28
IRUS Total
Downloads
  Altmetric

Unsteady performance of a mixed-flow turbine with nozzled twin-entry volute confronted by pulsating incoming flow

File Description SizeFormat 
Manuscript Mingyang Aircraft turbine.pdfAccepted version1.96 MBAdobe PDFView/Open
Title: Unsteady performance of a mixed-flow turbine with nozzled twin-entry volute confronted by pulsating incoming flow
Authors: Xue, Y
Yang, M
Martinez-Botas, RF
Yang, B
Deng, K
Item Type: Journal Article
Abstract: Turbine with twin-entry volute has advantage of utilising energy from pulsatile exhaust gas and improving low-speed torque of an internal combustion engine. This paper investigates unsteady performance of a mixed flow turbine with nozzled twin-entry volute confronted by pulsatile incoming flow. The turbine performance at pulsating conditions with different Strouhal numbers (St) is studied via experimentally validated numerical method. Results show that the unsteadiness of turbine performance is enhanced as Strouhal number increases. In particular, the cycle-average efficiency at St = 0.522 is about 3.4% higher than that of quasi-steady condition (St = 0). Instantaneous loss breakdown of the turbine shows that the entropy generation rate of turbine components reduces evidently at pulsating conditions as Strouhal number increases, especially for the nozzle. Specifically, the cycle-averaged reduction of the loss in the nozzle is 37.3% at St = 0.522 compared with that of St = 0. The flow analysis shows that secondary flow which contributes to the majority of loss in the nozzle, including flow separation, horseshoe vortex, and reversed flow near the leading edge, are notably alleviated as Strouhal number increases. The alleviation of the flow structures are resulted from two reasons: one is that the flow distortion at the nozzle inlet is evidently depressed by the pulsating conditions, the other is that the inertia of the low momentum flow in the nozzle damps flow evolution at pulsating incoming flow. Consequently, the loss is reduced and the turbine performance is benefited by the pulsating inflows.
Issue Date: 1-Dec-2019
Date of Acceptance: 14-Oct-2019
URI: http://hdl.handle.net/10044/1/76127
DOI: 10.1016/j.ast.2019.105485
ISSN: 1270-9638
Publisher: Elsevier
Start Page: 1
End Page: 13
Journal / Book Title: Aerospace Science and Technology
Volume: 95
Copyright Statement: © 2019 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/
Keywords: Science & Technology
Technology
Engineering, Aerospace
Engineering
Turbine
Twin-entry volute
Pulsating conditions
Unsteady performance
RADIAL TURBINE
Science & Technology
Technology
Engineering, Aerospace
Engineering
Turbine
Twin-entry volute
Pulsating conditions
Unsteady performance
RADIAL TURBINE
Aerospace & Aeronautics
0901 Aerospace Engineering
0913 Mechanical Engineering
Publication Status: Published
Conference Place: Xian, PEOPLES R CHINA
Article Number: UNSP 105485
Online Publication Date: 2019-10-18
Appears in Collections:Mechanical Engineering
Centre for Environmental Policy
Faculty of Natural Sciences