46
IRUS Total
Downloads
  Altmetric

Bismut-Elworthy-Li formulae for Bessel processes

File Description SizeFormat 
BEL_Bessel.pdfAccepted version280.3 kBAdobe PDFView/Open
Title: Bismut-Elworthy-Li formulae for Bessel processes
Authors: Elad Altman, H
Item Type: Journal Article
Abstract: In this article we are interested in the differentiability property of the Markovian semi-group corresponding to the Bessel processes of nonnegative dimension. More precisely, for all δ ≥ 0 and T > 0, we compute the derivative of the function x↦PδTF(x), where (Pδt)t≥0 is the transition semi-group associated to the δ-dimensional Bessel process, and F is any bounded Borel function on R+. The obtained expression shows a nice interplay between the transition semi-groups of the δ—and the (δ + 2)-dimensional Bessel processes. As a consequence, we deduce that the Bessel processes satisfy the strong Feller property, with a continuity modulus which is independent of the dimension. Moreover, we provide a probabilistic interpretation of this expression as a Bismut-Elworthy-Li formula.
Issue Date: 8-Aug-2018
Date of Acceptance: 1-May-2018
URI: http://hdl.handle.net/10044/1/76660
DOI: 10.1007/978-3-319-92420-5_6
ISSN: 0075-8434
Publisher: Springer Verlag
Start Page: 183
End Page: 220
Journal / Book Title: Lecture Notes in Mathematics
Volume: 2215
Copyright Statement: © Springer International Publishing AG, part of Springer Nature 2018. The final publication is available at Springer via https://link.springer.com/chapter/10.1007%2F978-3-319-92420-5_6
Keywords: General Mathematics
Publication Status: Published
Online Publication Date: 2018-08-08
Appears in Collections:Pure Mathematics
Mathematics