetric

Predictive models for the phase behaviour and solution properties of weak electrolytes: nitric, sulfuric and carbonic acid

File Description SizeFormat 
Khons et al PCCP 2020 Accepted.pdfAccepted version1.13 MBAdobe PDFView/Open
Title: Predictive models for the phase behaviour and solution properties of weak electrolytes: nitric, sulfuric and carbonic acid
Authors: Kohns, M
Lazarou, G
Forte, E
Perdomo Hurtado, F
Kournopoulos, S
Jackson, G
Adjiman, C
Galindo, A
Item Type: Journal Article
Abstract: The distribution of ionic species in electrolyte systems is important in many fields of science and engineering, ranging from the study of degradation mechanisms to the design of systems for electrochemical energy storage. Often, other phenomena closely related to the ionic speciation, such as ion pairing, clustering and hydrogen bonding, which are difficult to investigate experimentally, are also of interest. Here, we develop an accurate molecular approach, accounting for reactions as well as association and ion pairing, to deliver a predictive framework that helps validate experiment and guides future modelling of speciation phenomena of weak electrolytes. We extend the SAFT-VRE Mie equation of state [D. K. Eriksen et al., Mol. Phys., 2016, 114, 2724–2749] to study aqueous solutions of nitric, sulphuric and carbonic acid, considering complete and partially dissociated models. In order to incorporate the dissociation equilibria, correlations to experimental data for the relevant thermodynamic equilibrium constants of the dissociation reactions are taken from the literature and are imposed as a boundary condition in the calculations. The models for water, the hydronium ion, and carbon dioxide are treated as transferable and are taken from our previous work. Here we present new molecular models for nitric acid, and the nitrate, bisulfate, sulfate, and bicarbonate anions. The resulting framework is used to predict a range of phase behaviour and solution properties of the aqueous acids over wide ranges of concentration and temperature, including the degree of dissociation, as well as the activity coefficients of the ionic species, and the activity of water and osmotic coefficient, density, and vapour pressure of the solutions. The SAFT-VRE Mie models obtained in this manner provide a means of elucidating the mechanisms of association and ion pairing in the systems studied, complementing the experimental observations reported in the literature.
Issue Date: 21-Jul-2020
Date of Acceptance: 17-Mar-2020
URI: http://hdl.handle.net/10044/1/77577
DOI: 10.1039/C9CP06795G
ISSN: 1463-9076
Publisher: Royal Society of Chemistry
Start Page: 15248
End Page: 15269
Journal / Book Title: Physical Chemistry Chemical Physics
Volume: 22
Issue: 27
Copyright Statement: © The Royal Society of Chemistry 2020
Sponsor/Funder: Engineering & Physical Science Research Council (EPSRC)
Qatar National Research Fund
Royal Academy Of Engineering
Engineering & Physical Science Research Council (EPSRC)
National Nuclear Laboratory (NNL)
Eli Lilly & Company (USA)
Funder's Grant Number: EP/J014958/1
Subaward no. M1601174
RCSRF1819\7\33
EP/E016340/1
PO no. 1013534 & 1013536
4900606521
Keywords: 02 Physical Sciences
03 Chemical Sciences
09 Engineering
Chemical Physics
Publication Status: Published
Online Publication Date: 2020-03-23
Appears in Collections:Chemical Engineering
Faculty of Engineering